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Abstract: Background: As Automated Driving Systems (ADS) technology gets assimilated into the
market, the driver’s obligation will be changed to a supervisory role. A key point to consider is
the driver’s engagement in the secondary task to maintain the driver/user in the control loop. This
paper aims to monitor driver engagement with a game and identify any impacts the task has on
hazard recognition. Methods: We designed a driving simulation using Unity3D and incorporated
three tasks: No-task, AR-Video, and AR-Game tasks. The driver engaged in an AR object interception
game while monitoring the road for threatening road scenarios. Results: There was a significant
difference in the tasks (F(2,33) = 4.34, p = 0.0213), identifying the game-task as significant with respect
to reaction time and ideal for the present investigation. Game scoring followed three profiles/phases:
learning, saturation, and decline profile. From the profiles, it is possible to quantify/infer drivers’
engagement with the game task. Conclusion: The paper proposes alternative monitoring that has
utility, i.e., entertaining the user. Further experiments with AR-Games focusing on the real-world car
environment will be performed to confirm the performance following the recommendations derived
from the current test.

Keywords: autonomous driving system; in-car gaming; driver behavior; driving-related tasks; 3D
VR/AR

1. Introduction

Automation in vehicles has brought about a paradigm shift in the industry with
much anticipated Autonomous Driving Systems (ADS) technology at the turn of the 21st
century. To date, driver assistance has attracted the interest of researchers and automobile
manufacturers, as noted in the developed systems. Assistive technologies like emergency
braking, lane-keeping, cruise control, and others have been deployed successfully [1]. In
the next decade, assistive technologies will give way to conditioned autonomous driving,
a situation whereby the autonomous system takes over longitudinal (acceleration and
deceleration) and lateral (steering wheel and turns) control of the vehicle [2].

Automation levels are standardized by the Society of Automotive Engineers (SAE)
standardization ranging from SAE level 0 for no automation to SAE level 5 for full auton-
omy [3]. Of particular interest for this paper is SAE level 3—conditional automation, level
4—high automation, and level 5—full automation. In these levels, the driver’s obligation is
primarily a supervisor with level 5 requiring no human intervention. In level 3, the system
assumes environmental monitoring and control. If the system encounters uncertainties
(e.g., missing road markings, foggy weather, system failure), it issues a takeover request
(ToR) to a fallback system, which in this case is the human driver. In level 4, the system
assumes control and issues a ToR as in level 3 with the difference that, in case the fallback
driver is unresponsive, the system can assume control. If the human driver does not
respond to a ToR within the stipulated time, the system will slow down and park the car.
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In level 5, no human intervention is required. Use cases for level 3 would be a geo-fenced
section that supports ADS, and the user must resume control once the vehicle exits the zone.
Level 4 is best described as a robo-taxi, where the system can operate autonomously but
stops and parks if there is no human driver to assume control in an issued ToR. To this end,
for automated driving, the driver/user of ADS would be free to engage with secondary
tasks (non-driving related tasks) during transit with a caveat that he/she is monitoring the
road. The current research addresses the problem of vigilance decrement in autonomous
vehicles and how engaging in a secondary task (gaming) can be employed to aid in road
monitoring (hazard perception). The recognition time of staged popup traffic will be used
to quantify road monitoring metrics, while game scores and user gaze information will be
used to deepen insight on driver behavior.

1.1. Non-Driving Related Tasks (NDRT) and Driving-Related Tasks (DRT)

Non-driving related tasks encompass all tasks (secondary tasks) engaged by the
driver [4]. NDRTs include operating handheld devices, operating in-car systems, com-
municating with passengers or on calls, amongst others. To date, research and policies
have been focused on dissuading drivers from engagement in a secondary distractive
task(s) owing to the threat these activities pose both to the driver and other motorists [5,6].
Research has been conducted to understand driver behavior in an NDRT environment
for ADS. A paper by [4] investigated the effects of NDRT on the quality of takeover in
varying traffic situations. The authors employed two tasks: a visual surrogate reference task
representative of eyes-off-road and an n-back test as a mind-off-road engagement. There
was no significant reported difference between the two types of distraction. A paper [7]
evaluated the influence of drivers when reading news and emails, watching a video clip,
and engaging with a tablet. Another paper [8] used video and tablet gaming NDRTs to
evaluate driving behavior in a critical conditional takeover. The authors concluded that
there was no influence of NDRTs on reaction time. The authors of [9] found that engaging
in distractions can reduce up to 27% drowsy tendencies in the automated drive. From the
standpoint of embracing the potential usage of distractions to enhance safety, the system
designer’s focus is to maximize transitioning from distraction to resuming control.

