
signals

Article

Development of Surface EMG Game Control Interface for
Persons with Upper Limb Functional Impairments

Joseph K. Muguro 1,2 , Pringgo Widyo Laksono 1,3,* , Wahyu Rahmaniar 4,*, Waweru Njeri 2, Yuta Sasatake 1,
Muhammad Syaiful Amri bin Suhaimi 1 , Kojiro Matsushita 1, Minoru Sasaki 1,* , Maciej Sulowicz 5

and Wahyu Caesarendra 6,*

����������
�������

Citation: Muguro, J.K.; Laksono,

P.W.; Rahmaniar, W.; Njeri, W.;

Sasatake, Y.; Suhaimi, M.S.A.b.;

Matsushita, K.; Sasaki, M.; Sulowicz,

M.; Caesarendra, W. Development of

Surface EMG Game Control Interface

for Persons with Upper Limb

Functional Impairments. Signals 2021,

2, 834–851. https://doi.org/10.3390/

signals2040048

Academic Editors: Tom Diethe and

Niall Twomey

Received: 30 June 2021

Accepted: 18 October 2021

Published: 12 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mechanical Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
joseph.muguro@dkut.ac.ke (J.K.M.); z4525039@edu.gifu-u.ac.jp (Y.S.); amri@gifu-nct.ac.jp (M.S.A.b.S.);
kojirom@gifu-u.ac.jp (K.M.)

2 School of Engineering, Dedan Kimanthi University of Technology, Nyeri 657-10100, Kenya;
waweru.njeri@dkut.ac.ke

3 Industrial Engineering, Universitas Sebelas Maret, Surakarta 57126, Indonesia
4 Department of Electrical Engineering, National Central University, Zhongli, Taoyuan 32001, Taiwan
5 Department of Electrical Engineering, Faculty of Electrical and Computer Engineering,

Cracow University of Technology, Warszawska 24 Str., 31-155 Cracow, Poland; maciej.sulowicz@pk.edu.pl
6 Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
* Correspondence: pringgo@ft.uns.ac.id (P.W.L.); wahyu.rahmaniar@gmail.com (W.R.);

sasaki@gifu-u.ac.jp (M.S.); wahyu.caesarendra@ubd.edu.bn (W.C.); Tel.: +62-81329968807 (P.W.L.)

Abstract: In recent years, surface Electromyography (sEMG) signals have been effectively applied in
various fields such as control interfaces, prosthetics, and rehabilitation. We propose a neck rotation
estimation from EMG and apply the signal estimate as a game control interface that can be used by
people with disabilities or patients with functional impairment of the upper limb. This paper utilizes
an equation estimation and a machine learning model to translate the signals into corresponding neck
rotations. For testing, we designed two custom-made game scenes, a dynamic 1D object interception
and a 2D maze scenery, in Unity 3D to be controlled by sEMG signal in real-time. Twenty-two (22)
test subjects (mean age 27.95, std 13.24) participated in the experiment to verify the usability of
the interface. From object interception, subjects reported stable control inferred from intercepted
objects more than 73% accurately. In a 2D maze, a comparison of male and female subjects reported a
completion time of 98.84 s. ± 50.2 and 112.75 s. ± 44.2, respectively, without a significant difference in
the mean of the one-way ANOVA (p = 0.519). The results confirmed the usefulness of neck sEMG of
sternocleidomastoid (SCM) as a control interface with little or no calibration required. Control models
using equations indicate intuitive direction and speed control, while machine learning schemes offer
a more stable directional control. Control interfaces can be applied in several areas that involve neck
activities, e.g., robot control and rehabilitation, as well as game interfaces, to enable entertainment
for people with disabilities.

Keywords: disability and functional impairment; game control; human-machine interface; machine
learning; sEMG

1. Introduction

Video games have evolved into a more sophisticated ecosystem due to the advance-
ment of technology in the 21st century. The same integration into society is also on an
upward uptrend. Games come in all forms and shapes, ranging from smartphones to
dedicated gaming hardware and consoles. Edutainment, development games, and chil-
dren’s games are some of the integration processes that exist to date [1–3]. In general,
games have proven to be the central point of engagement, socialization, and connectivity
in students’ lives [3,4]. Despite these developments, people with disabilities have not been
adequately served by the industry. Accessibility of video games is especially a challenge for
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people with disabilities due to the control interfaces primarily comprised of the gamepad,
keyboard, and touch panel.

