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Preface 

Like many other engineers and inventors, I believe that the boundaries between 
traditional fields offer unique and exciting opportunities for innovation and new 
developments.  This is almost self evident when one considers complex systems 
that integrate functions from several domains.  It is also natural that the boundaries 
between fields are less understood, simply because their study requires expertise 
in two or more fields.   
 
From this last observation, it follows that interdisciplinary research is hard.  It re-
quires dedicated individuals who are willing to make the heavy investments nec-
essary to master several fields of inquiry, or, something even more extraordinary, 
teams that are able to smoothly communicate across disciplinary boundaries.  This 
is the defining problem of the book.  It is written to encourage and facilitate inter-
disciplinary research on optical microsystems, by which we mean optics created 
using microfabrication technology, i.e. the tools and techniques developed to fab-
ricate Integrated Circuits (ICs) and MicroElectroMechanical (MEMS).  
 
Innovation and design of modern optical systems requires input from many fields, 
as well as specific application knowledge.  Examples include optical intercon-
nects, optical-fiber communication networks, digital projectors, and imagers for 
photography and microscopy.  The design of these systems depends on seamless 
integration of optics with electronics and mechanics.  The best solutions are opti-
mized over all these domains to meet application demands.  In the case of micro-
optics, the interdisciplinary requirements are even stricter; these systems must be 
optimized for the Integrated Circuit (IC) and MicroElectroMechanical (MEMS) 
fabrication environment.  A large part of that optimization is to reduce the dimen-
sions of the optical-systems designs so that they can be practically and economi-
cally fabricated using IC and MEMS techniques.  
 
This book gives students, researchers, and developers the tools they need to ana-
lyze and design micro-optical devices systems.  Design is the ultimate “inverse” 
problem, so the emphasis is on analytical models that can be turned into design 
equations.  The point is to enable interdisciplinary research, so very little back-
ground in optics, MEMS, or fabrication is assumed.  The first part on optics fun-
damentals is accessible to readers with an understanding of first-year, university-
level physics.  The book is self-contained in that the concepts developed in the 
first part give the necessary background for understanding the detailed descrip-
tions of the second and third parts. 
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1:  Introduction to Optical Microsystems 

1.1 Scaling of Optics  

The main theme of this book is miniaturization of optics.  We ask the question: 
“How small can we make an optical system?”, and we explore how size affects 
optical characteristics, and how performance changes as we scale optics to the mi-
crometer and nanometer scales.  The goals are to present the fundamental limits 
and illuminate the advantages and challenges of scaling optics down in size, and 
ultimately to teach how to design miniaturized optics.   
 
Modern optics is primarily used for information capture, communication, and pre-
sentationa.  The motivation for miniaturization of optics is therefore the same as 
for electronics; to create cheaper and more functional information-technology (IT) 
systems, and to gain access to regions where bulk equipment will not fit.  Exam-
ples of the latter include remote sensing, and, increasingly, in-vivo microscopy.  
Optical microscopy is used extensively for determining health and pathology of 
biopsy samples.  By miniaturizing optics, we will be able to take the microscope 
to the patient, instead of taking (pieces of) the patient to the microscope.   
 
The second theme of the book, closely related to the first, is integration.  Our 
premise is that highly-functional IT systems require both electronics (for computa-
tions) and optics (for communication), so these two should be closely integrated.  
That leads us to consider Integrated Circuits (IC) and MicroElectroMechancial 
System (MEMS) as platforms for optical systems.  Both ICs and MEMS are 
largely based on Silicon, so our focus is on “silicon optics”, i.e. optical devices 
and systems that can be realized in silicon fabrication technology, AND that can 
enhance existing IT systemsb.   
 
It is always challenging to apply a technology outside its intended field of use.  
Silicon technology is, however, fundamentally very flexible, and the tools that are 

                                                           
a  Much important research in optics is directed at information processing, but in 

practice this area of IT is still squarely in to domain of electronics. 
b  Many of the techniques and solutions described in this book are also applicable 

to solar cells, but our focus is on IT applications. 
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developed for IC and MEMS processing are very powerful, so viable solutions can 
be found for almost any fabrication challenge presented by optical devices and
systems.  Often it is necessary, however, to use the tools in unconventional ways. 
Significant parts of the book tool are therefore dedicated to descriptions of unor-
thodox silicon processing.   
 
At first sight, it may appear strange that this book, which is mostly about optical 
device concepts and design, puts such emphasis on a single fabrication methodol-
ogy.  It is the revolutionary capabilities of ICs and MEMS that justifies this ap-
proach.  Silicon technology allows vast numbers of devices to be integrated and 
aligned with great precision on a common substrate (chip).  This makes practical a 
large number of optical systems that rely on interaction between different individ-
ual devices.  For example, Texas Instruments DLP® technology, which integrates 
more than 1 million moving mirrors, would be a practical impossibility with any 
fabrication technology that does not leverage the parallel-processing advantage of 
modern lithography.  This will be a reoccurring theme of this book: ICs and 
MEMS provide a flexible and practical fabrication technology for realizing optical 
systems that are cumbersome or prohibitively expensive when using traditional 
fabrication technology.     
 
A direct consequence of integration with electronics is the availability of cheap 
and abundant signal processing.  That undermines one of the traditional tenets of 
optical design that says that optics should be designed to have the minimum re-
quired number of degrees of freedom to improve stability and to simplify control 
and calibration.  Many of the systems presented in this book take the opposite 
view:  If we can reduce overall size, then it is advantageous to use many parallel 
systems to do the job of a single large device, in spite of the fact that the complex-
ity of control increases dramatically.  Examples of systems based on this design 
philosophy include projectors and imagers, as well as switches and adaptive op-
tics. 
 
An integral part of IT is information capture, so optical sensors, or rather sensors 
with optical output signals, are treated in detail in this book.  The main advantages 
of optical-output sensors are that they can be designed for many important meas-
urands (e.g. pressure, acceleration, rotation, temperature, and bio-molecular asso-
ciation), that they are thermally and chemically robust, and that their output sig-
nals are immune to ElectroMagnetic Interference (EMI).  These advantages would 
be of little consequence, however, if the sensors didn’t also have better sensitivity, 
specificity, and reliability than the competition.  We therefore compare optical-
output sensors to other classes of measurement systems, e.g. capacitive and pie-
zoresitive sensors, putting the reader in position to draw conclusions about the op-
timum choice of sensors for a given measurement application. 
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1.2 Design of miniaturized optics 

The main goals of this book are to teach the reader how to design miniaturized op-
tics and to stimulate new inventions in this area.  Design and innovation require 
intuition and simple physical models.  The treatment is therefore focused on con-
ceptual understanding and analytical calculations, as opposed to numerical analy-
sis.   
 
All design starts with a concept, and much of the innovation and significant con-
tributions are in the conceptual design, rather than in the detailed plans that fol-
low.  Almost all important scientific breakthroughs and technological innovation 
follow from conceptual thinking.  Conceptual descriptions develop intuition and 
inspire researchers to find new solutions and new applications.  They also allow 
technical experts to share their insights with laymen, and provide a way to convey 
the range of opportunities that a technology has to offer.   
 
Conceptual design by itself is, however, not sufficient.  It must be complemented 
by fundamental understanding and qualitative models that allow concepts to be 
tested for viability and detailed implementation plans to be drawn up.  The first 
part, test for viability, is extremely important in optics, because many aspects of 
optics are counterintuitive.  This fact is amply demonstrated by our difficulty in 
explaining everyday optical phenomenac and the longevity of erroneous scientific 
concepts like the Luminiferous aether.  The patent literature is also full of optical 
devices that are conceived by smart people and deemed sound by competent pat-
ent reviewers, but that nevertheless are in violation of fundamental laws of phys-
ics.   
 
We can of course avoid submitting patent applications on unphysical “inventions” 
by simply analyzing our specific optical designs, using one of the many numerical 
optical analysis software packages that are now commercially available.  Showing 
that a specific implementation doesn’t work does not invalidate a concept, how-
ever.  For that we need fundamental understanding of the physics that govern 
propagation of electromagnetic waves.  For this purpose it is helpful at the concep-
tual design stage to ask the question: Where does the energy go?  It can be a sur-
prisingly difficult question to answer for many optical components.  A significant 
part of this book is therefore dedicated to understanding how energy flows in opti-
cal systems and how insight about energy flow can help us avoid pursuing solu-
tions that are unphysical and therefore doomed to fail. 
 
Once the conceptual design is found to be viable, the real work begins.  Now we 
must decide if it is practical and if can be scaled to manageable dimensions given 
the technology we plan to use.  Again numerical analysis tools fall short.  All 

                                                           
c  Try to explain to a child how the sky is blue, how the rainbow looks the way it 

does, how things look bigger under water, or how stars twinkle.  
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practical optical systems are too complex to be designed by guessing a solution 
and then analyzing it to see if it works.  That approach is invaluable for fine tuning 
of sophisticated designs, but it cannot answer questions about the ultimate scaling 
limits of a conceptual design, about how to integrate different technologies, about 
the best trade-offs of scaling and complexity (degrees of freedom), and about how 
to optimize the fabrication technology.    
 