Since ADS will eliminate the need for active driving inputs and constant monitoring
of the road, activities performed by the driver will not be categorized as a distraction [9].
This is the paradigm shift modulated by automation, where distraction is desirable in a
car environment, i.e., the driving-related tasks (DRT) concept. DRT encompasses tasks
performed by the driver to aid in the entire driving process [5]. DRT may include tasks
like checking the speedometer or monitoring the side-view mirror, amongst others. As
noted by the report [5], DRT can be a potential source of hazard in conventional driving.
However, as ADS takes full shape, driving will be the distraction as roles get reversed.
DRT in ADS is redefined to migrate from the conventional potentially hazardous task to
a positive engagement that enhances the driving experience. In this case, DRTs seek to
aid/promote overall improvement in the driving experience. To this end, activities that
promote proper sitting posture, adherence to the proper hands-on-steering-wheel, road
monitoring, and leg-pedal positioning would be considered DRT. Intuitively, tasks that
promote road monitoring and the hands-on steering wheel would improve the quality of
taking over.

Fatigue is expected to set in more quickly in autonomous cars than conventional driv-
ing due to reduced engagement [10,11]. Research by [12] reported that drivers in simulated
automated cars showed physical signs of fatigue after 15–30 min of driving compared
to manual drivers with longer endurance. The motivation for studies directed towards
gaming stems from the fact that, in long-distance journeys, drivers and passengers alike
are confined with few interactivity options. During transit, blank stares into the window,
restlessness, impatience, and other experiences have happened to many travelers [13]. A
remedy to this has been recreational activities allowable by the mode of traveling [14].
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With the introduction of automation, gaming can be explored in a car environment without
compromising the safety of stakeholders.

With the current technological advancements, the driver can be engaged in various
activities, each soliciting the driver to different states. To reduce the chances of failure in a
takeover, authors [9] argue that ADS will necessarily be tasked with monitoring the driver
to assess the readiness to take over control. One way of achieving that is monitoring the
task the driver is undertaking. Authors [15] argue that engagement with gamification in
driving can reduce the risks associated with boredom and reduced vigilance. With this in
mind, we have conceptualized a driver engagement model based on the content source
and management routines, as shown in Table 1.

Table 1. Driver engagement model.

State Engagement Status Description

0 Monitoring state

No distractions
The challenge with this level is that it is hard to

maintain a non-distracted status for an
extended period due to monotony in ADS.

1 ADS Managed Tasks

The driver engages with tasks like watching
movies, games, etc., that are managed by the
ADS system. This gives the advantage of the

ease of passing relevant drive information and
an indirect driver monitoring system.

2 External Devices Tasks

The driver engages with tasks with connected
devices (smartphones, tablets, etc.).

This allows for active sharing of relevant
information

3 Passive State

The driver engages with tasks unrecognized by
the system.

This covers all tasks, including unconnected
devices and naps.

The desirable state is for the driver to be non-distracted and actively monitoring the
road (monitoring state). Since this state is hard to maintain, we conceptualize three other
states. At the primary level (state 1), the NDRT content is managed by the vehicles (ADS),
i.e., start, stop, pauses interrupt, and other probes to focus the driver’s attention. The
foreseeable advantage of this is that information delivery can be optimized to integrate
with the current road conditions. In this mode of engagement, an integrated environment
(virtual or augmented) can be created that allows the user to perform both road monitoring
and engagement with a desirable activity, the concept of DRT, thereby adding value to the
driving experience. This research explores the possibility and the hurdles accompanying
the development of such a system.

On the secondary level, external personal devices are linked to the system such that
interruptions can rely on pertinent information instead of the driver having to build his/her
situational awareness. Several authors [7,12,16] have investigated NDRTs at this level. The
third state is the passive one, with unconnected devices or tasks blind to the system like a
deliberate nap. A passive level will be the ultimate experience of an ADS in level 5.

1.2. Related Works and Current State of Automation

This paper focuses on gaming as a lucrative engagement that will be entertaining and
an indirect environment contextualization scheme. We propose to monitor the driver’s
engagement as described in the literature with video and gaming tasks. This is an intuitive
distraction that can keep the driver engaged. We found few works geared towards this
line of inquiry. Similar research is reported in [17] focusing on a cross-car multiplayer
game for the driver in level 3 and higher ADS. The authors designed a fully immersive
multiplayer game for the driver, assuming full heads-up display (HUD) and ad-hoc vehicle–
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vehicle communication for co-located vehicles. A cooperative in-car game is proposed
in [18], targeting cooperation between parents and passenger kids using handheld devices.
Another paper [19] employed VR to an actual moving car with rendered underwater
scenarios meant to offer a restful/mindful driving experience, while [20] used a similar
moving vehicle with a VR system to render a flying (helicopter) environment with shootable
game objects. One foreseeable challenge that is bound to affect the driver, who becomes
the new passenger in ADS, is motion sickness [21,22]. An in-car game can remedy this by
optimally synchronizing the experiences in the moving car and experienced content. This
is the strategy proposed by holoride®, VR ride, and others [23,24]. Other researches have
focused on using handheld gadgets, tying game experience to geo-locations, passengers,
and others [18,25–27].