The control interface for people with disabilities is a significant issue that is multi-
faceted and varies with the user. The main challenge stems from the fact that different
individuals have different needs and abilities even within the same spectrum of disabil-
ity [5]. In an attempt for inclusivity, the game industry is customizing controls to make them
disabled-accessible, i.e., commercially available game interfaces are customized/adapted
to the current user needs [6]. A game enthusiast has taken advantage of the modification
in the past with tremendous results targeting the face and tongue [7,8]. Despite its suc-
cess with pro-gamers, an interface that is usable by casual users without requiring overly
complex customization is highly desirable.

The development of an access control interface for people with disabilities with
intuitive control mechanisms is needed to improve the quality of life of the target group.
Several approaches have been employed in the research area, ranging from modifications
in the input system to new body controls. The most frequently reported approaches touch
biopotential signals such as Electromyogram (EMG) [9], Electrooculogram (EOG) [10],
Electroencephalogram (EEG) [11], and body sways [12,13].

The non-intrusive nature of sEMG and its ease of modulation contributes considerably
to much of its usage in research. Integration of sEMG into different daily activities ranging
from prosthetics [14], robotic control [15–18], wheelchair control [19,20], and more is also
possible for this reason. In addition, EMG has been used as a serious game control—
referred to as exergaming [21–23]—and the general premise of using EMG-controlled
games is that motor skills acquired through them will be translated into useful skills, such
as rehabilitation or prosthetic controls.

A method in [24] investigated how exergaming improves motor skills and whether
there is a transfer of skills over time. The authors reported in-game adaptability and
accuracy with minimal or no translation from games to daily activities. A similar method
was reported in [23], where the authors developed a system to facilitate rehabilitation
exercises to recover patients. The target of the game was to increase motivation and
performance and to quantify measurable progress. Researchers have found that exergaming
can improve exercise adherence, engage participants, sustain motivation, and result in
other benefits [25–28].

In this paper, we propose to utilize the neck EMG of the left and right sternocleido-
mastoid (SCM) muscles and the facial EMG of the Masseter muscle to develop a Human-
Machine Interface (HMI) for game control. Scientists in different fields have been using
SCM EMG to estimate its various responses and applications [29–31]. The masseter has
been touted as one of the strongest muscles in the human body, given its anatomical pur-
pose in jaw movement [32], and, coupled with the fact that upper body muscles are not
affected even in spinal cord injury (SCI), the combination forms a good source of HMI for
disabled patients [33,34].

EMG of the neck and face have been used in previous studies as control inputs. In [34],
Williams et al. applied EMG of the neck muscle and head turns in an attempt to restore
cursor control to patients with tetraplegia. The target of the study was computer-controlled
recovery for patients with SCI. They used head orientation and EMG of the facial and neck
muscles—users turned their heads or altered muscle contractions to change the position
of the computer cursor. The authors further expanded the research into robotic control.
In this case, the EMG signal from the neck was used as the input source for the 3D robot
command [18]. Other research has also attempted to confirm the usability of neck EMG in
feedback and control recovery for disabled individuals.

Game controller interfaces for people with disabilities in the literature focusing on
motor impairments can be categorized into remapping/modification control inputs and
developing alternative controls. In remapping, the target is to remodel or upgrade the
standard joystick using software of additional hardware to suit user requirements [35].
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Alternative controllers focus on new input signals for analysis. These include, but are not
limited to, voice commands, mouth, vision-based gestures [36], and bio-signals [37–41].

EMG as a control interface for games can be categorized in various degrees of free-
dom (DoF) or control dimensions [42]. Single click (e.g., in firing command) [21,23,43],
1 DoF (e.g., in left and right movement) [26,27], 2 DoF (e.g., in left, right, top and down
movement) [14], or 3 or more DoF (input combination).

