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Abstract—The scarcity of labeled time-series data is a major
challenge in use of deep learning methods for Time Series
Classification tasks. This is especially important for the growing
field of sensors and Internet of things, where data of high dimen-
sions and complex distributions coming from the numerous field
devices has to be analyzed to provide meaningful applications.
To address the problem of scarce training data, we propose
a heuristic combination of deep transfer learning and deep
active learning methods to provide near optimal training abilities
to the classification model. To mitigate the need of labeling
large training set, two essential criteria – informativeness and
representativeness have been proposed for selecting time series
training samples. After training the model on source dataset,
we propose a framework for the model skill transfer to forecast
certain weather variables on a target dataset in an homogeneous
transfer settings. Extensive experiments on three weather datasets
show that the proposed hybrid Transfer Active Learning method
achieves a higher classification accuracy than existing methods,
while using only 20% of the training samples.

Index Terms—Transfer Learning, Active Learning, Time Series
Classification

I. INTRODUCTION

The technological landscape is changing at high speed,

with ability to capture, process and disseminate huge amount

of time-based data faster than before. This type of data is

characterized by time as the primary axis defined as Time
Series Data (TSD) and usually attributed by high dimension

and complex distributions.

Machine Learning (ML) provides automated abilities for

analyzing complex patterns in TSD. The problem is first

formulated e.g. into a prediction problem and a model is built

on a training dataset composed of input data, labeled with their

corresponding classes. The model is then used to estimate the

class of test data whose actual class is unknown. To build

an accurate model, it is required to find an appropriately

abstracted representation of data called features which would

contain all the information relevant to the target problem.

This process is referred to as feature engineering. Feature

engineering is a key step in the model building process

which is a two-step process of feature extraction and feature

selection. The most popular feature learning methods are based

on deep learning, e.g., using Deep Neural Networks (DNNs).

A DNN consists of an ensemble of artificial neurons organized

in a layer-wise fashion. Each neuron is a simple nonlinear

computational unit with internal parameters, weights, and

biases. Figure 1 presents a 1D Convolving by sliding a filter

over the TSD input.

During training, these parameters are optimized so that the

model can accurately categories training data into their own

classes.

Slides in one direction
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Fig. 1: Convolving on time dimension

In practice however, use of DNNs for TSD face several

challenges such as: a) lack of practical technique for the opti-

misation of hyper-parameters (e.g. activation function, number

of layers, number of neurons per layer, etc.); b) requirements

in high computational power to train complex models in a

reasonable amount of time; c) need for a diverse large quantity

of labeled training data, etc. A possible solution to alleviate

the training data scarcity problem is to use Active Learning
(AL) or Transfer Learning (TL).

TL refers to techniques that aim at extracting knowledge

from a source domain, and using it to improve the learning of

a model on a target domain [1]. Data from the source domain

can partially compensate the scarcity of data on the target

domain by reusing model skill. Deep TL refers to transfer

learning applied to DNNs which has become widespread with

the rise in popularity of DNNs. For example, this is done

by training ConvNets on a large dataset (e.g. ImageNet which

contains 1.2M instances with 1000 classes), and then using the

ConvNet either by fine-tuning or as fixed feature extractor for

the target task. Typically, parameters (weights and biases) of

a DNN model pre-trained on a source domain are transferred

to another compatible DNN on the target domain. In deep

TL, the hypothesis is if the features learned on the source

model are useful for the target domain, then the parameters

of a DNN pre-trained on the source domain can be used to

initialize target model [2].
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Once transferred, the target DNN is fine-tuned, i.e., re-

trained using the target data to adjust the transferred parame-

ters to the problem on the target domain as needed. In deep

transfer settings, the ability of a classifier on the target task

is based on its experience on similar tasks. The assumption

is that the source task and the target task share some (hyper-

)parameters but this not always the case [3] especially for

heterogeneous tasks. When the source and target tasks are

unrelated, the knowledge transfer from source task may not

be useful or even compromise the performance of a target

task through a negative transfer. Thus, to ensure safe-transfer

of knowledge is very critical to evaluate the similarity of the

source and target tasks. In this paper, homogeneous datasets

were considered hence no dataset similarity evaluation was

undertaken.