In the recent past, cars have been manufactured with inbuilt games, a very new
concept, albeit being played on a parked car. To this end, manufacturers like Tesla®,
Mercedes-Benz®, and others are paving the way for the future of gaming in vehicles. Tesla
introduced the first game in cars (Atari games) playable on the screen [28]. In early 2019,
Mercedes-Benz® introduced a video game (Mario Kart) on the center screen [29,30]. The
deployed games are principally targeting a parked vehicle, thus enabling the car steering
wheel and pedals. As a development to the parked-car games, Audi®, holoride®, and the
Disney team released an in-car VR experience focusing on passengers in transit [23]. The
game integrates (meshes) with car motion to deliver synchronized content in the VR world
which is argued to relieve carsickness. This and other developments will further solicit
games in cars targeting different in-car users.

Automakers have tested several concept cars with different features. Two such con-
cepts of particular interest to this paper are Zoox®, an Amazon-owned robot-taxi, and
Chevrolet Env 2.0® [31,32]. The concept cars feature an overhaul to the conventional
interior design with a notable elimination of the current infotainment system. This implies
that an alternative information/entertainment system is needed that best suits ADS and
supports the new driving experience.

The current paper and the previous research focusing on gaming in a car have been
predominantly prototypes and proof of concepts. The general objective has been time-
filler, dislocation of cyber-physical space, immersive gameplay, and exploration of new
entertainment gaming concepts. Time-filler emerges from the monotony of driving with
limited engagement activities. Cyber-physical dislocation applies to individuals who prefer
to be in a different (virtual) environment instead of a congested public transit system, as
discussed by [33]. The proposed gaming approach, a form of human-machine interface,
can sustain vigilance in ADS and increase information flow by aiding visual attention using
gamified tasks.

1.3. Present Study

The overall objective of this paper is to study driver behavior in an ADS with gami-
fied tasks in a 3D VR simulated driving environment. As previous studies have shown,
boredom in an ADS, particularly in a monotonous route, would be far worse than a con-
ventional driving experience [15]. With the introduction of AR, users would be presented
with new content overlaid in any route, making the journey enjoyable and less tedious.
We propose a game designed to be played by the driver of an ADS during autonomous
mode. In-car gaming is a new concept that needs special consideration concerning interac-
tivity, immersion, and situational awareness. From a design perspective, immersion and
situational awareness can be regulated by matching the real world to virtual spaces, while
interactivity is handled using the most convenient control scheme [18,34].

At present, the link of gameplay to awareness has not been explored; most inquiries
are directed to the resumption of control and not on the development of awareness using
games. Conventional approaches utilize quiz games or touch interfaces inside consoles
or tablets to assess ToR [8,35]. The setup is predominantly an eyes-off-the-road setup that
negatively affects situational awareness. Authors in [36] argue that situational awareness
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increases with an increase in takeover time, meaning that the more the user has eyes
on the situation, the better the performance. The closest research towards awareness is
on AR displays. AR and HUD that meshes actual world data overlaid with contextual
information have been shown to increase awareness [37]. In the proposed model, game
elements appear within the drive path region of interest to synchronize the actual with the
virtual world. The position of this research is that an environment-centric design where
the game mechanism is within the monitored zone will assist indirectly in road monitoring
and increased situational awareness.

Situational awareness has been identified in driving as key to safe driving [36,38,39].
At the onset of level 3 automation in ADS, concerted efforts will be needed to maintain
the driver’s visual search path to the driving environment. The reported traffic incidences
involving self-driving cars have partly been due to the safety driver being disconnected
from the environment [40,41]. As ADS develops, there will be an improvement in system
performance, but passengers and drivers alike will need to be aware of the developing
situation on the roads. One such way is the use of un-obstructing AR-Games to guide
vision to emerging/developing situations.

From [3], a fallback-ready user should be receptive to requests or eminent vehicle
system failure whether a takeover request is issued or not. This calls for sustained vigilance
on the driver’s side, which is the focus of this paper. As such, the current research is
concerned with the following:

1. Investigate how well the driver can recognize threatening driving scenarios while
engaging in a game. This will be indicated by the time taken to press the designated
button (recognition time) accurately.

2. Evaluate drivers’ engagement with the task using score profiles to make inferences on
the drivers’ state. Game scores will be used as an indirect measure to infer engagement
in the task and, by association, vigilance.

3. Investigate driver’s interaction with the virtual environment. Based on the interaction
model, the driver may be overly engrossed or disinterested in the task. Eye data will
be utilized to identify trends in gaze behavior to confirm road monitoring. The gaze
trends will be used as design recommendations for indirect monitoring systems.

The contribution of the present study is an investigation on the use of VR and head-
mounted display as an alternative in-car infotainment system and characterization of the
driver state using gaming modalities. A business case for level 4 and above is well captured
by [42], where engagement state and visual attention metadata captured is applied in
tourism. As a pilot study, the current paper seeks to shed light on design considerations
for infotainment systems. The findings will be applied in a real-world environment with a
moving car to study various aspects of entertainment in an automated vehicle.