This paper is a continuation of a previously published article [44], in which we
explored the implementation of control interfaces in 1D. This work reports on further
developments being made, notably on machine learning (ML) generalizations from trained
models and multiple-dimensional controls or 2D controls, by incorporating additional
EMG sensors. Target use cases are individuals with Amelia or amputees as control schemes
or entertainment interfaces. With a focus on biofeedback, users can control custom-made
games to the desired effect. The custom game is designed in a Unity 3D game engine to
ensure control of the design scene. We modeled the relationship between subject neck
rotation EMG using an equation and ML approach and applied the results to the game
biofeedback interface.

The remainder of this paper is subdivided as follows: Section 2 describes the materials
used, the design of the game scene, and evaluation methods; Section 3 shows the verifica-
tion of control performance and the results obtained; Section 4 discusses the results; and
Section 5 is the conclusion drawn from the paper.

2. Materials and Methods
2.1. Setup and Data Acquisition

The setup used for the system for experiment one is as shown in Figure 1a. The target
neck muscles were the left and right sternocleidomastoid (SCM), recorded with gel-based
adhesive electrodes, Biorode SDC-H® from Sekisui Plastics Co. Ltd., Tokyo Japan. The
recorded EMG was amplified using polyam4B and converted from A/D using National
Instrument USB 6211 with a 16 bit 250 kS/s multifunction IO device at a sampling rate of
2000 Hz. Data were recorded using the Data Acquisition Toolbox 4.0 from MATLAB. The
setup for experiment two is as shown in Figure 1b. In this case, the target muscles were the
left and right SCM and Masseter EMG. The same data acquisition protocol was observed,
albeit with three channels as opposed to the previous case. The setup was performed on a
laptop with Windows 10, 16 GB RAM and an NVIDIA graphics card GTX 1060, MATLAB
2019a, and Unity 3D version 2019.4.12.
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The raw EMG obtained is integrated and the FIR is filtered using moving averages to
generate the associated processed signal. In the case of an ML model, the trained model is
used for inference to classify which direction is selected. The user sits in front of the PC
monitor at a comfortable distance (approximately 0.5 m). The game setup requires the user
to maintain visual feedback with the game scene. Thus, the rotation is within a normal
head rotation range with little or no strain.

2.2. Unity3D Engine Game Development

In this paper, we use the Unity 3D game engine to develop the scenes for experi-
ments one and two. Unity 3D has a built-in physics system that is utilized to confirm the
interaction/collision of game objects. In this case, the game object player is controlled
by command input from the processed EMG or the ML model generated from MATLAB
in real-time. Connectivity between MATLAB and Unity 3D is handled by either serial
communication or TCP/IP with a local host. The update rate (communication speed) is
hampered by the game update function. This ranges from 70–100 frames per second (fps).

2.2.1. Experiment One: Intercepting Game

The game is set as illustrated in Figure 1a and an example scene is shown in Figure 2.
The player is set at the bottom, with the ability to move left and right directions (x-axis),
referred to as 1D movement. The interceptor object appears at the top of the scene in a
predefined position in a random order after a period of 2 s, which ensures comparability
between subjects.
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Figure 2. Example scenes of experiment one (intercepting game) showing intercepted and missed
objects.

The object that appears is moving downwards at a constant speed due to gravity. If
the player intercepts an object, a score is recorded, a visual particle effect is displayed, and
the object is destroyed. In a case where the object is not intercepted, the distance from the
object to the player is recorded for further analysis, and a color change (particle effect) is
displayed to mark the missed object. In this setup, difficulty control is exercised with the
level of appearance of the object. In the game, the total object intercepted (score), as well as
the time, are displayed, as shown in Figure 2. All users play the game until the dropped
object set expires—in this case, 5 drops.
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2.2.2. Experiment Two: Maze Game

The game mechanism and setup for experiment two are shown in Figure 1b. Figure 3
shows the user interaction experiment of two game scenes. In this case, the user moves
the player to collect all the targets in the maze scene. The maze scenes were developed
following the procedural scene generation program, which can be found in [45]. For
consistency between the test subjects, we selected 10 scenes, as shown in Figure 4, with
various target objects and navigational obstacles. In this scene, the player is located in the
center of the game and can move in all four directions, i.e., right, left, up, and down (x- and
y-axis). The preparatory scene (scene 0) was used to confirm accurate input commands
from the bite and neck EMG.