AL provides means of iteratively picking data points the

model wants to learn from [4]. This means that for a classifi-

cation task the model will not requires all the data for training

but instead pick the most effective data-points for training.

This provides means of analyzing vast amount of data with

improved efficiency by iteratively select the most informative

data instances [5]. In AL various strategies for selecting

training samples exist. Majorly, the strategies are based on

random sampling or uncertainty sampling. Randomly selecting

training instances is inefficient in many situations especially

when data has skewed categorical features which can result

in selecting non-informative or redundant instances. Better

performing strategies use statistical theory such as entropy and

margin to measure instance informativeness, however, it often

fails to capture the data distribution information [6].

While deep AL and TL are widely used in other domains

especially image analysis, they have not reached the same level

of maturity for time series prediction tasks mainly because of:

a) time-series labeled datasets are rather scarce due to the high

cost of the labeling especially for a specific application; b)

lack of very large-scale time-series datasets e.g. ImageNet; c)

challenge of varying data formats and units of measurement.

For instance, some datasets provide sparse time-series con-

taining data points unevenly spaced in time indicating events,

while others provide non-sparse time-series consisting of data

values evenly spaced in time and sampled at high frequencies;

d) data dimensionality consisting of different numbers of

channels. For instance, a temperature sensor provides a single

channel sequence, while three-axis accelerometers record three

channels, each indicating the acceleration on one axis, etc.

In this paper, we present an hybrid approach called Transfer
Active Learning (TAL), for creating an efficient time series

classifier.

The rest of the paper is organized as follows: Section II

highlights related works on TL and AL on time series analysis;

section III presents our proposed TAL method; section IV de-

scribes the experimental setup and respective results; section V

present our perspective and future interests.

II. RELATED WORKS

A. Deep Learning for Time Series Classification

Recurrent Neural Network (RNN) are popular methods for

time series forecasting. However, when analyzing large time

series datasets they suffer the following limitations; a) they

mainly predict an output for each time stamp in the time

series [7]. b) when they train from long data series, they suffer

vanishing gradient problem [8]. c) they have high compu-

tational requirement and hard to parallelize [10]. Successful

application of deep learning in various domains motivates

researchers to adopt deep learning methods for Time Series

Classification (TSC) in an effort to overcome RNN limitations

[10]. Wang et.al [10] presents a ResNet for TSC problem and

validated on the UCR1 a TSD archive that consists of 85 small-

scale univariate time-series datasets covering a wide range of

sensor modalities, such as accelerometer data, energy demand,

chemical concentration in water, etc.

The first 9 ConvNets layers are followed by a global average

pooling layer that averages the time series across the time

dimension for reducing the total number of parameters in the

model hence avoiding overfitting. In general ResNets are char-

acterized by shortcut residual connection between successive

ConvNet layers. On a performance comparative study of DL

methods on TSC, ResNet used was found to outperform other

9 methods and the generalization capabilities was attributed to

the flexible architectural nature of CNN [11]. The authors of

[12] built a CNN based time series classifier from scratch. To

circumvent the need of big training data problem they used

semi-supervised training method and data augmentation tech-

niques that warped and split the time-series dataset. On a real-

world problems DL has been used for spatio-temporal series

forecasting problems, such as oceanography and meteorology

[13]. On human activity recognition using wearable sensors,

DL is slowly replacing the feature engineering approaches by

automatically learning the features through back-propagation

[14]. On electronic health records, a generative adversarial

network with a CNN was trained for risk prediction based

on patients historical medical records [15].

B. Transfer Learning for Time Series Classification

AL and TL techniques have been explored much less for

time-series data because of the scarcity of training data, and

the absence of a large-scale labeled dataset like ImageNet.

Past works have attempted to tackle this issue with different

degrees of generality. In [1] they re-use data in the source

domain to train a model in the target domain through: a)

feature representation transfer that finds a feature mapping

between the source and target domains, and; b) parameter

transfer that transfers parameters from a source model to target

model. Several works presents results of parameter transfer. In

[16], the results in several scenarios of parameter transfer such

as transfer between subjects, datasets, sensor localisation, or

modalities were presented. The performances of transfers were

better when parameters of the lower layers were transferred.

1http://www.timeseriesclassification.com/
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In [17], a transfer approach for CNN was presented. It firstly

trains a CNN using labeled data on the source domain and

defines a CNN with similar architecture on the target domain.