For these higher level design questions we need analytical models that allow pa-
rametrical answers to design (“inverse”) questions.  In other words, we must have 
the tools to clarify how a given implementation parameter should be chosen to 
give a desired value to a specific operational characteristic.  In addition to inspir-
ing innovation in microoptics, a major goal of the book is to contribute such ana-
lytical modeling tools that can be used for design of a wide range of microoptics 
and nano-photonics.  The intention is to develop the tools to the point where they 
are simple enough that they can be used in the conceptual-design phase, yet pow-
erful enough to bring the designs close enough to completion that they can suc-
cessfully be refined by numerical methods. 
 
Practical implementations of optical microsystems require interdisciplinary teams 
that collectively provide knowledge of many fields, including semiconductor proc-
essing, mechanical engineering, optical-device design, optical-system fabrication 
and packaging, as well as application-specific expertise.  This book is therefore 
written to be useful to scientists and engineers of a wide range of backgrounds.  
No attempt is made at a comprehensive coverage of all optical MEMS systems.  
For that the reader is referred to a series of well-written books [1], special issues 
[2,3,4,5], and review articles [6].  Instead the emphasis is on optics fundamentals 
and on the specific challenges of miniaturization and semiconductor implementa-
tion, thereby addressing needs of both semiconductor and MEMS experts who are 
interested in optical applications, as well as for optics researchers who want to un-
derstand how to add microfabrication to their tool chest.   

1.3 Roadmap 

To answer questions about scaling of optics and to understand the design of minia-
turized systems, we must understand how light spreads, or diffracts, in three-
dimensional space.  Electromagnetic waves, like all wave phenomena, are subject 
to diffraction during wave propagation.  Our starting point for an accurate descrip-
tion of optical diffraction is Maxwell’s equations in Chapter 2.  Maxwell’s equa-
tions allow us to derive the Poynting theorem and the Reciprocity Theorem, both 
of which give valuable insights into the scaling of optical devices.  In combina-
tion, these theorems simplify the analysis of optical devices, because they allow us 
to calculate coupling and contrast to be carried out at one, well-chosen physical 
location with the certainty that these quantities does not change within the device.   
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We also use Maxwell’s equations to derive the wave equation for electromagnetic 
waves.  In Chapter 3 we use it to find the laws of reflection and refraction of plane 
waves, and to explain important concepts like Total Internal Reflection and eva-
nescent fields.  The formalism we develop also lends itself to the analysis of mul-
tiple reflections, so we are able to calculate the reflection and transmission of 
structures that are periodic in one dimension.  These structures can be thought of 
as one-dimensional Photonic Crystals, so our formalism gives us the first glimpse 
of the functions and operations of this important class of materials.   
 
Plane waves give insight into many optical devices and systems, but do not tell us 
how small they can be.  For that we need to understand diffraction which is the ef-
fects that almost always determines the ultimate limit on scaling.  In Chapter 4 we 
therefore study the fundamental properties and propagation of Gaussian beams.  
Gaussian beams are solutions to the paraxial wave equation, i.e. they are strictly 
speaking only valid for optical fields that propagate at small angles to the optical 
axis.  In many optical devices, this restriction is of no significance and even for 
those diffraction problems where non-paraxial effects must be considered for ac-
curate solutions, we still get good physical insight by using the Gaussian-beam 
model.   
 
Once we understand how light diffracts, we are in a position to realize how to con-
trol the spread.  Lenses, the traditional tools for controlling light propagation, are 
well understood and described in numerous text books, so we give them no more 
than a cursory treatment.  Instead, we focus on waveguides, diffraction gratings, 
and Photonic Crystals.  In Chapter 5 we derive the fundamentals of optical 
waveguides.  Again we rely on Maxwell’s Equations, and use them to calculate 
the eigenmodes of waveguides, and study the details of pulse propagation on opti-
cal fibers.  
 
In Chapter 6 we describe a set of waveguide devices.  The set is chosen to be illus-
trative of important concepts, rather than to be comprehensive.  The chapter starts 
out with a discussion of the simple but important problem of how to couple light 
into waveguides.  It continues with the development of coupled-mode theory, 
which enables us to analyze several ubiquitous waveguide components, including 
directional couplers and Bragg reflectors.  The latter is our first detailed look at 
the concept of Photonic Crystals.  Chapter 6 wraps up our treatment of optics fun-
damentals, which constitute part one of the book.   
 
Part two of the book takes a close look at Optical MEMS.  Perhaps the most fun-
damental of all optical MEMS devices, the optical scanner, is the focus of Chapter 
7.  MEMS scanners appear in a multitude of complex optical systems with very 
different applications and requirements.  They therefore seem to defy all attempts 
at classification and systematization of their design.  It turns out, however, that op-
tical scanners follow very general scaling laws that greatly simplify the optical de-
sign of scanning systems.  The mechanical design of optical scanners is more dif-
ficult to treat in a general manner, so that subject is discussed through a series of 
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examples.  Optimization of the mechanical design depends on the actuator tech-
nology that is applied.  A comprehensive coverage of actuator technologies are 
outside the scope of this book, but the most common and practical types, electro-
static actuators, are covered in Appendix B.  
 
One application of the miniaturized optical scanners is the fiber switch, described 
in Chapter 8.  We classify MEMS fiber switches into two broad groups based on 
their principle of operation; matrix switches and beam steering switches.  Both of 
these switch types have their own set of implementation challenges, and their 
range of use depend closely on the available fabrication and packaging technol-
ogy, but as a general conclusion we find that matrix switches function better for 
small port counts, while beam steering switches scale better to large port counts.   
 
In Chapter 9 we move on from single devices to arrays.  In the first part of the 
chapter, we derive models for scaling of arrays of rotating micromirrors that oper-
ate much like the scanners of Chapter 7 and 8.  We think of the operation of rotat-
ing mirrors as amplitude modulation, because these mirrors control the amount 
(amplitude) of the reflected light that is picked up by the output optical system.  
 
In the second part of Chapter 9 we turn our attention to phase-modulating mirrors.  
These are conceptually more difficult than amplitude-modulating mirrors, because 
their response depends on the setting of its neighboring mirrors, but we also find 
that under certain circumstances they scale better;  For a given optical projection 
system, phase-modulating mirrors can create finer detail in the projected image 
than can be achieved by amplitude-modulating mirrors.  We conclude that ampli-
tude modulating-mirrors, due to their simplicity, are better suited to magnifying 
projection systems (e.g. video projectors), in which resolution is typically limited 
by the projection lens, while phase modulation is superior in systems that need to 
create the finest possible detail (e.g. optical lithography systems).  
 
The efficiency and superior scaling of phase-modulating microoptics is a reoccur-
ring theme in the rest of the book.  Chapter 9 wraps up with a qualitative descrip-
tion of several optical MEMS systems that use phase modulation to advantage.  
These systems can be categorized as diffractive optical MEMS, because their op-
eration relies on phase modulation combined with diffraction.  Chapter 10 de-
scribes the Grating Light Modulator in detail, and derives mathematical models 
for its operation, with a focus on display applications.  Chapter 11 extends the 
treatment of the Grating Light Modulator to fiber optics, and derives models that 
are appropriate for this field of use.  
 
In Chapters 7 through 11 we model how microoptics shape and control optical 
fields.  In Chapter 12 we take the opposite perspective and consider how optical 
fields can be used to measure the state of a microoptical sensor.  In other words, 
we are modeling sensors with optical outputs.  Again we compare and contrast 
amplitude-modulating (optical levers) and phase-modulating (interferometers) sys-
tems.  We find that the ultimate limits on sensitivity are slightly better for phase-
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modulating sensors, but also point out the significant practical advantages of am-
plitude modulation.   
 
The last chapter in the Optical MEMS part is Chapter 13 on optical filters.  As for 
many other classes of optical MEMS, filters can be based on amplitude or phase 
modulation, but here we exclusively consider phase-modulating filtersd, because 
they scale better to small sizes and because they are easier to tune with MEMS ac-
tuators.  
 
The last two chapters of the book are dedicated to Nanophotonics, or more spe-
cifically Photonic Crystals (PCs), as they relate to optical microsystems.  The first 
part of Chapter 14 describes the fundamentals of PCs, demonstrate how they con-
trol optical fields over sub-wavelength distances, and shows how they enable opti-
cal devices with improved scaling and functionality compared to traditional optics.  
Photonic Crystals are complex and a comprehensive treatment require a whole 
book (see the references in Chapter 14 for suggestions), so here we are giving just 
a bare-bones introduction to the central concepts. 
 
While the first part of Chapter 14 is general, the second part is focused specifically 
on a class of devices that are of great utility in microsystems and optical MEMS; 
two-dimensional, thin-film PCs.  We develop a model for the reflection and 
transmission of 2-D PCs and show that they can be used as filters and high-
reflectivity mirrors.   
 