2. Materials and Methods
2.1. Driving Simulator

We designed a custom car simulator scene with a Unity3D game engine for driver
analysis. A virtual car is configured on a rule-based autopilot (using waypoints) to mimic
autonomous drive in the configuration. Thus, no control inputs were required from the
user. The vehicle was designed to move straight (along the z-axis) with minimal speed
variation and turns. A rural terrain was adopted with a two-lane asphalt road and minimal
terrain details. The scene was designed to be monotonous with only road markings,
greenery (grass) terrain all throughout, and a clear blue sky. Several authors have explored
the environmental details of the driving simulator. Turns, terrain details, and landscape
colors, amongst others, have been found to affect driver vigilance [43,44]. The present
design, informed by similar simulations targeting monotony, dissuaded the user’s gaze
from wandering to terrain details but rather focus on the gaming relevant objects (popup
traffic and game elements). Fove® 3D Head Mounted Display (HMD) was used for VR
content rendering in the prototype game. The simulation was run on a Windows 10 PC
with an Intel® Core i7 processor and GeForce GTX 1070 graphics card.
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In the design, we included staged popup traffic events to assess the driver’s threat
recognition time. The setup is shown in Figure 1. The ego vehicle moves along the z-axis in
lane one of a two-lane drive path. Game elements comprise a controllable (paddle) object
(denoted in blue) and corresponding collectible objects (shown in yellow) that appear along
the drive path. Popup traffic appears in locations A, B, or C. Popup traffic appeared after
every 2 Km in a total of 25 Km distance covered cruising at a constant speed of 30 m/s.
Twelve (12) popup instances were displayed for each experiment. The test subjects were
required to press a button immediately after popup traffic appeared. The entire drive-path
region of interest covers the pavements and the two lanes, as shown in Figure 1. Figure 2
shows sample scenes with popup traffic and game elements as experienced by the driver.
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2.2. Game Mechanism Design

The paper proposes introducing gaming in a car as a pass-time activity that will
improve engagement and offer entertainment. Conventional games played in cars use
handheld devices like tablets or phones. Thus, the primary mode of interactivity is by
clicking or touch-panel. An example of these is the setup in [7,35] that interacts with games
available using external tablets or phones, which we refer to as vehicle-centric design. The
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proposed system uses an elaborate control mechanism to manipulate an intercepting game
in 3D space along the drive path—in this case, an environment-centric design. As opposed
to conventional systems, the 3D perception will be an essential consideration, as discussed.

The driver actively engages with elements on the road while monitoring traffic on the
game setup in the design. A controllable paddle object (player) is located a few meters
from the car’s position, visible by the driver. The paddle slides along the x-axis and is
translated by the position of the car (z-axis). As the car moves autonomously, collectible
objects are spawned ahead on the drive path by the gaming engine, as shown in Figure 2a.
The spawned objects appeared at an interval of 2 s. When the controller paddle (Unity 3D
game object) collides with the mesh of the spawned object, a score is registered (intercepted)
and the contrary for a missed object. This is made possible by Unity-3D’s physics system
that checks for the interaction of game objects. Missed objects will be recorded alongside
the spawn point to analyze the scoring profile of the position.

The driver moves the paddle position to intercept AR-Game spawned objects (ele-
ments) using a joystick controller shown in Figure 3. The player increases points upon a
successfully intercepted object. A penalty is executed in the case of a missed object (decre-
ment in displayed score), and data is recorded to analyze the missed object profile further.
Score progress is logged and displayed in the dashboard of the car. Gaze information
was recorded using the inbuilt eye-tracking system of FOVE® HMD. The data is logged
together with car position and game score progression for every frame at a sampling rate
of 65–75 frames per second.
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We propose to set up the video on the HUD so that the driver can transition from
video to road monitoring effortlessly. This is achieved by projecting the contents in an
HUD type of screen instead of having the video player located below the driver’s view in a
cockpit, as is the case in current car design. With this setup, the video is rendered in the
upper part of the windscreen, leaving enough window for road monitoring. Furthermore,
the setup is meant to ensure eyes on the road, which significantly affects recognition time
from literature.

2.3. Experiment Setup

The subjects sat comfortably in an office chair with the camera view inside the virtual
car positioned in a typical driver seat in a 3D VR environment. Figure 3 shows a test subject
using 3D VR and steering wheel input controls for the game. We used the Thrustmaster®

steering wheel attached to the PC running the simulator for popup object buttons and
game controller.
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The user was expected to recognize the threat and push a corresponding button on
the steering wheel shown in Figure 3 as a popup object button. No auditory warnings were
issued when the traffic appeared. Therefore, the driver relied on a visual search to identify
relevant information from the drive path and react accordingly. We experimented with the
user engaged in a game and compared the hazard recognition time to a case where the user
has no or mild physical engagement (i.e., watching a video clip or no-task).