The target CNN is then trained on unlabeled data to minimize

the distance between its parameters and the ones of the source

CNN. It, however, only works under the assumption that the

set of activities on the source and target domains is the same.

In [18], an iterative co-training approach using classification

models trained on labeled source data to attribute pseudo-

labels to unlabeled target data was presented. It works under

the assumption that source and target domains contain the

same labels. Source and target data are then projected into

a common space using the transformation, and classifiers are

trained on the projected data to attribute more reliable labels.

In [19], a RNN was trained using data from the UCR. The

RNN composed of an encoder and decoder to reproduce its

input on its output layer using a subset of 24 datasets of

the UCR (source domain). After this pre-training step, the

encoder was used as a feature extractor for a Support Vector

Machine (SVM) fine-tuned on each of 30 other datasets of the

UCR (target domain). The experimental results indicated that

data on source domains not necessarily related to the target

domain were still useful for achieving state-of-the-art results.

Similar recent efforts in [20] to create a pre-trained model for

TSD tasks using UCR data. In [11], a method to compute the

similarity between source and target datasets to determine the

most suitable dataset for transfer was proposed. It assumes

that one labeled target and several labeled source datasets

are available. For each dataset, the method firstly computes

the average of sequences for each class. The barycentre of

all class averages is then computed to yield a characteristic

sequence of the dataset. The similarity between two datasets is

computed using the Dynamic Time Warping distance between

their respective characteristic sequences. The source dataset

with the lowest distance is then chosen and used to train a

DNN. Its weights are finally transferred on the target domain

for fine-tuning. Experiments carried out on the 85 datasets of

the UCR showed that the transfer yielded better classification

performances when the similarity between source and target

was higher. Using dissimilarity matrix, Spiegel et,al were able

to transfer specific training examples from source dataset to

target set [21]. Their model was used to predict the wind speed

in a farm. First they trained the base network using historical

wind-speed data, then validated the model using new data from

the farm. Using restricted Boltzmann machines Banerjee et.al
first pre-trained the model for acoustic phoneme recognition

and then fine-tuned for post-traumatic stress disorder diagnosis

[22]. In their work, Serra et.al use TL to improve the accuracy

of deep neural networks for TSC. The CNN was designed

with an attention mechanism to encode the time series in a

supervised manner before fine-tuning on a target dataset [23].

C. Active Learning for Time Series Classification

Many AL strategies have been proposed for traditional

active learning, however, none of them is particularly effective

for TSC. Three main sample selection techniques include: a)

Uncertainty sampling with an objective to select an instance

the classifier is most uncertain about as the most potential

instance for labeling [24]; b) Variance reduction aims at

minimizing the model error rate by selecting instances with

the minimum variance, and c) Expected gradient length that

aims at querying instance that causes the maximal change

to the current model [4]. AL strategies for TSC range from

density estimation to multi-factor methods. The strategies can

be categorized into two groups: population-based strategies or

pool-based strategies [25]. In population-based AL, train and

test sets are drawn from the same distribution. The assumption

here is that train and test data both follow the same conditional

distribution. The objective is to find the optimal input density

for drawing instances for labeling. In pool-based AL, the

objective is to select instances from a pool so that a model

trained from them can best classify the remaining instances.

Whether population or pool-based, AL is an iterative process

[26]. First a base model is built using a small number of

labeled training instances, then using utility metrics it selects

instances and queries for their labels. The prediction result of

a single instance is represented by a vector, whose elements

are the posterior probability with respect to each class label.

The newly labeled instances are added to the training labeled

set and the model is updated. This process iterates until a

termination criterion is met, e.g, query budget or number of

iterations is exhausted. Based on the number of unlabeled

instances to query at each iteration, AL methods can be

grouped as either: a) sequence-mode AL- a single instance

is queried at a time or; b) batch-mode AL- multiple instances

are queried at each iteration [26].

The authors [27] proposed a procedure to ask experts to

label the frequent patterns of a long time series stream.

He et al. [28] provided a metric that considered both the

uncertainty of the classifier, and similarity between time series.