The last chapter of the book covers Photonic Crystal Devices and Systems.  We 
focus on free-space systems, giving only a cursory treatment of waveguides and 
waveguide devices.  Even with this restriction, it is not possible to give a compre-
hensive coverage.  Instead, we make the case for integration of PCs and MEMS, 
as well as for integration of PCs and optical fibers.   
 
The chapter starts with a description of PC fabrication techniques that are com-
patible with ICs and MEMS.  It continues with the descriptions of a series of PC 
optical components that are enabled by silicon PCs.  The last part of the chapter 
gives examples of systems based on integration of PCs with MEMS and/or optical 
fibers.   
 
Of all the chapters of the book, the last one is the closest to the research forefront.  
Unlike some of the earlier, more fundamental chapters, it will therefore quickly be 
outdated.  That is as it should be.  The intention and the hope is that some of the 

                                                           
d  One could argue that the filters of Fig. 13.6, 13.13, and 13.14 are based on am-

plitude modulation, because the micromirrors array in the Fourier plane can be 
amplitude modulators.  The key frequency-discriminating component of the fil-
ter is the diffraction grating, however, and it is based on interference, i.e. a 
phase-modulation effect.   
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innovation and improvements that will make irrelevant this last chapter, or any 
other part of the book, will have been inspired by this very text.    
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2: Electromagnetic Fields and Energy 

2.1 Introduction to Fields and Energy 

The study of light is the study of wave propagation.  A working knowledge of the 
wave nature of light is necessary for design and analysis of all optical systems.  In 
some cases we must also add the concept of the photon, i.e. quantization of the op-
tical field, to get a complete understanding, but wave propagation is the founda-
tion that all of optics is built on.   
 
In this chapter we start with Maxwell’s equations for electromagnetic fields and 
from them we derive the wave equation for electromagnetic waves.  We then in-
vestigate a simple yet important solution to the wave equation in a homogeneous 
medium: the plane wave.  Part of the plane wave solution is the dispersion rela-
tion, which is the relationship between the wave vector and the frequency of the 
optical field.  The dispersion relation for plane waves is particularly simple, al-
most to the point of seeming obvious and therefore of little utility.  Later on, how-
ever, we’ll study optical devices, e.g. optical fibers and photonic crystals that have 
complex structures.  For such devices, the dispersion relationship helps visualizing 
optical propagation characteristics, and it is therefore an important tool for con-
ceptualizing and designing optics.   
 
In addition to the dispersion relation, the plane-wave solution to the electromag-
netic wave equation also demonstrates the importance of the phase of the optical 
field.  We emphasize this by using phasor representation to describe an important 
optical device: the Michelson interferometer.  The phasor representation is another 
much used graphical tool to conceptualize and design optical devices.    
 
In the last part of the chapter, we go back to Maxwell’s equations and derive the 
Poynting theorem, which we will use to use develop a set of restrictions on the 
characteristics of loss-less systems that combines optical fields.  We will derive a 
simple matrix formulation for an optical two-port, and generalize the results to 
multiport systems.  A number of examples will be presented to illustrate the power 
of energy-conservation arguments in optics, and to give a preview of how such ar-
guments will be used in detailed designs appearing in later chapters.  
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2.2 From Maxwell’s Equations to the Wave Equation 

Our starting point is Maxwell’s equations in their differential form.  As in the rest 
of the book, we are using MKS units.  (We attempt to consistently use MKS units 
throughout, only deviating in instances where common practice has made other 
units the standard choice).  Maxwell’s equations then take the following form: 

Faraday’s law:  B
t

E
∂
∂−=×∇  (2.1) 

Ampere’s law:  JD
t

H +
∂
∂=×∇  (2.2) 

Gauss’s laws:  ρ=⋅∇ D  (2.3) 

0=⋅∇ B  (2.4) 

where E is the electric field, H the magnetic field, D the displacement or electric 
flux density, B the magnetic flux density, J the electric current density, and ρ the 
electric charge density.   
 
The flux densities are related to the fields through the constitutive relations: 

EPED εε =+= 0  (2.5) 

HMHB μμμ =+= 00  (2.6) 

where P is the electric polarization, M is the magnetization, ε is the permittivity, 
and μ is the permeability.  In free space (vacuum) we have: 

Permittivity of free space:  ε0 = 8.8542 · 10-12 [F/m] 

Permeability of free space:  μ0 = 4π · 10-7 [H/m] 

 
In general, both the permittivity and the permeability are functions of frequency in 
all materials.  In practice, we may consider the permeability of most non-magnetic 
materials to be constant and equal to the permeability of free space.  The fre-
quency dependence of the permittivity, on the other hand, must be taken into con-
sideration in many practical optical devices and systems.  

Boundary Conditions 

We’ll now use Stoke’s theorem and Gauss’s divergence theorem to derive the in-
tegral forms of Maxwell’s equations from the differential forms.  The differential 
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forms are well suited for the derivations of the boundary conditions that we will 
use in reflection, transmission, and waveguide calculations.   

Stoke’s theorem: ∫∫ ⋅=⋅×∇
loopArea

ldASdA  (2.7) 

Gauss’s divergence theorem: ∫∫ ⋅∇=⋅
VolumeSurface

dvFSdF  (2.8) 

where S  is the surface and l  is the loop vector.   
 
Using these relations, we can write Maxwell’s Equations in integral form: 

Faraday’s law: ∫∫ ⋅
∂
∂−=⋅

arealoop

SdB
t

ldE  (2.9) 

Ampere’s law:  ∫∫∫ ⋅
∂
∂+⋅=⋅

areaarealoop

SdD
t

SdJldH  (2.10) 

Gauss’s laws:  enclosed
surface

QSdD =⋅∫  0=⋅∫ SdB
surface

 (2.11) 

 
From Gauss’s laws it follows that the normal components of the magnetic and 
electric flux densities are both continuous.  (For the electric flux this requires that 
there are no surface charges).  This, in combination with Faraday’s law, shows 
that the tangential component of the electric field is continuous.  Finally, we see 
from Ampere’s law that the magnetic field is continuous if there are no surface 
currents.   
 
For later reference we repeat these boundary conditions, which are valid in source-
free media (ρ=0, J=0): 

Et is continuous:  ( ) 012 =−× EES  (2.12) 

Ht is continuous:  ( ) 012 =−× HHS  (2.13) 

Dn is continuous:  ( ) 012 =−⋅ DDS  (2.14) 

Bn is continuous:  ( ) 012 =−⋅ BBS  (2.15) 
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Wave Equation 

The derivation of the wave equation starts with taking the curl of both sides of 
Faraday’s law to get the following expression: 

( ) H
t

B
t

E μ
∂
−∂×∇=

∂
−∂×∇=×∇×∇  (2.16) 

In almost all cases of practical interest it is a good assumption that μ is independ-
ent of time and position, so we can write:  

( ) H
t

E
∂
∂×∇−=×∇×∇ μ  (2.17) 

For continuous functions we can reverse the order of the spatial and temporal de-
rivatives:  

( ) ( )H
t

E ×∇
∂
∂−=×∇×∇ μ  (2.18) 

 
We now use Ampere’s law (assuming zero current density) and the constitutive re-
lation for the electric displacement to find an equation for the electric field, assum-
ing that the permittivity is time invariant:  

( ) ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂−=⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂−=×∇×∇ E

tt
D

tt
E μεμ  (2.19) 

To simplify further, we need the vector identity: 

( ) AAA 2∇−⋅∇∇=×∇×∇  (2.20) 

where ∇2 is the linear, three-dimensional Laplacian operator, which in Cartesian 
coordinates is defined as 

2

2

2

2

2

2
2

zyx ∂
∂+

∂
∂+

∂
∂=∇  (2.21) 

 
When applied to a vector field, the Laplacian must be applied to each vector com-
ponent separately, i.e.: 

zAyAxAA zyx
2222 ∇+∇+∇=∇  (2.21) 

Application of the above vector identity to our equation for the electric field re-
sults in the following expression:  



14      Photonic Microsystems 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂−=∇−⋅∇∇ E

tt
EE με2  (2.22) 

 
Now we will assume that the divergence of the electric field is zero.  This is not 
strictly true for fields in media with non-homogeneous permittivities, but in prac-
tice it is a good approximation.  With this assumption, we arrive at the homogene-
ous wave equation:  

02

2
2 =

∂
∂−∇

t
EE με  (2.23) 

Similarly, by starting with Ampere’s law, we find the wave equation for the mag-
netic field:  

02

2
2 =

∂
∂−∇

t
HH με  (2.24) 

2.3 Plane Waves  

A simple solution to the wave equation is a plane wave of the form  

( )kztExE −⋅⋅= ωcos0  (2.25) 

where f⋅= πω 2  is the natural frequency and k is the wave vector of the plane 
wave.  This particular plane wave is uniform in the x-y plane, and it propagates in 
the positive z-direction.  The E-field points in the x-direction, or in other words, 
the plane wave is polarized in the x-direction.   
 