A scene starts with the time at zero. The user commands the position of the player
towards the targets—illustrated by a video clip in the attachment. When the target collides
with the player, a hit (intercept) is recorded, and the intercepted object is destroyed. When
all targets are destroyed, the next scene is loaded. The time is taken and the position logs
of the player are registered for all moves for further analysis.

Each scene is designed with a random number of turns in both the horizontal (y-axis)
and vertical axis. A turn is considered a continuous trajectory until a change of direction
is required. In this case, for a subject to complete level 1 (scene 1), the user can move the
player (cursor) to the left to collect the first target before moving the player right to the
original position. The user then moves the cursor down, followed by a left movement to
collect a second target. In total, a minimum of 3 turns on the horizontal axis (h = 3) and
1 turn on the vertical axis (v = 1) are needed to complete this scene.
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The number of turns in each scene is recorded and used as an analytical metric in
the results section. The trajectory length, taken as the sum of distance traveled in the x
and y-axis, is also used in the analysis. Similarly, command input and completion time are
logged for further analysis as evaluation parameters.

2.3. Head Rotation Estimation

The success of the experiment majorly depends on the accurate estimation of head
rotation. EMG has been applied in previous cases to infer rotation estimation methods. In
this paper, we focus on two methods: an equation model and an ML approach. In literature,
real-time EMG control recommends a maximum latency of 300 ms [46]. In our method, raw
EMG was recorded by DAQ with a window size of 30 and 50 ms for the equation and ML
model, respectively, corresponding to 30–100 samples of the EMG sequence at a sampling
rate of 2000 Hz. This value was found to satisfy the real-time system requirements.

2.3.1. Equation Estimation

Due to the symmetrical and/or near symmetry of the neck motion, rotation produces
a counterclockwise (quasi-tension) effect on the EMG data, and the EMG signal is minimal
when not rotating. According to a derivation in [43], the estimation of the ith neck angle
can be calculated by taking the difference between the processed EMG of left and right
SCM muscles as described in (1). In this case, X1 and X2 are the processed EMGs of the left
and right SCM, respectively.

θest = X1
i − X2

i (1)

where θest is the head rotation. We proposed an alternative model, as expressed in (2). The
advantage of the proposed model is to point out the inverse relationship that exists between
left and right SCM with head rotation. Further details can be found in [44]. Changing the
position of the player is carried out by

θest =
X1

i
X2

i
−

X2
i

X1
i

(2)
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2.3.2. Machine Learning (ML) Estimation

We explored the ML approach, which could be useful in the prediction of left-right
neck rotation classification as an alternative to the equation model. This was obtained
from the previous experiment and by the equation model. The estimated angle is found
to be erratic and requires computationally expensive filters to obtain smooth signals in
real-time. Given the nature of the required performance, we targeted an ML model that
was pre-trained with one or two subject data and generalized to all test subjects. In this
way, setup time is reduced simply by connecting the EMG electrodes in a plug-and-play
model.

For training, data on 2 subjects were recorded performing left and right neck move-
ments for 2.5 min per subject. The data were further subdivided into processing window
sizes (50 ms) and corresponding classes defined from visual observations. Three classes
were used: left turn, right turn, and center. The total data generated for training by two
subjects in 5 min at a sampling rate of 2000 Hz is (2000 × 5 × 60) = 600,000 samples per
channel. After window subdivision, we have 6000 labeled train sequence observations per
channel.

In this step, we derive the features of the EMG sequence. Five features to choose from
were mean absolute value, zero crossings, integrated absolute value, waveform length, and
band power of the sampled data in accordance with other classification researches [46]. In
total, 10 predictor features (5 features of each SCM signal) were used for classification. We
employed a leaner classification in MATLAB to conduct training with the prepared data set.
Three types of ML algorithms, k-Nearest Neighbor (KNN), Support Vector Machine (SVM),
and Ensemble, were used [47]. The hyper-parameters for each classifier were initialized
with default settings with fivefold cross-validation. In KNN, the cosine distance metric and
weighted distance method were evaluated. In SVM, linear and Gaussian kernel functions
were evaluated. In Ensemble, bagged trees and boosted trees methods were evaluated.