Neither methods have exploited the patterns in time series,

which is important in saving the labeling cost. A recent study

[30] propose use of Nearest Neighbor by adapting shapelet

discovery to find the discriminative patterns in the training set,

and incrementally update the patterns as new training samples

is availed. Further, the study propose a probabilistic model

over the instances, patterns and labels that considers both the

diversity of label distribution, and patterns of samples. Few

works on combination of TL and AL for TSC exist. Natarajan

and Laftchiev in their work combined TL and AL methods

to predict personal thermal comfort. The method leverages

domain knowledge from prior users and an AL strategy for

new users that reduces the necessary size of the labeled dataset.

When tested on real dataset from five users, their method

achieves a 70% reduction in the required size of the labeled

dataset as compared to the fully supervised learning approach

[26].

III. TRANSFER ACTIVE LEARNING

The proposed model is made up of two main deep learning

techniques namely: a) TL to provide model skill re-use on the

target task; b) AL to interactively query and add samples on the
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training set by using labeled data to provide information about

the class labels or class boundaries while the unlabeled data

is used to learn the base data distribution. Before diving into

details of mentioned techniques, lets first provide a definition

of TSC problem.

Definition III.1. An univariate time series Ut =
[x1, x2, ..., xT ] is an ordered set of real values. The

length of Ut is equal to the number of observable time-points

T .

Definition III.2. A multivariate time series Mt =
[U1

t , U
2
t , ..., U

n
t ] consists of n observables per time-point with

Ut
i ∈ RT .

Definition III.3. A dataset D =
(X1, Y1), (X2, Y2), ..., (XN , YN ) is a collection of pairs

(Xi, Yi) where Xi could either be Ut or Mt with Yi as its

corresponding label. For a dataset containing K classes, the

label vector Yi is a vector of length K where each element

j ∈ [1,K] is equal to 1 if the class of Xi is j and 0 otherwise.

We can therefore define, TSC as a mapping task from the

space of possible time based inputs to a probability distribution

over the labels denoted by the following equation:

Ct = f(w × Ut−l/2:t+l/2 + b)|∀t ∈ {1, T} (1)

C denotes the convolution result on a univariate time series Ut

of length T with a filter w of length l, a bias parameter b and a

non-linear function f . Applying several filters on a time series

will result in a multivariate time series whose dimensions are

equal to the number of filters used. Using the same filter values

w and b in ConvNets its possible to find the results for all time

stamps t ∈ [1, T ]. This is possible by using weight sharing that

enables the model to learn feature detectors that are invariant

across the time array.

A. Deep Transfer Learning

A simple definition of TL is using knowledge acquired

on one task (source task), to solve related task (target task).

The more related the tasks, the better suitability of the model

skill. Invariably, researchers define TL from different contexts

but regardless, the motivation of TL is exploiting knowledge

acquired from source setting to improve generalization on

target setting with exponentially fewer training examples. Lets

begin this section by first defining deep TL.

Definition III.4. A domain can be denoted as D = X , P (X)
with X representing the feature space and P (X) representing

the marginal probability. X = {xi, ...., xT }, xi ∈ X where xi

represent specific time vector.

Definition III.5. For a given domain, the task can be de-

fined as T = Y, P (Y |X) with Y representing the label

space and P (Y |X) representing the prediction objective func-

tion (learned from instance feature/label pair) where Y =
{yi, ...., yT }, yi ∈ Y .

Definition III.6. Given source domain DS = X , P (X) and

source task TS = Y, P (Y |X) then TL is learning target

conditional probability distribution P (YT |XT ) in DT .

With the above definitions in mind, a deep learning model

Θ is denoted as Y ≈ Θϑ(θ|D) where θ are parameters and ϑ
are hyper-parameters. D is training data and Y is class labels.

The objective is to find estimate of parameters θ that optimizes

some loss function L. The model performance based on loss

function is dependent on ϑ, this implies that the parameters are

also dependent on the hyper-parameters. The parameters are

learnt during training, but hyper-parameters are set of initial

model variables set before start of training and they include;

number and size of the convNet layers, learning rate, weight

initialization, etc.
The two main strategies of deep TL include: a) Using

pre-trained models as feature extractors. The objective is to

leverage the pre-trained weight to extract features and only

the final layer is replaced . b) Fine Tuning pre-trained models.