The wavevector, k, and the natural frequency, ω, are related as  

λ
π

λ
πω 22 =
⋅

==
f
f

v
k  (2.26) 

where we have also introduced the wavelength 
f
v=λ .  The corresponding mag-

netic field can be found from Faraday’s or Ampere’s laws.  Using Faraday’s law 
we find 
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( )

( )kztEyH

kztkEyE
t

H

−=

⇒−−=×∇−=
∂

∂

ω
μ
ε

ω
μμ

cos

sin1

0
0

0

0

0

0  (2.27) 

 
Notice that there is no phase variation of either the electric nor the magnetic fields 
in planes (x,y planes) perpendicular to the direction of propagation (z direction), 
justifying naming these solutions plane waves.  The electric and magnetic fields of 
a uniform plane wave are illustrated in Fig. 2.1.   
 

 

λ

Ex 

Hy 

 
Figure 2.1. Electric and magnetic fields of a uniform plane wave propagating 

in the z-direction. The fields are mutually orthogonal, and orthogo-
nal to the direction of propagation. 

 

Invalid solutions: 

Not all solutions to the wave equation are solutions to Maxwell’s equations.  Valid 
solutions must also satisfy Gauss’s law for the electrical displacement.  An exam-
ple of a solution to the wave equation, that doesn’t represent a valid electric field 
is 

( )kztEzE −⋅⋅= ωcos0  2.28 

Direct substitution shows that this is indeed a solution to the wave equation, but 
we also observe that due to the fact that the polarization coincides with the propa-
gation direction, we have 0≠⋅∇ D in violation of Gauss’s law.  The plane waves 
described above do, however, fulfill the requirement 0=⋅∇ D , and are therefore 
valid mathematical solutions.   
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We can generalize the plane wave solution to  

( )rktfEE ⋅−⋅⋅= ω0  (2.29) 

where E0 is a constant vector orthogonal to the wave vector k , and f(x) is an arbi-
trary function.  This solution represents a wave that is polarized in a direction or-
thogonal to the direction of propagation as defined by the wave vector k .  The 
wave is uniform in planes orthogonal to k , and has a shape given by f(x) in the di-
rection of k .   
 
Substituting the general solution back into the wave equation yields 

( ) 00
2222 =′′⋅+−−− fEkkk zyx μεω  (2.30) 

where f” is the second derivative of f with respect to its whole argument.  Non-
trivial solutions require  

μεω22222 =++= zyx kkkk  (2.31) 

This is the dispersion relation for plane waves in a homogeneous medium.  In free 

space or vacuum the dispersion relation is a simple straight line 
00εμ

ω k= .   

 
In homogeneous materials, the dispersion relation is non-linear, due to the fre-
quency dependence of the permittivity (and sometimes also the frequency depend-
ence of the permeability).  Practical optical devices are of course not made of ho-
mogeneous materials, but of complex combinations of materials of different 
properties.  In such structures, the distributions of the optical fields are dependent 
on frequency, further complicating the dispersion relation.  For complex optical 
devices, optical fibers, Bragg filters, and Photonic Crystals, the dispersion relation 
contains most of the important information about wave propagation in the struc-
ture, and its graphical representation is a valuable tool for visualizing device char-
acteristics.  

Phase Velocity 

Going back to Eq. 2.25 describing a plane wave propagating in the positive z di-
rection, we find that it propagates with a phase velocity given by 

n
c

kdt
dzv ====

με
ω 1  (2.32) 

Here we have introduced the reflective index n, which for a given material and 
frequency is defined as the ratio of the speed of light in vacuum to the speed of 
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light in the material at the given frequency.  The speed of light in vacuum 

00

1
εμ

≡c  evaluates to 2.998·108 m/s.   

Group Velocity 

From the above expression, we see that the speed of an optical wave at one spe-
cific frequency, i.e. a harmonic wave, is simply given by the value of the disper-
sion relation at that frequency.  To understand the propagation of more compli-
cated waves, we must consider superpositions of multiple harmonics.   
 
A superposition of two optical fields at distinct frequencies can be described as 

( ) ( )[ ] ( ) ( )[ ]( )zkktzkktE
EE

Δ−−Δ−+Δ+−Δ+
=+

ωωωω coscos0

21  (2.33)

Using the identity 

[ ] [ ] yxyxyx coscos2coscos ⋅=−++  (2.34) 

this can be rewritten 

( ) ( )kztkztEEE Δ−Δ⋅−=+ ωω coscos2 021  (2.35) 

 
We see that the superposition consists of an harmonic wave at the average fre-
quency and average propagation constant, plus an envelope function that propa-
gates at the velocity 

k
vg Δ

Δ= ω  (2.36) 

This velocity of the envelope is called the group velocity. 
 
In general we find that the group velocity for a superposition of several harmonics 
can be expressed  

dk
dvg
ω=  (2.37) 

In contrast to the phase velocity, the group velocity is not given by the value of the 
dispersion relation, but the slope of the dispersion relation at a given frequency. 
 
To relate the group velocity to material constants, we perform the following re-
write: 
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 (2.38)

The last expression shows that the group velocity is close, but not exactly equal, to 
the phase velocity.   
 
We say that a material has normal dispersion for those wavelengths where 
dn/dλ<0.  In other words, we have regular dispersion in regions where the group 
velocity is less than the phase velocity, c/n.  In regions of anomalous dispersion, 
we have dn/dλ>0, and the group velocity is larger than the phase velocity.  Optical 
fibers are often used at wavelengths close to the dispersion minimum (d2n/dλ2=0) 
of glass, so that the group velocity dispersion changes sign in the wavelength 
range of interest.  
 
Maxwell’s equations are first-order differential equations in space and time.  They 
are also linear, provided that the constitutive relations are linear.  In this case, su-
perpositions of solutions to Maxwell’s equations are themselves solutions, and 
monochromatic plane waves can be added to form solutions of arbitrary time 
waveforms 

( ) ( ) ( )∫
∞

+−=
0

)()(cos
2
1, ωωφωω
π

dzktrExtrE x  (2.39)

 
The plane-wave solutions we have found are not square-integrable, so they cannot 
contain finite energy and can therefore not be physically implemented.  Under-
standing plane waves is nevertheless very useful, because (1) they give us a very 
good 1st order understanding of wave propagation phenomena, and (2) it is possi-
ble to physically realize field distributions that are arbitrarily close to plane waves 
and (3) sums of plane waves can be used for accurate modeling of many optical 
systems. 

2.4 Phasor Notation 

The linearity of Maxwell’s equations also let us use phasor notation, which greatly 
simplifies mathematical manipulation.  The plane wave solutions we examined 
earlier can be written in the following form 
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( ) ( ) ( )( )
( ) ( )( )[ ]
( ) ( )( )[ ] ( )[ ]tj

x
rtj

x

rtj
x

x

erExerEx

ccerEx

rtrExtrE
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ωφω

φω

φω

ReRe

..
2
1

cos, 0

⋅=⋅

=+⋅

=−⋅⋅=

−

−  (2.40) 

Notice that in the last identity the phase factor, exp[-jφx], has been included in the 
expression for the field amplitude component, which then becomes a complex 
quantity, a phasor.   
 
In phasor notation we drop the explicit taking of the real part such that the plane 
wave solution is written 

( ) ( ) tj
x erExtrE ω⋅=,  (2.41) 

In the remainder of this book we will not use any type of notational identification, 
but will instead rely on context to distinguish time-harmonic phasors from time-
dependent field amplitudes.  (An explicit time dependence rules out phasors, 
which are never time dependent).  When calculating using phasors we must re-
member to always take the real part of the final answer to obtain the correspond-
ing physical entity.  We must also be careful to only use phasor notation in linear 
calculations. 
 
We can combine the three vector-components of the electric field in a single 
phasor of the form 

( ) ( ) tjerEtrE ω=,  (2.42) 

where the phasor, ( )rE , has six components (three vector components each with 
amplitude and phase). 
 
Maxwell’s equations in phasor form are 

Faraday’s law: BjE ω−=×∇  (2.43) 

Ampere’s law: JDjH +=×∇ ω  (2.44) 

Gauss’s laws: ρ=⋅∇ D             0=⋅∇ B  (2.45) 

and the wave equation becomes the Helmholz equation 

( ) 000
22 =+∇ Eεμω  (2.46) 

 
In phasor notation, the plane wave solution we considered before can be written 
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( ) ( )[ ]
( ) jkz
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eExzE
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−⋅=

=

0

;Re, ω
 (2.47) 

The corresponding magnetic field is found from Faraday’s law in phasor form 

( )

( ) 0

0

0

0

η
ωμωμ

EzzH

ekEy
j

EzH jkz

×=

⇒=×∇−= −

 (2.48) 

where, Ω≈= 377000 εμη , is the wave impedance in free space. 