Video and game tasks have been used to evaluate hazard perception in ADS by
numerous studies due to the ease of presentation and the entertaining utility of the tasks.
Video tasks can represent many handheld gadget usages like social media browsing,
while games represent a plethora of user-based inputs. The user can shift visual attention
momentarily in a video clip, leveraging audio content to keep up with content, which is
thus a less demanding task. A no-task is included to represent a case where the driver
monitors the road with no additional task. No-task and video are theorized to have
similar attentional requirements contrasted with a game task in the study. The time taken
(recognition time) to detect threats on the road is expected to be impacted by the task or
the driver’s loss of attention. Interaction with the AR elements is evaluated in the form of
game scores and gaze information.

2.4. Participants

Students comprised the participants in the study and were recruited following ap-
proval from the Gifu University ethics committee. Thirteen subjects (four female and nine
male) took part in the experiment with an average of 26.6 years (std 6.2) from different
nationalities. Real-life driving or gaming experience was not considered in the current
study. Out of the participants, four had prior exposure to gaming, including VR games.

A preparatory drive scene was presented before the recording of data. In this test,
the subjects were introduced to the controls and buttons and the general objective of
the experiment. The participants were divided into two groups: a mixed-content group
(3 subjects comprising gamer, non-gamer, and a female subject) and the game-only group
(10 subjects). The focus of the grouping was not the investigation of task effects on
recognition time. Instead, it was to identify games as the most involving of the tasks and
hence, ideal for the present investigation. The grouping above had a sampling size of
23% of the total population. The mixed-content group was presented with three tasks:
video, game, and no-task in random order. Each subject conducted 3 experiments, each
lasting approximately 30 min with sufficient (user informed) break time between sessions.
Owing to the prolonged VR usage, we limited the size to a sample of subjects who can
complete the experiment with minimal or no simulator sickness. The game-only group
was presented with gaming tasks to avoid pre-exposure. Each subject’s gaze information,
button presses, scores, and interaction with game elements were logged in an Excel file for
further processing. The experiment lasted between 20–30 min per subject. No incentives
were offered to the subjects. Data analysis was performed using Matlab® software.

3. Results
3.1. Recognition (Reaction) Time
3.1.1. Comparison of Tasks

The mixed-content group tried the three tasks in random order to compare the perfor-
mance of recognition time with different tasks. The performance was evaluated as shown
below. Figure 4 shows a boxplot of the recognition time recorded in all the popup cases
with or without a DRT. The evaluated tasks (No-Task, Game (AR-Game), and Video) had
a recognition time difference of less than 1 s for the subjects. Outliers in a No-Task scene
represent instances where the driver was not paying attention to road events. The figure
shows a case where driving with an AR-Game would have a slightly slow recognition time
with an advantage of consistency (a compact interquartile range).
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Figure 4. Recognition time of driver with different engagement.

There were statistically significant differences between the means of the groups as
reported by one-way ANOVA (F(2,33) = 4.34, p = 0.0213, η2 = 0.2081). From the figure,
the driver in No-Task had the best recognition time (mean = 2.492, std = 0.083) followed
by AR-Video (mean = 2.506, std = 0.179). AR-Game (mean = 2.627, std = 0.081) was the
slowest, as expected. In No-Task and Video tasks, the user’s hands are not occupied with
any activity and as such, the pressing of buttons is instantaneous immediately after traffic
pops up. In the case of an AR-Game, the user is actively controlling a gamepad and takes
more time transitioning to button press from active game control. A noticeable difference
is an interquartile range (IQR), which was found to be 0.09, 0.2, and 0.07 s. for No-Task,
AR-Video, and AR-Game tasks, respectively.

3.1.2. Gaming Recognition Time

The focus of the study was to investigate the impacts gaming would have on reaction
time. Figure 5 shows the boxplot of the recognition time for 10 of the users evaluated in
the experiment. In all cases, the drivers reacted with an average of 3 s after popup traffic.
The data captures a case where the driver did not press any button within the time. This
is shown as an outlier in driver no. 7. In the plot, the line represents the median, and the
boxes are the interquartile ranges (IQR) of the 12 popup instances. Participants who had
prior gaming experience had a quick response, as shown (driver 1, 2, 3, and 9). Figure 6
shows the progression of the average reaction time of all ten subjects. From the figure,
reaction time improves (as shown by mean and standard deviation) as the game progresses
and deteriorates towards the end of the task. The popup incidences in the middle (popups
6, 7, and 8) had the quickest reaction time while the last incidence reported the worst
performance, compared to the average of 3 s.