Selective layers are re-trained and others frozen. The question

of weather to freeze pre-trained layers or use them as fixed

feature extractor is determined by the size of available labeled

set in the target settings that can be used for training. Under

normal circumstance, when the labels in the target task is

scarce, freezing is the best option to avoid overfitting. When

the labels are sufficient then fine-tuning is a better choice.
During target training, first the parameters’s are initialized

using previous task weights Θ ← ϑθ. After the weight’s

initialization, a forward pass through the model is applied

using the function f(θ, xi) and the output of an input xi

is computed. The output is a vector whose components are

the estimated probabilities of xi belonging to each class. The

model’s prediction loss is computed using a cost function,

for example the negative log likelihood. Then, using gradient

descent, the weights are updated in a backward pass to

propagate the error. Thus, by iteratively taking a forward

pass followed by backpropagation, the model’s parameters are

updated in a way that minimizes the loss on the training data.

During testing, the model is tested on unseen data which

is and a forward pass on this unseen input followed by a

class prediction. The prediction corresponds to the class whose

probability is maximum. For this case a categorical cross

entropy is applied as the loss function denoted as:

L(Ut) = −
K∑

j=1

Yj log Ŷj (2)

with L(Ut) denoting the loss when classifying the input time

series Ut, Ŷj denoting probability of Ut class Y equal to class

j out of K classes in the dataset. For batch wise training loss

can be defined using the following equation:

J(Ω) =
1

N

N∑

n=1

L(Un
t ) (3)

B. Sample Selection
The key objective in active learning is to develop algorithms

with precise queries that maximize the accuracy of classifi-
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cation or prediction task. Since the boundary class regions

are often those in which instances of multiple classes are

present, they can be characterized by class label uncertainty

or disagreements between different learners. However, this

may not always be the case, because instances with greater

uncertainty are not representative of the data, and may some-

times lead to the selection of unrepresentative outliers. This

situation is especially likely to occur in data sets that are very

noisy. In order to address such issues, some models focus

directly on the error itself, or try to find samples that are

representative of the underlying data. We consider actively

selecting instances in batches, where the selection must be

constrained by some budget. Let xi represents an instance

and yi where yi ∈ {1, ....K} represents the class label for

xi, D = DL ∪ DU , DL denotes labeled instances where

DL = {(x1, y1), (x2, y2), ...., (xn, yn)}, DU denotes unla-

beled instances where DU = {(x1, ?), (x2, ?), ...., (xn, ?)},
and Θ to denotes model defined by model parameters. For

label space Y with K classes in D the class probability

estimator is used to compute the class estimate of a label.

1) Uncertainty Measure: In uncertainty sampling settings,

the model attempts to select instances it is most uncertain

about or what has not been seen so far. The Three major

metrics used to define uncertainty include; least confidence,

sample margin and entropy. Least confidence consider the

class label with the highest posterior probability with an

objective function to decrease the error rate. Sample margin

considers the first two most probable class labels using an

objective function of decreasing the error rate. One major

deficiency of both least confidence and sample margin is

that they does not consider the output distributions for the

remaining class labels in the set. Entropy considers class label

over the whole output prediction distributions with an objective

function to reduce the log-loss. Using entropy the uncertainty

of an instance xi in DU can be defined as:

fu(x) = argmax
i
−

∑

i

P (yi|xi) logP (yi|xi) (4)

where P (yi|xi) denotes posterior probability of the instance

xi being a member of the ith class, which ranges over

all possible labels yi. For a binary classification task, the

most potential instances are the ones with equal posterior

probability with respect to all possible classes. For the binary

classification the classifier is normalized to ensure that the

predicted probabilities sum up to 1. Therefore, the entropy

objective function En(X) for the binary class (k = 2) problem

is minimized as follows:

En(X̄) =
k∑

i=1

P − 0.5 (5)

2) Correlation Measure: Majorly, AL query strategies use

the uncertainty metric measure to evaluate the utility of a

independent and identically distributed instance. However,

when developing efficient AL methods, it is important to con-

sider instance distribution information. The instance diversity

information aids in querying most representative instances.