2.4.1 Michelson Interferometer – Phasor notation  

One of the advantages of the phasor representation is that it provides a simple and 
easy-to-understand method for explaining many important optical concepts and 
devices.  Consider, for example, the Michelson interferometer shown in Fig. 2.2.  
The input beam is split into two beams that each propagates to a mirror where they 
are reflected back into the beam splitter.  Upon propagation from the beam splitter 
to the mirrors and back, the two beams accumulates phase shifts.   
 

Focused 
input beam 

Output 
beam 

Moving 
mirror 

Reference 
mirror 

Beam 
Splitter 

Lfixed  

Lmoving  

 
 

Figure 2.2  The Michelson interferometer consists of a beam splitter and two 
mirrors; one fixed reference mirror and one movable target mirror.  
The incident light is split into the fixed and variable arms of the in-
terferometer and recombined in the beam splitter after reflecting off 
the mirrors.  The phase difference between the two beams upon re-
combination determines how much light is transferred to the output 
and how much is reflected backwards along the path of the input 
beam. 
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According to the plane-wave solutions described above, the accumulated phase 
shift for the beam reflected off the fixed reference mirror is given by1:  

λ
π

θ reference
referencefixed

L
Lk

22
2

⋅
=⋅=  (2.49) 

The beam reflected from the moving mirror gets a similar phase shift, so the phase 
difference of the two beams can be expressed:  

( ) ( )
λ

π
θ movingreference

movingreference
LL

LLk
−⋅

=−⋅=Δ
4

2  (2.50)

 
The key to the operation of the Michelson interferometer is the recombination of 
the two beams in the beam splitter.  To understand the result of that recombination 
we use phasors to represent the two beams in the reference arm and the measure-
ment arm of the interferometer as shown in Fig. 2.3.  Here the phasor representing 
the optical field in the reference arm is held fixed, while the phasor representing 
the optical field in the measurement arm is given a phase equal to the phase differ-
ence of the two beams.    
 
 

 
a) b) c) 

In-phase Out-of-phase Intermediate 
phase

 
Figure 2.3.  Phasor representation of the output optical fields of a Michelson 

interferometer.  The two phasors representing the light reflected 
from the fixed and moving mirrors are drawn as solid lines, while 
the total output field is drawn as a dashed line.  In (a) the two re-
flected parts are in phase, resulting in a maximum value for the 
output (shown offset for clarity).  In (b) the two reflected parts are 
exactly out of phase, so the output is zero.  In (c) the phase differ-
ence between the two reflected parts is between zero and π radians, 
so the resulting output field is between zero and its maximum value.   

 
Figure 2.3a) is the phasor representation of the physical situation where the path 
length difference between the reference arm and the measurement arm is zero or 
an integer number of half wavelengths.  The two phasors are then in phase and 
their sum attains its maximum value, which is the sum of the absolute values of 
                                                           
1  Collimated or focused beams accumulated phase differently than plane waves as 

we shall see in the Chapter 4, but the difference is small and can be ignored in 
the Michelson interferometer. 
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the two parts.  In this state, the relative size of the two phasors representing the 
parts of the field is unimportant. 
 
In Fig. 2.3b) the path-length difference for the light propagating in the two arms of 
the interferometer is π radians, i.e. the two parts of the reflected light are in ex-
actly opposite phase.  The result is that there is no output light from the interfer-
ometer in this state.  The incident light is therefore completely backreflected.  It is 
clear from the figure that we only get complete suppression of reflection when the 
two phasors representing the two parts of the reflected light are equal so that they 
exactly cancel each other when they are in opposite phase.  For the Michelson in-
terferometer of Fig. 2.2, this means that the beam splitter must divide the incom-
ing optical field in two equal parts.  
 
The usefulness of the phasor representation becomes clear when we consider Fig. 
2.3c that shows the reflected light when the two parts of the reflections have a 
relative phase between zero and π radians.  The resulting output field now has a 
value that is somewhere in between zero for the out-of-phase configuration and 
the maximum value for the in-phase configuration.   
 
We can find the resulting reflected field for an arbitrary relative phase, θ, by vec-
tor summation.  Here we are not interested in the absolute phase of the reflected 
light, so we write:  

( ) ( )22
sincos θθ ⋅+⋅+=

⇒+=

tmeasurementmeasuremenreferenceout

tmeasuremenreferenceout

EEEE

EEE
 (2.51) 

where outE  is the total output field, referenceE  is the reflected field from the refer-

ence mirror, and tmeasuremenE  is the reflected field of the measurement arm.   
 
To simplify the calculations, we assume that the reflected fields from the ribbons 
and from the substrate are of equal magnitude, i.e. tmeasuremenreference EE = .  The 

output field then becomes 

( )

2
cos2

cos12

sincoscos21 22

θ

θ

θθθ

⋅⋅=

+⋅⋅=

++⋅+⋅=

referenceout

referenceout

referenceout

EE

EE

EE

 (2.52)

As we will see in the next section, the optical power is proportional to the square 
of the optical field, so we can write the following expression for the optical output 
power from the interferometer:  
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2
cos2 θ⋅= incidentout PP  (2.53) 

where Pout and Pincident are the reflected and incident optical powers, respectively.  
The light that is not transmitted to the output must be reflected, so the back-
reflected power, Preflected, can be expressed as:  

2
sin

2
cos1 22 θθ ⋅=⎟

⎠
⎞

⎜
⎝
⎛ −⋅= incidentincidentreflected PPP  (2.54)

These two simple harmonic expressions for the output and back-reflected optical 
powers are shown graphically in Fig. 2.4.  The curves confirm our intuition that 
says that to have zero output, the interfereing beams must have a relative phase of 
π radians.     
 

2 4 6 8 10

0.2

0.4

0.6

0.8

1

 
 

Figure 2.4. Output (solid) and back-reflected (dashed) optical powers of the 
Michelson Interferometer as a function of relative phase difference 
of the two beams propagating through the interferometer.  Both the 
output and back-reflected optical powers are harmonic functions of 
the phase difference.   

 
This example shows the usefulness of the phasor representation, not so much in 
calculations, but in explaining device operation.  We will find that phasors are 
even more useful in the design process, where their simple and intuitive form 
helps clarify implementation and optimization strategies. 

2.5 The Poynting Theorem 

We will now use Maxwell’s equations to derive expressions for energy transport, 
dissipation, and storage.  Combining Faraday’s law with the constitutive relation 
for the electric field, we get 
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( )MH
t

E +
∂
∂−=×∇ 0μ  (2.55) 

Taking the scalar product of H with this equation results in 

( ) ( ) M
t

HHH
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MH
t

HEH
∂
∂⋅−⋅

∂
∂−=+

∂
∂⋅=×∇⋅ 0

0
0 2

μμμ  (2.56)

Similarly, combining Ampere’s law with the constitutive relation for the magnetic 
field, and forming the scalar product with E gives 

( ) JEP
t

EEE
t

HE ⋅+
∂
∂+⋅

∂
∂=×∇⋅ 0

0

2
εε  (2.57) 

 
We now subtract these last two equations, and use the vector identity 

( ) BAABBA ×∇⋅−×∇⋅=×⋅∇  (2.58) 

to get:  
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Now apply Gauss’s dispersion theorem to arrive at the following expression  
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This is the Poynting theorem that specifies the flow and storage of electromagnetic 
power.   
 
The different parts of the Poynting theorem can be interpreted as follows:  The 
vector product HE × is the Poynting vector, so the surface integral 

( ) SdHE
surface

⋅×− ∫  (2.61) 

represents the power flowing into the volume enclosed by the surface.   
 
The first term on the right hand side 



2: Electromagnetic Fields and Energy            25 

dvHHEE
tvolume

∫ ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ⋅+⋅

∂
∂

22
00 με  (2.62) 

is the rate of change of energy stored in the vacuum electromagnetic field.   
 
The second term  

dvP
t

E
volume
∫ ∂

∂  (2.63) 

is the power absorbed by the dielectric dipoles in the volume.  This quantity is 
positive in materials in thermal equilibrium, but can be made negative to create 
optical gain in optical amplifiers and lasers.   
 
The third term on the right hand side 

dvM
t

H
volume
∫ ∂

∂
0μ  (2.64) 

is the power dissipated by magnetic dipoles.  This term can most often be ne-
glected.   
 
Finally, the last term 

dvJE
volume
∫ ⋅  (2.65) 

is simply the power lost to the moving charges. 
 
To cast the Poynting theorem (Eq. 2.60) in terms of phasors, we, we use the fact 
that the product of two harmonic functions is 

( ) ( ) ( ) ( )
( ) ( )[ ]θφωθφ

θωφω
−++−

=+⋅+=⋅
tAB

tBtAtBtA
2coscos

coscos
 (2.66) 

The time average over one period of this product is 
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This derivation is valid for vector products as well as scalar products, so we find 
for the time averaged Poynting vector  
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( ) ( ) [ ]*Re
2
1 HEtHtE ×=×  (2.68) 

Based on this equation, we define the complex Poynting vector as 
*HE ×  (2.69) 

 
Here it should be emphasized that the complex Poynting vector is not the phasor 
representation of the real Poynting vector, i.e. we do not find the real Poynting 
vector by multiplying the complex vector by ejωt and taking the real part.  Instead 
the real and complex Poynting vectors are related as defined in Eq. 2.68.   
 