3.2. User Gaze Tracking

As mentioned, the experiment was inwardly recording eye gaze as the user interacts
with both popup traffic and game elements. The results below show gaze direction progres-
sion overlaid onto the conceptual scene setup shown in Figure 1. Naturally, users’ gazes
react to moving and fixed objects differently. As popup objects appear, there is a quick
reflex to attend to the stimuli. Similarly, when guiding the player object to intercept a static
object in 3D space, a pursuit (tracking) gaze is employed. Gaze information was recorded to
reveal the interlink/tendencies of fixation or scanning the environment around the objects
of interest. The results are shown in Figure 7. The figure shows scatter plots of the driver’s
gaze direction (x-axis) 5–7 s before a button press. The x-axis of the drive path (region of



Multimodal Technol. Interact. 2021, 5, 40 10 of 18

interest) ranged between −5 and 5 from the center view in the figure. Center view (zero
points) represents the position the gaze would make in a VR environment if the driver
looked straight into the environment. From the result, the user’s gaze is actively engaged
in the road environment both on the left and right sides of the travel lane. The strength
of the scatter plots (concentration points) reveals gaze fixation, instances where objects
of interest are located within close proximity (localized) in the scene. Weak scatters are
during gaze movement (scanning of environment or transitioning to the next object). Two
distinct patterns in the gaze information are identified as localized fixation and scanning
patterns. The patterns were identified in all of the participants (with varying scattering
strength) as participants visually interact with objects in the scene.
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Figure 5. Overall AR-Game reaction time for different users.
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3.3. Score Profiles
3.3.1. Intercepted Objects Profile

Figure 8 shows the intercepted AR-Game elements (score) distributed in a 100-s
interval (segment) from the start to the end of the simulation. Each duration represents
a period in which 50 elements were spawned in the driving scene, and the score is the
cumulatively spawned objects. The accumulated scores have a direct relation with user
game interactions. After initial learning of the basics, the scores are expected to rise to a
level allowable based on the user’s hand coordination skills. The results show a general
profile of scoring progression, which we refer to as intercepted objects profile. Three distinct
profiles/patterns were observed: a learning phase (positive gradient), saturation (constant
gradient), and a decline (negative gradient). This is highlighted in Figure 8a,c using trend
lines. An intermediary stage of saturation was also noted but is subsumed in Figure 8b
during the transition. The overall percentages of trends are shown in Figure 8d. From the
figure, 70% of users showed a positive gradient, while 30% of users had a saturated trend.
A declining trend was noted in half (50%) of participants.

The phases were generated after observing the data from all users. Extra testing
of subjects conformed to the three phases and did not provide new information. The
significance of each of the profiles is discussed in a later section. Figure 9 shows the
percentage score of the drivers for the entire course. The figure shows an average scoring
of 83.4%, verifying the game’s playability to a satisfactory level.

3.3.2. Missed Objects Profile

Like the intercepted objects, missed objects are equally significant as a pointer of the
reasons for a missed object/error. As with any gaming engagement, the rules for losing are
equally essential and telling. In the game, a missed object is reported when the paddle did
not intercept the game element. Missed objects profile is formulated by plotting deviation
index (distance from paddle to the target game element). This information is also tied to
the respective spawn point to formulate a profile. The deviation index is calculated as
shown in Equation (1) below.

Idev = |missed_obji − paddle_pos| (1)

where i represents the spawn position 1:5; Paddle_pos, in this case, represents the current
position of the paddle; and missed_obj represents the position of the currently missed object.



Multimodal Technol. Interact. 2021, 5, 40 12 of 18

Multimodal Technol. Interact. 2021, 5, x FOR PEER REVIEW 12 of 19 
 

 

using trend lines. An intermediary stage of saturation was also noted but is subsumed in 
Figure 8b during the transition. The overall percentages of trends are shown in Figure 8d. 
From the figure, 70% of users showed a positive gradient, while 30% of users had a satu-
rated trend. A declining trend was noted in half (50%) of participants. 

  
(a) (b) 

  
(c) (d) 

Figure 8. Score progression and trends for different intercepted objects. (a) Positive gradient; (b) Positive/Negative (de-
cline) gradient; (c) Saturation trend; (d) Prevalence of trends. 

The phases were generated after observing the data from all users. Extra testing of 
subjects conformed to the three phases and did not provide new information. The signif-
icance of each of the profiles is discussed in a later section. Figure 9 shows the percentage 
score of the drivers for the entire course. The figure shows an average scoring of 83.4%, 
verifying the game’s playability to a satisfactory level. 

 
Figure 9. Overall intercepted objects (scores). 

1 2 3 4 5 6 7 8

Duration (100-sec segment)

25

30

35

40

45

50

55
Sc

or
e

Scores

Trend

1 2 3 4 5 6 7 8

Duration (100-sec segment)

25

30

35

40

45

50

55

Sc
or

e

Scores

Trend

1 2 3 4 5 6 7 8

Duration (100-sec segment)

25

30

35

40

45

50

55

Sc
or

e

Scores

Trend

Negative Positive Saturated
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pe
rc

en
ta

ge
 o

f c
as

es
 (%

)

1 2 3 4 5 6 7 8 9 10

Drivers

0

0.2

0.4

0.6

0.8

1

Sc
or

e 
(%

)

Figure 8. Score progression and trends for different intercepted objects. (a) Positive gradient; (b) Positive/Negative (decline)
gradient; (c) Saturation trend; (d) Prevalence of trends.
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Figure 9. Overall intercepted objects (scores).