This approach significantly improves the query performance

while avoiding selecting outlier instances. In this paper we

focus on exploiting the pairwise similarities of instances,

therefore the informativeness of an instances is weighed by

average similarity to its neighbors. Let xi and xj be a pair

of instances. Given a label space the correlation measure (fc)

between a pair of instances xi and xj can be defined as:

fc(x) =
1

DU

∑

xj∈DU/xi

fc(xi, xj) (6)

The value of fc(xi) represents the instance density of xi in

the unlabeled set. The larger the value, the more densely

an instance is correlated with others. A low value of the

correlation measure indicates an outlier instance which should

not be considered for labeling.

3) Most Informative and Representative sample: To select

the most informative and representative samples in a distri-

bution, a heuristic combination of correlation and uncertainty

is done. The most effective instance to label by the current

model can be expressed as:

x∗ = argmax
i

(fu(x) · fc(x)) (7)

Algorithm 1: Transfer Active Learning (TAL)

input : labeled data Dtrain, Dtest ← DL, available

DU , budget m
Θ← ϑθ initialization;

while m �= 0 do
for each xi ← DU do

u← fu(x), c← fc(x);
Select x̂← argmax

i
(u · c);

Predict class ŷ ← Θ(x̂);
Update labeled set Dtrain ← x̂t, ŷt;
Compute query loss Ltrain ← L(ŷ, y);

for t = [1, T ] do
Get batch from D-train xt, yt ← Dtrain;

Get train loss on each batch L← L(Θ(xt), yt);
θ ←: Update parameters;

Get batch from D-test x, y ← Dtest;

Get test loss on test batch θ ← L(Θ(x), y);
m← m− 1;

output: Output Θ

In Algorithm 1. learning starts from a small labeled set DL

with initialized parameters θ and hyper-parameters ϑ for the

model Θ and proceeds sequentially. For each iteration of AL,

uncertainty fu(x) and correlation fc(x) for each candidate

sample xi is computed. Then using a heuristic combination,

the most informative instance instance is selected for labeling.

After that, the new labeled instance is directly added to the

training set DL to update the model. Training on new data

proceed in batch mode while computing loss for every batch.
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IV. EXPERIMENTAL SETUP

In this section, we empirically study the proposed method

for multivariate time series on three real-world datasets. The

experiments were carried out on NVidia K80 GPU, which

provided up to 12.0X speedup compared to standard CPU.

The experiments were implemented using Pytorch. To show

competence of proposed method, comparative experiments

were run on pre-trained and un-trained settings. Compared

AL methods include: a) Random selection of samples in

the distribution; b) Margin selection based on the sample

distance to the hyperplane; c) QUIRE margin based with

mini-max viewpoint [30]; d) DFAL adversarial with smallest

perturbation [31], and ; e) Core-Set non-uncertainty based AL

method [32].

A. Network Architecture

For experiments ResNet architecture was considered fol-

lowing two reasons: a) the architecture has been adopted

in other recent time series classifications [33]; b) it per-

forms comparably well in a large number of cases [11].

This is because skip-connections are very efficiently with

deeper networks by allowing gradient flow directly through

the bottom layers. The residual connections allow skipping of

multiple layers within deeper neural network. In the proposed

network the main hyper-parameters are 4 residual modules,

8 × 32 kernel size and 128 filters. For all the convolution

and dense layers L2 regularization is used, 10−2 learning rate,

categorical cross-entropy is used as loss function. Accuracy is

used as a performance metric by recording training loss and

performance reporting on the test set. Sigmoid function is used

as a decision boundary to return a probability value between 0

and 1. Training batch size was set to 64 with and testing batch

size set to 128 with 100 epochs on each round of training.

B. Datasets

Homogeneous transfer was considered with pre-training

done with three multivariate time series datasets namely: a)

RAUS - Rainfall in Austrialia2 - dataset contains daily weather

observations from various Australian weather stations for a

period of 10 years (with over 110K samples); b) MeteoNet3 - a

meteorological dataset developed and made available by ME-

TEO FRANCE, the French national meteorological service.

The dataset temporal coverage range 2016-2018 (with over

60M samples) and spatial coverage being North-West region of

France. The dataset contains full time series over 500 ground

stations measuring pressure, temperature, humidity, wind di-

rection and speed, dew point and precipitation, recorded every

6 min; c) KenCentralMet - Kenya Meteorological Department4

daily weather observations covering Central Kenya for a period

of 3 years from 2012-2014 (with over 100K samples).