With these definitions, the complex Poynting theorem is 
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2.6 Combination of Optical Fields from Separate Sources 

Now let’s consider a simple, but important, consequence of the Poynting Theo-
rem.  Consider an optical field passing through a loss-less optical system as shown 
in Fig. 2.5.  Let the input field consist of a sum of two separate distributions, so 
that we can write the input electric field as Ein1+Ein2, and the input magnetic field 
as Hin1+Hin2. 
 

Optical
System

Ein1, Hin1 Ein2, Hin2

Eout1, Hout1 Eout2, Hout2

 
 

Figure 2.5. Energy conservation requires that a loss-less optical system with-
out storage cannot mix, or combine, modes, i.e. the overlap integral 
of two (or more) optical field distributions is unchanged by trans-
mission through the system.  Orthogonal modes remain orthogonal, 
and “optical communications channels” retain their cross talk 
when transitioning through the system. 
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Because the optical system is loss less and without energy storage, the Poynting 
theorem simply states 

( ) ( )[ ]
( ) ( )[ ] ⇒⋅+×+−

=⋅+×+

∫

∫

SdHHEE

SdHHEE

surface
outoutoutout

surface
inininin

2121

2121

 (2.71)

( )

Sd
HEHE

HEHE

SdHEHEHEHE

surface outoutoutout

outoutoutout

surface
inininininininin

⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

×+×+

×+×
−

=⋅×+×+×+×

∫

∫

2212

2111

22122111

 (2.72)

This is true for arbitrary fields, so the energy in each field must be conserved, 
which means that the energy in the cross terms also must be conserved. 
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Using the complex Poynting theorem, this equation becomes: 
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This expression says that a loss-less optical system cannot combine optical fields.  
If the two input modes are orthogonal, in the sense that their cross-term Poynting 
vectors integrated over the surface of the optical system is zero, then so are the 
output modes.  If the input modes are not orthogonal, then the Poynting-vector in-
tegral, or overlap integral, as defined above, is conserved.   
 
This simple statement of energy conservation is very helpful in analyzing and de-
signing optical communication devices and systems.  In loss-less waveguides this 
theorem tells us that the power carried by orthogonal modes is the sum of the 
power in the individual modes.  In this book we will use the conservation of the 
overlap integral to guide our analysis of waveguide couplers, optical scanners, fi-
ber switches, displays and imaging devices, as well as other optical systems, in 
which cross talk between optical channels is important.   
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The second law of thermodynamics 

We can also prove that loss-less optical systems cannot combine modes by con-
sidering incoherent sources in thermal equilibrium as shown in Fig. 2.6.  Each of 
the inputs to the optical systems accepts a single mode from the surroundings, 
which are at a constant temperature.  The energy that enters the device is therefore 
the same at each port.  If the two single mode input could be combined into one 
single mode output, then there would be net energy flow from the input side to the 
output side in violation of the second law of thermodynamics.  
 

 

In 1

In 2

Out 1

T0 

T0 

T0 

 
 

Figure 2.6. Hypothetical loss-less, linear optical device with two inputs and 
one output. 

2.7 Analysis Based on Energy Conservation - Examples  

To appreciate the energy-conservation argument derived in section 2.5, we will 
consider a few examples of practical value.  Energy methods are not often used for 
detailed calculations, but, as we shall see, they can be very powerful conceptual 
tools for understanding the basics of optical devices.   

2.7.1 “Collimated Optical Beam” 

Let us now assume that there exists a field distribution of finite width that will 
propagate through free-space without changing its profile as shown in Fig. 2.7.  
Two such collimated beams that are intersecting, but propagating at slightly dif-
ferent angles, will then in general have a non-zero overlap integral in the region of 
intersection, but not outside.   
 
This is clearly in violation of the Poynting theorem.  We must therefore conclude 
that collimated beams of finite cross sections are impossible.  In other words, dif-
fraction of electromagnetic waves is a direct consequence of energy conservation. 
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Non-zero cross-
term energy 

Zero cross-term 
energy  

Figure 2.7. Intersecting, collimated optical beams of finite cross sections have 
non-zero cross-term energy in the region of intersection, but not 
outside this region.  This is in violation of the Poynting theorem 
and therefore impossible. 

2.7.2 Combination of optical beams – Fan-in 

Now consider the hypothetical device shown in Fig. 2.8.  It has two input ports 
and only one output port.  All the energy entering the device must therefore exit 
through the same port, which means that the cross-term energy is different on the 
inputs and outputs.  This is violating energy conservation, which means that the 
device is unphysical.  
 

 

In 1

In 2

Out 1

 
 

Figure 2.8. Hypothetical loss-less, linear optical device with two inputs and 
one output.  This operation is in violation of the Poynting theorem 
and therefore unphysical. 

 
A beam combiner with two outputs as shown in Fig. 2.9 is physically possible and 
realizable.  In this device the energy from the two inputs is divided between the 
two outputs such that the cross-energy is zero, and the total energy on each output 
port depends on the relative phase and amplitude of the input modes. 
 
It should be stressed that the conclusions drawn in these examples are strictly 
speaking valid only for loss less devices.  Small amounts of loss will, however, 
not significantly change the conclusions.  The maximum possible change in cross-
term energy will be limited by the loss, so practical devices with some loss will in 
essence behave similarly to the loss less devices of these examples.   
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In 1

In 2

Out 1

Out 2

 
 

Figure 2.9. Realizable loss-less, linear optical device with two inputs and two 
outputs.  The distribution of the total output energy between the two 
output ports depends on the relative phase of the input modes.  In 
the specific shown, the phases of the inputs are chosen such that the 
outputs are in phase on Output 1 and out-of phase on Output 2.  
Consequently, all the input power is directed to Output 1. 

2.7.3 Optical devices with two inputs and two outputs – General Case 

It is useful to combine the concepts of energy conservation and reciprocity to ar-
rive at a general description of loss-less, linear, optical two ports.  Consider first a 
device with two inputs and two outputs, like the one shown in Fig. 2.9, in which 
the a fraction x (0<x<1) of the energy from Input 1 is coupled to Output 1 and the 
rest is coupled to Output 2.  Similarly, a fraction y (0<y<1) of the energy from In-
put 2 is coupled to Output 2 and the rest is coupled to Output 1.  Assume also that 
the cross-term energy is zero on the input side.  The Poynting theorem requires 
that 
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where we have assumed without loss of generality that the Poynting vector is per-
pendicular to the surface enclosing the optical device at the outputs.   
 
We assume that the two outputs are indeed separate, i.e. their overlap integral is 
zero, so we can write:  
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In this equation we have included phase terms that reflect the fact that we have not 
made stipulations about the relative phase of the two fields on each output.  Given 
that both variables x and y are real quantities in the closed interval from zero to 
one, the only solutions to this equation are 

yx =
=− πφφ 21  (2.77) 

 
We conclude that a two-input, two-output optical device divides the optical power 
from each input symmetrically, and that the relative phases on the two outputs are 
different by π, i.e. if the two parts of the output are in-phase on Output 1, then 
they must be exactly out of phase on Output 2.   
 
The special case of a symmetric device with x=y=0.5, is especially interesting be-
cause it allows all the energy to be directed to one or the other of the outputs de-
pending on the relative phases of the input modes.  This is the case which is de-
picted in Fig. 2.9.  Reciprocity further guarantees that when the device is operated 
in reverse, the energy splitting from the outputs to the inputs matches that of the 
splitting from the inputs to the outputs.   

2.7.4 Dielectric interface 

Now we consider perhaps the simplest possible optical two-port; a planar dielec-
tric interface as shown in Fig. 2.10.  Here we have plane waves at normal inci-
dence on either side a planar interface between two dielectrics e.g. air and glass.  
The plane waves are partially reflected and partially transmitted, so that the inter-
face can be looked as an optical device with two inputs (plane waves normally in-
cident from each side of the interface) and two outputs (the reflected waves from 
each side of the interface).   
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Air Dielectric  
 

Figure 2.10. Lossless, dielectric interface with plane wave at normal incidence.  
Energy conservation requires that the field reflectivities from oppo-
site sides of the interface have the same magnitude, but opposite 
phase when referred to the same plane of reference.  In this illus-
tration the incident (solid-line wave fronts) and reflected light 
(dashed-line wave fronts) on the left are out of phase (reflection 
from a high-index dielectric).  A plane wave incident from the right 
would be in-phase with its reflection. 

 
In the next section we will derive equations for the reflectivity of the electrical 
fields at the interface, but for now we will simply assume that the reflectivity for 
the incident planes is r1.  The relationship between the magnitudes of the E and H 
fields in the reflected plane wave is the same as for the incident planes wave, so 
the power reflectivity is given by 2

11 rR = .   
 