The performance of the three types is proportional to the demand for different com-
puting resources. The adopted method is based on classification accuracy and computation
time. The performance of the ML model is validated with the classification accuracy indi-
cators, as shown in Table 1. From this performance, the Ensemble is selected, which has
the best repeat accuracy and response time.

Table 1. Machine learning training and performance.

Type Accuracy Prediction
Time (s)

Training
Time (s)

Ensemble (RUS-Boosted Trees) 0.939 0.03 74.93
Ensemble (Bagged Trees) 0.934 0.05 65.53

KNN (Cubic) 0.938 0.02 57.44
KNN (Cosine) 0.936 0.03 53.00

SVM (fine Gaussian) 0.938 0.01 38.67
SVM (Linear) 0.934 0.04 49.07

2.4. Participants

Twenty-two (22) healthy subjects took part in this experiment. Subjects were solicited
through online invitations as game scene test volunteers. The entire test population had a
mean age of 27.95 years (std = 13.24). Two of the participants were minors (10 and 13 years
old). Data capturing and soliciting were carried out with the guidance of their parents.
Of these participants, 5 subjects were randomly selected as test subjects for experiment
1, consisting of dynamic scenes, while the rest were assigned to experiment two. This
group was further subdivided based on the visible gender differences. Group 1 consisted of
10 male subjects, and group 2 consisted of 7 female subjects. Of these, 3 data subjects were
discarded due to incorrect data recording (2 males and 1 female subjects). All participants
(or guardians in the case of minors) provided written consent following the approval
procedures issued by the ethics committee of Gifu University.
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In the experiment protocol, experiment one is performed as a proof of concept to
validate the control scheme. Subjects in 2D experiments performed EMG-controlled scenes
first and keyboard controls (certain individuals) much later to avoid pre-exposure to game
mechanics. No skills or game requirements were needed in the selection criteria.

3. Performance Verification and Results
3.1. Performance Verification
3.1.1. Head Rotation Validation

To validate the proposed equation model, we used a motion sensor mounted in a 3D
Virtual Reality (3D-VR) Head Mounted Display (HMD) manufactured by FOVE®. The
target was to use the inbuilt inertial motion unit (IMU) to formulate a reference. Similar
results would be achieved with an IMU attached to the head. In this case, we designed a
simple scene with equidistant objects placed on the left and right sides of the virtual scene
and the reference point in the center. The user was to turn their head to view each object
sequentially from the center (reference point), holding for at least 1 s at each point in the VR
environment. Figure 5a shows the raw signal from the neck EMG signal generated when
turning the head in a VR environment. Two left turns and two right turns were performed
(weak and strong neck turns).

Figure 5b shows the estimation results using the equation and the ML model. The
ML model output (yellow line) is factored with twenty-five of the three classes of 1, 0, and
−1 for easy visibility. When the signal is weak, as it was in the first two turns (Figure 5b
between 3–15 s), the equation model reports inconsistent estimates due to the stochasticity
of the resulting EMG. This is also the case on a strong neck turn where the initial estimate
reached a value of less than −100 before settling down (around −40). The ML model, on
the other hand, is capable of accurately delivering consistent output regardless of signal
strength differences.

3.1.2. Bite EMG

The setup proposed in this research uses three input channels to implement four
directional controls. In this case, the bite EMG was further processed to signal a change in
direction during movement. The mechanism used is similar to a double click in computer
terminology. The bite EMG was scanned for the event, shown in Figure 6, as a double-click.
If no event occurs, the included EMG is used as a standard input signal to go up or down,
depending on the selected direction.

A double-click event registers if a first threshold (T1) is crossed, a rest (T2), and a
corresponding crossing of the second threshold (T3) within the specified time. In this case,
we use a duration of 30 s to complete one cycle. These are shown in Figure 6b as T1, T2,
and T3.