For RAUS dataset, data was first segregated into categorical

and numerical variables. The 6 categorical variables include:

2https://www.kaggle.com/jsphyg/weather-dataset-rattle-package
3https://meteonet.umr-cnrm.fr/
4https://meteo.go.ke/

Location, WindGustDir, WindDir9am, WindDir3pm, RainTo-

day and RainTomorrow. There are two binary categorical vari-

ables i.e. RainToday and RainTomorrow with RainTomorrow

being the target variable. For categorical the date variable has

the highest cardinality of 3436 labels, we performed some

feature engineering to deal with high cardinality problem. To

do this we parse the date coded as object into datetime format.

Then one hot encoding was performed on all variables while

adding dummy variables on missing data. The other data pre-

processing include removing of outliers and splitting training

and testing data at 0.2. Median imputation of missing data was

done and in order to avoid overfitting imputation was done

over the training set and then propagated to the test set. For

missing categorical values, input was done with most frequent

value. Similarly, for MeteoNet and Central Kenya dataset, one

hot encoding was performed on all categorical variables while

adding dummy variables on missing data with precipitation

being the binary target variable.

Deep Learning Models Accuracy % Recall F1-Score
Random 61.68 61.33 62.58
Margin 60.57 64.08 60.32
QUIRE 63.45 67.45 61.78
DFAL 65.87 63.45 65.43

Core-Set 59.87 61.48 57.56
TAL 67.45 69.21 65.56

TABLE I: Median performance during the first 100 number

of queries on each of the three datasets

Table I shows the classification accuracy during the first 100

number of queries on each of the three datasets. Random and

Margin approaches tend to yield decent performance when the

number of queries is minimal. But, as the number of queries

increases, this simple approach loses its edge and often is

not as effective as the other active learning approaches. Both

Core-set and DBAL are performing well at the beginning

of the learning stage. As the number of queries increases,

we observe their performance become less competitive. The

performance of QUIRE is mixed. It works well on RAUs

and KenCentralMet datasets, but performs less competitive on

MeteoNet. We attribute the this to the fact that unlabeled data

structures may not be consistent. TAL is the most competative

method among the compared methods. This is attributed to its

simple yet effective hybrid strategy of actively selecting most

effective training samples from the distribution.

Deep Learning Models Accuracy % Recall F1-Score
QUIRE 63.45 67.45 61.78

Pre-trained QUIRE 63.45 67.45 61.78
DFAL 65.87 63.45 65.43

Pre-trained DFAL 65.87 63.45 65.43
Core-Set 59.87 61.48 57.56

Pre-trained Core-Set 59.87 61.48 57.56
TAL 67.45 69.21 65.56

Pre-trained TAL 67.45 69.21 65.56

TABLE II: Median transfer learning performance during the

first 100 number of queries

In order to maintain a homogeneous transfer, 6 features

were considered from the 3 datasets with precipation as the
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target variable for all sets. This way, leveraging the similarity

between the datasets was possible without further pairwise

comparison of the data. MeteoNet was selected as the picked

as source dataset while RAUS and KenCentralMet as target

datasets. The result of two transfer tasks were recorded as

presented in table II. The results shows pre-trained models

leverage on target task better than un-trained models with TAL

taking a competitive lead on performance.

V. CONCLUSION

In this paper, we proposed a novel deep Transfer Active

Learning method for time series classification. We showed

that its possible to use deep learning methods to discovery

the discriminative patterns of the multivariate time series data.

Then we defined a heuristic combination of informativeness

and representative metrics for selecting training samples. Fur-

ther we demonstrated the relevance of model skill transfer

in homogeneous settings. In the experiment, we validated our

method on a three time series datasets. The results showed that

our proposed hybrid method is most competitive. In future,

we plan to perform an adaptive transfer active learning on

multivariate time series classification.

REFERENCES

[1] Cook, D., Feuz, K.D. and Krishnan, N.C., Transfer learning for activity
recognition: A survey. Knowledge and information systems, vol. 36(3),
pp.537–556, September 2013.

[2] Kornblith, S., Shlens, J. and Le, Q.V., Do better imagenet models transfer
better?. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2661–2671 2019.