It follows directly from the above calculations of the power distribution in a loss-
less optical two port that the power reflectivity of the plane wave incident from the 
right is the same, i.e. 12 RR = , while the field reflectivity has the same magnitude, 
but the exactly opposite sign, 12 rr −= .  In other words, the reflectivities from op-
posite sides of an interface when referred to the same reference plane are of oppo-
site signs.  This simple consequence of energy conservation is important in all in-
terferometric devices that include dielectric interfaces, and later in this book we 
will use it in modeling of many types of optical devices. 

2.7.5 Y-coupler 

With our new insight into the power flow in optical devices, we are now in a posi-
tion to understand the operation of the y-coupler, which is a common integrated-
optics device.  A schematic design of a Y-coupler is shown in Fig. 2.11.   
 



2: Electromagnetic Fields and Energy            33 

 

 
 

Figure 2.11. Integrated optics Y-coupler.  The single mode waveguide on the in-
put side is split into two single mode outputs.  Energy conservation 
requires that the outputs couple to another input mode, which is 
depicted as an anti-symmetric higher-order mode on the input 
waveguide. 

 
The Y-coupler consists of a single-mode waveguide, which is split into two sin-
gle-mode waveguides.  We know from energy conservation that the two outputs 
cannot both couple all their energy into the single-mode output, so we must postu-
late an input radiation mode that couples to both output modes.  For the Y-coupler 
to work as a perfect power splitter, we must have that the two outputs both couple 
50% of their energy into the same radiation mode in such a way that if the two 
output modes are in phase, the relative phase of the radiation modes to which they 
couple is exactly π radians out of phase.    

2.7.6 Fan-in loss 

The argument about the conservation of the cross-term energy can easily be ex-
tended to optical devices with arbitrary numbers of input and output ports.  For a 
power splitter that splits the power of a single mode input into n single mode out-
puts, we must obviously have a splitting loss of 1/n, as shown in Fig. 2.12.  It fol-
lows from the preceding that the power loss from one of the outputs to the input 
must also be 1/n, and that the lost power is coupled to radiation modes.  The fan-
out loss is obvious, but the fan-in loss is just as fundamental. 
 

 

Pinput 

Poutput= 
Pinput/n Pinput 

Poutput= 
Pinput/n 

 
 

Figure 2.12. Schematic drawing of a n-way power splitter/combiner, which has 
a 1/n power loss in either direction. 
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2.7.7 Practical beam combiner 

A polarizing beam splitter is often used to combine two optical beams as shown in 
Fig. 2.13.  In this device we have two input modes and two output modes as indi-
cated.  Input mode 1 is vertically polarized, and Input mode 2 is horizontally po-
larized as shown.  If we also chose the output modes to be the vertically and hori-
zontally polarized beams (i.e. the outputs and inputs have the same polarizations), 
then we simply have that Input 1 couples to Output 1 and Input 2 couples to Out-
put 2.  Clearly we cannot combine the power from both inputs in either of these 
outputs.  If we chose the outputs polarizations to be at 45 degrees to the input po-
larizations, however, we get a splitting of each input between the two outputs.  In 
this case the power of the two inputs can be combined into one output provided 
that the input phases are chosen correctly. 
 

 
Input 1 

Input 2 

Output 1 

Output 2 

Input 1 

Input 2 

Polarizing 
beam 
splitter 

a) b) 
 

 
Figure 2.13. Optical power combiner based on polarizing beam splitter.  The 

physical layout of the power combiner is shown in a), while the po-
larizations of the input and output channels are shown in b.  

 
If the two inputs are incoherent, the output is best described as two linear polariza-
tions with an arbitrary phase.  This type of power combiner is often used with 
pump lasers for fiber amplifiers, because we want to pump the amplifier such that 
both polarizations of the fiber mode are amplified. 
 
If the two inputs are in phase (this is the case if the inputs originate from the same 
source, if the input sources are phase locked, or if the relative phase of the input 
sources are monitored and carefully controlled), the power from the inputs can be 
combined in a single mode.  This is called coherent beam combination. 

2.7.8 Wavelength Division Multiplexing 

In the preceding discussion, a mode is simply a degree of freedom in the descrip-
tion of an optical field.  So far we have discussed spatial modes and polarization 
modes.  Optical fields can clearly also be described in terms of spectral or tempo-
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ral modes.  There is nothing in our treatment that disallows the spatial combining 
of modes that are distinct both spatially and spectrally.  This is not only possible, 
but also widespread, and the basis of Wavelength-Division-Multiplexed (WDM) 
fiber optic communication systems.   
 

 

Diffraction Grating 

The three output 
modes are distinct in 
wavelength, but 
coincides spatially 

The three input 
modes are distinct 
spectrally and 
spatially 

 
 

Figure 2.14. Free-space WDM wavelength channels combiner.  The three differ-
ent wavelengths are combined spatially by their different diffrac-
tion angle from the grating. 

 
 

Spatially overlapping, 
spectrally distinct 
output modes 

Spatially and spectrally 
distinct input modes 

 
 

Figure 2.15.  Integrated-optics implementation of WDM wavelength channels 
combiner.  The light from the input is evenly distributed over the 
array of waveguides in the center of the device.  The different 
propagation delay through the center section allows the different 
wavelength channels to preferentially couple to one of the spatially 
distinct output waveguides.  This device is called an Array 
Waveguide Grating (AWG). 
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Figures 2.14 and 2.15 show two different wavelength-channel combiners for 
WDM communication systems.  Conceptually these two solutions are very simi-
lar.  The main difference is that the grating-based combiner of Fig. 2.14 relies on 
free-space propagation of the optical beams, while the device of Fig. 2.15 is im-
plemented in a waveguide environment.   

2.8 Summary of Fields and Waves 

In this chapter we have introduced the important concept of an electromagnetic 
plane wave, and we have shown how it can be presented in the compact and con-
venient phasor notation.  We will use the plane wave as a simple model for elec-
tromagnetic wave propagation when analyzing and designing a wide range of 
complex optical devices in this book.   
 
In the last part of the chapter, we derived the Poynting Theorem and showed how 
it electromagnetic wave relate to energy flow in optical devices.  Energy methods 
are not used to for detailed analysis or to construct detailed models for optical de-
vices, but they provide valuable insight into the fundamentals and limitations of 
optics.  As such they are invaluable for clarifying limitations, building design in-
tuition, and generalizing results from specific analyses to wider classes of prob-
lems.   
 
In analyzing and designing optics, w often find it useful to ask the question: 
Where does the optical energy go?  The answer helps often illuminates issues that 
are obscured by detailed and complex field calculations.  We will therefore use the 
energy methods derived in this Chapter extensively throughout this book.   
 
The most important theoretical concept that we have introduced in this chapter are 
summarized in the following: 

Boundary conditions (valid in source-free media (ρρρρ=0, J=0)): 

Et is continuous: ( ) 012 =−× EES  (2.78)

Ht is continuous: ( ) 012 =−× HHS  (2.79)

Dn is continuous: ( ) 012 =−⋅ DDS  (2.80)

Bn is continuous: ( ) 012 =−⋅ BBS  (2.81)
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Wave equations: 

Wave equation for the electric field:  

02

2
2 =

∂
∂−∇

t
EE με  (2.82) 

Wave equation for the magnetic field:  

02

2
2 =

∂
∂−∇

t
HH με  (2.83) 

Plane Waves: 

Plane waves in phasor notation:  
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 (2.84) 

The corresponding magnetic field is found from Faraday’s law: 
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where, Ω≈= 377000 εμη , is the wave impedance in free space. 

The complex Poynting theorem: 
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Energy conservation as expressed by the Poynting Theorem leads to the following 
conclusions: 

1. Loss-less optical devices must have an equal number of input and output 
modes (i.e. the number of modes cannot be reduced by passing through a 
loss-less optical device). 

2. Collimated beams are impossible, i.e. diffraction is an inevitable conse-
quence of energy conservation. 

3. Two-input, two-output optical devices divides optical power from each 
input symmetrically, and that the relative phases on the two outputs are 



38      Photonic Microsystems 

different by π, i.e. if the two parts of the output are in-phase on Output 1, 
then they must be exactly out of phase on Output 2.   

4. The reflectivities from opposite sides of an interface when referred to the 
same reference plane are of opposite signs.  This is important in all inter-
ferometric devices that include dielectric interfaces. 

5. Fan-in and fan-out losses are equal in loss-less optical devices. 
6. If the inputs to an optical device are distinct, but the outputs consists of 

non-zero responses to more than one input, then the relative phases of the 
different parts of the outputs are determined by the requirement that the 
total cross-term energy must equal zero. 

7. Channels that are distinct in n dimensions (space, polarization, spectra) 
can be combined in n-1 of these. 

Further Reading 

H.A. Haus, “Waves and Fields in Optoelectronics, Prentice Hall, 1984. 
 
A. Yariv, P. Yeh, “Photonics: Optical Electronics in Modern Communications”, 
6th edition, Oxford University Press, 2007.  