3.2. Results
3.2.1. Experiment One

We tested the usability of the system using five subjects. Figure 7 shows the angle
input commands (θest) and the corresponding player position along the x-axis. The distance,
in this case, is the displacement of the paddle from the center position. The approximate
angle of the ML model has been factored by five for visibility. We considered uniform game
difficulty settings and compared the percentages of objects dropped and intercepted.
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Figure 7. Input angle and corresponding paddle position for equation and ML model.

All the subjects reviewed demonstrated accurate game control with little or no train-
ing time. Figure 8a shows the scores for the subjects. Users controlled the player with
average scores of 75.52% and 79.73% for the equation and the ML model, respectively. This
confirmed the ease of use as no subject was previously exposed to the game.

Figure 8b shows the average miss rate of the two models. As expected, the equation
model had a higher number of missed objects compared to the ML model. Previous studies
show the equation model to have higher speeds but lower precision. This is because the
non-stationarity of θest makes fine-tuned moves difficult to achieve. In other words, the ML
model was more stable than the equation model. Based on these results, we opted to focus
on the ML model in a 2D environment as described below.
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Figure 8. Game performance metrics showing scores and miss rate of control model for experiment 1 setup: (a) scores (total
intercepted objects) for experiment one; and (b) average miss rate.

3.2.2. Experiment Two
Completion Time

We tested the performance of the system using fourteen subjects (eight males and six
females) for all different scenes (difficulty adjustment). The objective for the user is to direct
the player to collect all the target objects in a short time using any chosen trajectory. Player
positions and completion time are logged and reported here for comparison. Figure 9
shows the average time taken and the total trajectory length (total distance traveled in the
x- and y-axis) for all scenes (levels).

Scenes 3 and 10 are the most time-expensive in the experiment, although the trajectory
length is longer in scene 10. This is attributed to the positioning of scene 3, i.e., before the
user gets accustomed to controlling the interface. The trajectory of the two scenes (scenes 3
and 10) are shown in Figures 10 and 11. From this trajectory, it is clear that the EMG control
is handled in a uni-dimensional manner by the user—indicated by straight vertical and
horizontal lines—and further exacerbated by a setup that seems to enforce the regulation
by using impenetrable horizontal and vertical collider walls.

Signals 2021, 2 FOR PEER REVIEW  13 
 

 

3.2.2. Experiment Two 

Completion Time 

We tested the performance of the system using fourteen subjects (eight males and six 

females) for all different scenes (difficulty adjustment). The objective for the user is to 

direct the player to collect all the target objects in a short time using any chosen trajectory. 

Player positions and completion time are logged and reported here for comparison. Figure 

9 shows the average time taken and the total trajectory length (total distance traveled in 

the x- and y-axis) for all scenes (levels). 

Scenes 3 and 10 are the most time-expensive in the experiment, although the 

trajectory length is longer in scene 10. This is attributed to the positioning of scene 3, i.e., 

before the user gets accustomed to controlling the interface. The trajectory of the two 

scenes (scenes 3 and 10) are shown in Figures 10 and 11. From this trajectory, it is clear 

that the EMG control is handled in a uni-dimensional manner by the user—indicated by 

straight vertical and horizontal lines—and further exacerbated by a setup that seems to 

enforce the regulation by using impenetrable horizontal and vertical collider walls. 

  

(a) (b) 

Figure 9. Average performance of all subjects indicated by the completion time and trajectory length of the experiment 

scenes: (a) average completion time; and (b) average path length. 
Figure 9. Average performance of all subjects indicated by the completion time and trajectory length of the experiment
scenes: (a) average completion time; and (b) average path length.



Signals 2021, 2 845Signals 2021, 2 FOR PEER REVIEW  14 
 

 

 

Figure 10. The trajectory of the fastest subject (S2) and the slowest subject (S10) command input for scene 3 with 

corresponding completion time. The keyboard and scene architecture are provided for contextual reference. 

 

Figure 11. The trajectory of the fastest subject (S2) and the slowest subject (S6) command input for scene 10 with 

corresponding completion time. 