Deviation index, Idev, is given as the absolute separation distance between the paddle
and the spawned AR-Game element. For each of the spawn points 1–5, the corresponding
average deviation index is logged and is shown in Figure 10. The deviation increases as
the object moves from the middle “U-shape” around spawn point 3 (drivers’ center view).
The deviation index standard deviation error also increases from the center spawn point.
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4. Discussion

This paper aimed to investigate the use of games in an autonomous car environment.
To this end, we sought to gather driver behavior and tendencies to infer the engagement
and driver state level. The investigation sought to answer the question of what the effects
will be of engaging in a simple interception game in an ADS environment. We designed an
AR-Game inside a driving simulator to analyze driver’s engagement with game elements
and staged popup traffic. Similar research had no agreed-upon standard of reference or
evaluation scheme with more emphasis on the design of approach [15,17,26,27].

4.1. Recognition Time and Visual Search

In the experiment, recognition of popup objects was compared between three engage-
ment levels: no task, watching a video clip, and gaming tasks. The results are shown in
Figure 4. The means for all the tasks were statistically significant (p = 0.0213, η2 = 0.2081). Of
the two tasks, the game was the slowest in recognition time, making it an ideal test ground
for investigating the tradeoff between engagement and road monitoring. An important
observation is the interquartile ranges of the tasks evaluated. The tasks had an IQR of 0.09,
0.2, and 0.07 s for No-Task, AR-Video, and AR-Game, respectively. This suggests that the
AR-Game driver has a consistent RT compared to other tasks that fluctuate with attention
shifts. The overall recognition time for all subjects yielded a reaction time of 2.9 s, which
agrees with the findings of other researchers [8,45]. The findings suggest that a driver
engaging in an AR-Game would not be impaired by the gaming elements in recognizing
threatening scenarios. On the contrary, it might help in maintaining vigilance. As seen in
Figure 6, reaction time improved with time as users got used to the control mechanism and
deteriorated towards the end possibly due to fatigue or lost interest in the game.

As far as takeover time is concerned, the literature review suggests no difference in
performance with visual-loaded or cognitive-loaded secondary tasks [7,16]. The main effect
has been reported on metrics like time-to-hands-on-steering and time-to-eyes-on-road,
amongst others [8]. These effects point to the mode of task presentation and interactivity
as opposed to loading. From the literature and the comparison of tasks with no task, we
assume that multimodal secondary tasks would not alter the recognition of hazards.

In addition, we explored a potential advantage of AR-Games focusing the visual-
search and patterns of the driver to different sections of the road. From Figure 7, we
identified two visual search patterns: scanning and localization of the visual search. As
objects are populated in the drive path (popup traffic and game objects), the users’ gaze
reacts to each item. If the objects appeared within the same region, gaze fixation was noted
instead of dispersed gazes while scanning. The two patterns identified above represent
cases where the user shifts his/her focus to interact with objects. Authors [46,47] reported
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that the driver’s gaze is more dispersed in the environment than manual driving for ADS.
As opposed to a dispersed gaze, the results presented in the paper follow a systematic and
focused transition from one object to another.

We confirmed positive tracking of AR elements that can be applied in refining the
users’ gaze to relevant information along the drive path. At the advent of self-driving
cars, highlighting personalized content that the user is most intrigued by or relevant
information outside of the car environment, such as traffic signs, would be an added
advantage. Researchers have linked gaze wandering with boredom and lost interest [48].
In this paper, we have only tracked the progression of the gaze to ascertain the way users
react visually to objects. Further analysis would be needed to ascertain cases of lost interest
in the gaming activity using gaze information.

4.2. Score Profile as an Engagement Model

We managed to introduce and control gaming elements in the driving path to reduce
the monotony in the driving scene. The overall score for the drivers is as shown in Figure 9.
The overall percentage score represents individual control skills which reflect the ease of
game control and interaction. All drivers had an average score of 83.4% and a minimum of
72.3%. Game score progression was theorized to reflect the user’s engagement which is
related to the driver state. Considering the monotonous scene employed in the setup, the
driver is only engaged with game-control or road monitoring. From this, missed objects
will arise from loss of focus or shortfall in hand coordination skills. Consequently, as the
participant engages in-game control, the progression trend will highlight the participant’s
engagement level. The intercepted object trends in Figure 8 show how the user interacts
with gaming elements and indicates engagement as either enthusiasm, saturation, or
declining interest.

Considering this is a game the users have never encountered before, a learning phase
is expected at the onset, followed by either a decline or sustained scoring depending on
the user’s impression of the game. A positive gradient trend is indicative of an aspect
of learning as the game progresses. This was present in 70% of the drivers new to the
simulation. The saturation trend would indicate users who have learned the control scheme
and actively perform at personal peak allowable within the constraints. This was majorly
present in the gamer group, with a prevalence of 30% shown in Figure 8d. The trend
is sustained in cases where the user enjoyed the game or gave way to a downtrend. A
declining trend was reported in 50% of participants towards the end of the experiment. This
agrees with the deteriorated recognition time in Figure 6 towards the end of the experiment
pointing to fatigue or lost interest. A transition from positive to negative gradient would
be ideal for introducing levels and or other gaming elements to keep the user engaged.
If fed to the system, the trends identified in the result would add to the pool of feedback
information of the current state of the driver. This way, the system will have a form of
contextualization of the state of the driver.