[3] Raina, R., Battle, A., Lee, H., Packer, B. and Ng, A.Y., June. Self-taught
learning: transfer learning from unlabeled data. In Proceedings of the
24th international conference on Machine learning, pp. 759–766), 2007.

[4] Settles, B., Active learning literature survey, 2009.
[5] Gal, Y., Islam, R. and Ghahramani, Z., July. Deep bayesian active

learning with image data. In International Conference on Machine
Learning, pp. 1183–1192, 2017.

[6] Fu, Y., Zhu, X. and Li, B., A survey on instance selection for active
learning. Knowledge and information systems, 35(2), pp.249–283, 2013.

[7] Langkvist, M., Karlsson, L. and Loutfi, A., A review of unsupervised
feature learning and deep learning for time-series modeling. Pattern
Recognition Letters, Vol. 42, pp.11–24, 2014.

[8] Pascanu, R., Mikolov, T. and Bengio, Y., Understanding the exploding
gradient problem. CoRR, abs/1211.5063, vol. 2(417), 2012.

[9] Pascanu, R., Mikolov, T. and Bengio, Y., May. On the difficulty
of training recurrent neural networks. In International conference on
machine learning, pp. 1310–1318, 2013.

[10] Gamboa, J.C.B., Deep learning for time-series analysis. arXiv preprint
arXiv:1701.01887, 2017.

[11] Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L. and Muller, P.A.,
Deep learning for time series classification: a review. Data mining and
knowledge discovery, Vol. 33(4), pp.917–963, 2017.

[12] Le Guennec, A., Malinowski, S. and Tavenard, R., September. Data
augmentation for time series classification using convolutional neural
networks. In ECML/PKDD workshop on advanced analytics and learn-
ing on temporal data, 2016.

[13] Ziat, A., Delasalles, E., Denoyer, L. and Gallinari, P., November. Spatio-
temporal neural networks for space-time series forecasting and relations
discovery. In 2017 IEEE International Conference on Data Mining, pp.
705–714, 2017.

[14] Nweke, H.F., Teh, Y.W., Al-Garadi, M.A. and Alo, U.R., Deep learning
algorithms for human activity recognition using mobile and wearable
sensor networks: State of the art and research challenges. Expert Systems
with Applications, Vol. 105, pp.233–261, 2018.

[15] Che, Z., Cheng, Y., Zhai, S., Sun, Z. and Liu, Y., November. Boosting
deep learning risk prediction with generative adversarial networks for
electronic health records. In 2017 IEEE International Conference on
Data Mining, pp. 787–792, 2017.

[16] Morales, F.J.O. and Roggen, D., September. Deep convolutional feature
transfer across mobile activity recognition domains, sensor modalities
and locations. In Proceedings of the ACM International Symposium on
Wearable Computers, pp. 92–99, 2016.

[17] Khan, M.A.A.H., Roy, N. and Misra, A., March. Scaling human activity
recognition via deep learning-based domain adaptation. In IEEE inter-
national conference on pervasive computing and communications, pp.
1–9, 2018.

[18] Wang, J., Chen, Y., Hu, L., Peng, X. and Philip, S.Y., March. Stratified
transfer learning for cross-domain activity recognition. In IEEE inter-
national conference on pervasive computing and communications, pp.
1–10, 2018.

[19] Malhotra, P., TV, V., Vig, L., Agarwal, P. and Shroff, G., TimeNet:
Pre-trained deep recurrent neural network for time series classification.
arXiv preprint arXiv:1706.08838, 2017.

[20] Kashiparekh, K., Narwariya, J., Malhotra, P., Vig, L. and Shroff, G.,
July. ConvTimeNet: A pre-trained deep convolutional neural network
for time series classification. In International Joint Conference on Neural
Networks, pp. 1–8, 2019.

[21] Hu, Q., Zhang, R. and Zhou, Y., Transfer learning for short-term wind
speed prediction with deep neural networks. Renewable Energy, Vol. 85,
pp.83–95, 2016.

[22] Banerjee, D., Islam, K., Xue, K., Mei, G., Xiao, L., Zhang, G., Xu, R.,
Lei, C., Ji, S. and Li, J., A deep transfer learning approach for improved
post-traumatic stress disorder diagnosis. Knowledge and Information
Systems, Vol. 60(3), pp.1693–1724, 2019.
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