  

Figure 10. The trajectory of the fastest subject (S2) and the slowest subject (S10) command input for
scene 3 with corresponding completion time. The keyboard and scene architecture are provided for
contextual reference.
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Figure 11. The trajectory of the fastest subject (S2) and the slowest subject (S6) command input for
scene 10 with corresponding completion time.
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Input Command

In Figure 12, the red line central mark indicates the median, and the bottom and
top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers
extend to the most extreme data points not considered outliers, and the outliers are plot-
ted individually using the ‘+’ red symbol. The performance of the succeeding scenes is
compared based on the commands given by all subjects. These commands are summed to
provide a single index for each subject. From these results, the SCM EMG is an estimate of
twice the Masseter EMG, partly due to the game design with the horizontal (left and right)
dimensions being more large than vertical (up and down).

Group Comparison

The test subjects contained distinguishable gender groupings that we separated to
find out if there were significant control differences. In division, six female subjects and
fourteen male subjects’ data were tested for statistical significance, as shown in Table 2.
We performed a one-way ANOVA test on reaction time (the time taken before a viewable
control input is displayed when the scene is loaded), completion time, and summed neck
and bite EMG. As shown in Table 2, there was no significant difference between the two
groups as indicated by the completion time (P(F > 0.43) = 0.519). Similarly, there was no
statistical difference between the mean of the neck and bite EMG (p = 0.48 and p = 0.7595,
respectively). The reaction time showed a significant difference, with female subjects
having a fast response compared to male subjects (p = 0.0299). Figure 13 shows the bar
graphs of the two groups.
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Figure 12. Boxplot of all user cumulative command input from SCM and Masseter EMG: (a) SCM commands; and
(b) Masseter rotation commands.

Table 2. Statistical tests of subject’s performance.

Male Female ANOVA
(p-Value)

Reaction Time (s) 2.87 ± 0.70 2.26 ± 0.42 0.0299 *
Completion Time (s) 98.84 ± 50.16 112.75 ± 44.21 0.519

SCM EMG 492.30 ± 262.48 573.46 ± 240.20 0.480
Masseter EMG 831.08 ± 446.76 778.68 ± 290.82 0.7595

NB: * p < 0.05.
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Figure 13. Comparison of performance for male and female subjects: (a) reaction time; and (b) total time taken.

Overall Performance

The overall performance is captured for all evaluated scenes. In Table 3, the scenes
can be reorganized into 1, 5, 6, 4, 2, 8, 7, 3, 9, and 10, based on the completion time. This
rating coincides with the vertical index (v-index) order adopted in the scene. This is further
elaborated by the correlation test shown in Table 4.

Table 3. Overall performance of all subjects.

Approx.
Turns Reaction Time Completion Time SCM Input Masseter Input Trajectory/

Path Length
Total

Objects

h v Time (s) std Time (s) std Sum std Sum std Sum std

3 1 2.54 1.30 23.74 14.90 119.09 75.75 198.79 56.46 722.54 283.49 2
3 6 2.30 0.75 92.08 58.11 405.34 203.46 598.90 286.29 8329.42 5655.32 3
6 7 2.67 1.96 146.50 96.43 707.53 464.89 748.29 479.92 12263.92 9157.81 3
8 5 3.10 1.89 80.94 56.13 380.11 221.90 671.95 172.68 7579.69 5995.52 3
5 3 1.66 0.53 57.76 46.76 333.12 263.26 477.12 332.44 5359.19 4410.02 3
6 4 2.72 0.95 71.45 37.37 310.37 158.64 725.07 369.32 6735.52 3802.65 3
13 13 2.03 1.26 138.77 29.20 768.13 216.44 975.86 417.63 14840.91 3427.49 5
15 11 3.26 2.00 125.29 44.17 671.08 330.30 960.57 414.29 12489.97 3938.40 5
13 11 3.15 1.85 154.70 86.62 725.67 513.16 1298.74 971.09 15180.07 7197.53 5
16 16 2.70 1.90 156.81 39.77 850.41 287.54 1430.92 692.21 19860.39 5027.02 6

NB: h—horizontal index, v—vertical index, std = standard deviation.