4.3. Game and Design Consideration

As noted from Figure 10, AR-Game elements on the sidewalks were easily missed
compared to center objects. This agrees with the results from different authors on the
anisotropic perception of object size, distance, and positioning in a VR environment [17,49].
From these results, the deviation index increases as the position of the playable object
departs from the center. The “U-shape” error pattern is a critical consideration in the
enjoyment/challenge of AR elements. It points to the hurdle that must be considered in
terms of 3D world reconstruction due to visual perception and biases in the human brain.
Careful consideration of the playable/interactable environment is recommended.

Various research inquiries have been made touching on VR usage and interfaces in
cars [22,50,51]. The key points are on collision with constrained spaces, social acceptance
of HMDs, and the control mechanism, amongst others. From the proceeding pilot test,
we recommend a limited application of full-body control schemes. This would include
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tasks that require standing, sways/body rotations, and raised hands, amongst others. The
current game did not require any full-body activity, but inadvertently, most users were
observed to exhibit body sways and shifts that inherently alter the center of gravity. In
a moving car, the interplay of user head motions has been cited as a potential source of
discomfort [52]. Besides this, moving body parts increases the chances of collision with
physical barriers.

In the foreseeable future, games will become an integral part of the in-car experience.
A car in motion is a potent source of somatosensory information that would significantly
enhance the game experience if adequately integrated. At present, video games are pre-
dominantly audio-visual in delivery mode. The inclusion of car movement dynamics will
add to the realism of the experience. A primary consideration is safety. In the face of
an accident and the user is immersed in a disconnected game from a developing road
situation, the physiological unpreparedness might be too high. The way to think of this
is an airplane on a nosedive with no one to issue a brace-for-impact warning. From this
paper’s discussion and consideration points, we recommend that games in cars take on
an augmented approach to build on the drive path environment to maintain situational
awareness irrespective of the automation level. An obscured drive path would need an
intervention mechanism to build awareness.

4.4. Limitations and Future Works

The experiment employed a 3D VR game prototype in place of an actual driving
environment. A real driving scenario would be preferable, but the ADS technology is
not fully matured; a substitute of VR has been utilized to give insights and design for
future development. The limitation in this has to do with the lost sense of danger which
might impact the generalization of the recognition time. However, intuitively, in a real
threat scenario, threats would be processed with higher priority, not lesser. Motion sickness
manifesting as mild eye fatigue was reported by one subject, but the greater majority did not
have any physical discomfort. The test subjects comprised a relatively young population.
In the case of older test subjects, the effects of VR usage might be more pronounced.

The design of the experiment is also not exhaustive; as a proof of concept, the study
was conducted with limited test subjects, targeting university students in a controlled
environment. Additionally, the setup considered a traffic scenario with no competing
stimuli. Further investigations will be conducted incorporating diverse groups with a
variety of stimuli in a real-world environment. Studying behavior in a real-world envi-
ronment with near-natural stimulation of physical car movements, acceleration, braking,
and other dynamics, will offer important information for the design of automated vehicles
and infotainment systems. In the future, the 3D VR/AR game will be tested in an actual
moving car following the recommendations derived from this test.

5. Conclusions

In conclusion, this paper has explored what the driver will be engaged with for SAE
Level 3 automation and above. The proposed scheme uses VR game tasks that add value
to the automation system instead of just entertaining. In this paper, the driver engagement
model identified as ADS-managed content has been evaluated. The proposed scheme is
the use of an AR-Game that meshes with the driving scene. During the driving scene, the
user was presented with popup traffic to evaluate recognition time. We found little to no
effect on recognition time when drivers engaged in an AR-Game from the experiment. In
the advent of ADS systems, secondary tasks will be needful to add value to the driving
experience and maintain vigilance.

From the discussion, driver monitoring through score progression on the road en-
vironment by gaming modality has been achieved. Learning, saturation, and decline
profiles were identified as the prominent trends that would be useful in contextualizing the
engagement model. When the ADS manages the content, it will be possible to inference
the driver state with no adverse effects on recognizing threatening driving scenarios.
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Gaze information results suggested that it is possible to focus drivers’ visual attention
and tie it to a relevant source of information using game elements. The results confirmed
the anisotropy of objects in a 3D environment, as seen in the missed object profile. This
is a design feature that should be considered when designing in-car games that have 3D
interactivity. Further research should be conducted to understand drivers’ behavior in
a multi-stimuli environment and various gaming options. The overall findings indicate
that gaming in-car would be advantageous with negligible impacts on road monitoring
performance where such is needed.
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