Table 4. The correlation amongst variables.

H-Index V-Index Reaction Time Completion Time SCM EMG Masseter EMG

H-index 1
V-index 0.911 1

Reaction Time 0.415 0.239 1
Completion Time 0.760 * 0.892 * 0.316 1

SCM EMG 0.826 * 0.938 * 0.228 0.980 * 1
Masseter EMG 0.886 * 0.925* 0.394 0.891 * 0.888 * 1

NB: N = 10; * => p < 0.05.
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In Table 4, scene difficulty measured by completion time increases with increasing
v-index. In the test, the v-index and completion time were found to be strongly correlated,
(r(8) = 0.892) compared to that of h-index (r(8) = 0.790), which remained significant. The
turning index (h and v indices) positively correlated with the input command, with the
v-index strongly correlated with the two indices. The input command was associated with
the expected completion time (r = 0.98 and 0.891 for SCM and Masseter EMG, respectively).

4. Discussion

This paper introduces a methodology for controlling the game interface using SCM
and Masseter EMG. Two models for translating raw EMG signals to input commands have
been explored: the equation and the ML model. The proposed equation accentuates the
differences that may exist between the SCM muscle tension and hence has a stable perfor-
mance instead of the quasi-tension between the muscles, as illustrated in Figure 4. Thus,
it has good performance for the input signal close to zero compared to the conventional
method. The proposed equation model provides a dynamic interface according to other
methods proposed in [18,21].

SCM muscles were used due to their near-uniform symmetry in left and right turns.
Figure 5 shows that the data obtained can be used without a lot of calibration and stan-
dardization processes. The ML algorithm used was Ensemble due to its high accuracy
(93.9%) and prediction time, as shown in Table 1. The generalization of the trained model
was satisfied with all subjects reviewed without the need for recalibration or retraining,
which improved usability and ease of setup (in plug-and-play settings) as recommended
in playing the game using bio-signals [41,48–50].

The results in Figure 7 confirm the ease of use of the system. The angle input in Figure 7
for the equation model is continuous. Therefore, the model achieves both direction and
speed control in the game interface. In the ML model, the direction of the paddle control
was accurate, but the speed control was achieved by the accumulation of movement in
the same direction. In this step, the ML model had a more stable directional stability and
poorer speed control compared to the equation model.

In a 2D environment, the completion time of the subject indicates the difficulty of
the task. This was found to be related to the number of vertical turns the user had to
make, as confirmed by the correlation coefficient (r(8) = 0.892). From these results, the most
challenging scenes were 10, 9, and 3. In the setup, Bite EMG controlled vertical movement
(up and down). The subject had to double-click to change the orientation of the player,
which may have contributed to the increase in difficulty along the vertical axis.

As shown in Table 4, the completion time of the test groups was uniform, with a slight
difference. Using one-way ANOVA, the mean reaction time for the female to male subjects
was significant (p = 0.0299). On average, female subjects reacted 0.41 s faster than males.
However, reaction time reported a low correlation with completion time (r = 0.316). On the
other hand, male subjects completed the scene 12.91 s faster than female subjects.

5. Conclusions

We successfully developed a control interface using SCM and Masseter EMG and
tested its performance as a game input methodology. We modeled the control interface
using an equation and machine learning approaches. The equation model featured more
intuitive tracking and speed control, while the machine learning model provided more
stable directional control with reduced speed control. The performance of the two schemes
was comparable to the different computational requirements in a 1D environment.

In a 2D environment, the machine learning model was robust and generalizable to all
subjects belonging to different demographics as indicated by age variations (27.95 years
std = 13.24). The performance of all the subjects confirmed the applicability of the interface
with little or no calibration needed.
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The setup and results confirm the usability of the interface system with varying diffi-
culty settings. All participants were able to navigate the scenes with minimal instructions.
None of the participants reported tension or discomfort after the experiment.

Moreover, the system can be applied in control, rehabilitation, and/or game interfaces.
Further research improvement will be conducted to implement robot control with the
developed system.
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