Exercises 

Problem 2.1 – Optical Black Box 

A much used principle for determining if a linear, loss-less “optical black box” 
with n inputs and n outputs is realizable, is that it must be possible to deduce the 
inputs without ambiguity if the outputs are known (amplitude and phase).  Explain 
how this principle can be deduced from energy conservation. 
 

Problem 2.2 – Realizable Y-junctions 

Which of the following optical devices are theoretically possible to implement, 
and which ones are not.  Explain your reasoning. 
 
a) A symmetric Y-coupler as shown in the figure in which the incident light 

(Port 1) in the single mode input is coupled equally into the two single mode 
output channels (Ports 2 and 3) with 45% of the total power in each. 
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Port 3 

Port 1 
Port 2

 
 
b) A symmetric Y-coupler in which 75% of the incident light in the upper the 

single mode branch (Port 2) is coupled into the single mode output channel.  
 
c) A symmetric Y-coupler in which incident light in the single mode branches 

(Ports 2 and 3) is coupled into the single mode output channel (Port 1) with 
75% efficiency.  

Problem 2.3 – Reflections from an interface 

Consider a plane wave incident on an air-dielectric interface at normal incidence.  
Assume that there are no losses at the interface, i.e. that all optical power is either 
transmitted on reflected at the interface.   

a) Explain how energy conservation demands that the reflections are 
the same for plane waves incident from the air side and from the 
dielectric side of the interface. 

 
Consider again plane waves incident on an air-dielectric interface, but now at 
normal incidence.   

b) Is it possible to create an interface that will give 100% reflection 
for plane waves incident from the air side and 100% transmission 
for plane waves of the same polarization incident from the dielec-
tric side of the interface?  (Explain your answer.)   

Problem 2.4 – Waveguide coupling 

Consider the loss-less, single-mode waveguide device below.  With only In1 pre-
sent, the outputs are Eout1 and Eout2=K12Eout1, where K12 a complex number.  Simi-
larly, with only In2 present, the outputs are Eout2 and Eout1=K21Eout2.  Express K21 in 
terms of K12. 
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In1 

In2 

Out1 

Out2  

Problem 2.5 – Crossing waveguides 

Consider the symmetric single-mode waveguide crossing in the figure below.  The 
crossing is well designed, so that all the power of the inputs stays in one or the 
other of the outputs.  If there is only power in Input 1, then 75 % goes to Output 1 
and 25 % to Output 2, and by symmetry, if there is only power in Input 2, then 25 
% goes to Output 1 and 75 % to Output 2.   
 
What range of values can the ratio of power in Output 1 to power in Output 2 take 
when the power in the two inputs are the same?  The light is at the same fre-
quency, but not necessarily in phase. 
 

 
Input 1 

Input 2 

Output 1 

Output 2 
 

 

Problem 2.6 – Loss in Array Waveguide Gratings 

What is the average loss (over the spectrum) of a single-input, single-output Array 
Waveguide Grating (Fig. 2.15). 
 



3: Plane Waves at Interfaces 

3.1 Introduction to Plane Waves  

This chapter is focused on the reflection and transmission of plane waves at inter-
faces between two different optical materials.  In Chapter 2 we used energy-
conservation to look at a particular part of this problem; the phase relationship be-
tween waves reflected from opposite sides of a dielectric interface.  Here we will 
study waves at interfaces in more detail. 
 
The first thing we will find is that consideration of continuity of planes waves at 
an interface allows us to derive the law of reflection and Snell’s law of refraction!  
These two laws form the foundation for all of Geometrical Optics; a tremendously 
successful model that even today are used in analysis of the most complex imag-
ing and lens design applications.   
 
Analysis of planes waves at interfaces also gives us the Fresnel-reflection formu-
lae.  These expressions for reflection and transmission are very useful in their own 
right, and they lead to the important concepts of Total-Internal-Reflection that is 
the basis of traditional wave guiding, and to evanescent fields that are of particular 
importance in miniaturized and integrated optics.     
 
In the last part of the chapter, we will extend the treatment to multiple interfaces 
so that we can calculate reflection and transmission through multilayered struc-
tures.  This will give us the tools to analyze important optical components like 
Anti-Reflection (AR) coatings, and Bragg reflectors, as well as leaky waveguides 
and surface plasmons.  
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3.2 Plane Waves at a Dielectric Interface - Fresnel 
Reflections 

3.2.1 Laws of Reflection and Refraction (Geometrical Optics) 

The plane wave solutions combined with the boundary conditions for electromag-
netic fields that we derived in Chapter 2 allow us to find formulas for reflections 
and transmissions of plane waves at a dielectric interface.  Consider a monochro-
matic plane wave of the form 

( )[ ]rktjEE iiii ⋅−⋅= ωexp0  (3.1) 

or   

( )rktEE iiii ⋅−⋅= ωcos0  (3.2) 

incident on a dielectric interface described by the surface normal S .  The corre-
sponding reflected and transmitted fields are 

( )
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where αr and αt are phase constants that allow for the fact that there in general is a 
phase shift associated with reflection and transmission. 
 
Continuity of the tangential component of the electric field mandates 
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This equation is valid for all times at all points on the dielectric interface, so the 
arguments of the harmonic function must all be equal: 

interfacettt

interfacerrrinterfaceii

rkt

rktrkt

αω

αωω

+⋅−=

+⋅−=⋅−
 (3.5)

The three waves are undergoing forced vibrations at the frequency of the incident 
wave, so ωi= ωr= ωt.  We then have at the interface 
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ttrri rkrkrk αα +⋅=+⋅=⋅  (3.6) 

 
Consider now the first of these two equations.   

( ) rrirri rkkrkrk αα =⋅−⇒+⋅=⋅  (3.7)

The equality is valid when the position vector, r , is in a plane parallel to the in-
terface (if αr is zero, then r  spans the interface itself).  The equation can therefore 
only hold if the difference of the k-vectors is perpendicular to the plane.  We con-
clude that rk  is in the incident plane (the plane defined by the incident wave vec-
tor and the surface normal).  Considering the fact that the magnitude of the k-
vectors is the same (because they are in the same medium and have the same fre-
quency), we can further conclude that 

rirrii kk θθθθ sinsinsinsin =⇒⋅=⋅  (3.8)

This is the law of reflection, which was well-known long before Maxwell wrote 
his equations and made possible this derivation. 
 
Similarly we have 

( ) ttitti rkkrkrk αα =⋅−⇒+⋅=⋅  (3.9)

We see that tk  is also in the incident plane, and  

rtiittii nnkk θθθθ sinsinsinsin ⋅=⋅⇒⋅=⋅  (3.10) 

This is Snell’s law of refraction!  
 
The laws of reflection and refraction form the basis of geometrical optics, also 
called ray optics.  This very successful model relies on the concept of an optical 
ray; an optical beam of ideally zero cross sectional area that propagates, reflects, 
and refracts like a plane wave.  We know that energy conservation do not allow 
the existence of collimated beams of finite, and much less zero, cross sections.  
The major postulate of geometrical optics is therefore in violation of fundamental 
physics.   
 
Nevertheless, we will find that many practical results of geometrical optics are 
consistent with wave-optics.  This is particularly true in situation where the aper-
ture of the optics is very large compared to the wavelength of light.  Even for 
miniaturized optics, which is the main focus of this book, geometrical optics is of-
ten a useful tool due to its simplicity.   
 
We will continue to point out similarities and differences between wave optics and 
geometrical optics, and use geometric optics whenever possible, because it is a 
great tool for developing intuition.  It just has to be applied correctly.  Some of the 
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concepts and techniques of Geometrical Optics that we will use in this book are 
summarized in Appendix 1. 

3.2.2 Fresnel Equations 

Now we will extend our use of the boundary conditions of the optical fields to not 
only find the directions of the reflected and transmitted waves, but also their mag-
nitudes.  Consider a linearly polarized, monochromatic plane wave incident on an 
interface as shown in Fig. 3.1.  First we study the situation where the E-field is 
perpendicular to the plane of incidence, which is defined by the wave vector and 
the surface normal.  This transversal-electric field (TE) incident plane wave is also 
called an s-polarized wave.  We will use both expressions interchangeably. 
 
Continuity of the tangential component of the electric field can be expressed  

tri EEE 000 =+  (3.11) 

We must also have continuity of the tangential component of the magnetic field at 
the interface, so 

ttrrii HHH θθθ coscoscos 000 −=+−  (3.12) 

 
Here we have explicitly taken into account the fact that if the E-fields of the inci-
dent and reflected fields are in phase at the interface, then their H-fields are neces-
sarily exactly in opposite phase.  This follows from the fact that the energy flows, 
which are in opposite directions for the incident and reflected waves, are given by 
the vector product of the E and H-field.  
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Figure 3.1. Schematic of the incident, reflected, and transmitted components of 
a Transversal-Electric field (TE) plane wave incident on a dielec-
tric interface. 
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Into this equation, we substitute the identity 
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and we use the law of reflection to find 
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Combined with the continuity of the electric field at the interface, this results in 
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In practice we are most often using materials in which 0μμ ≈x , so the Fresnel 
Equations for s-polarized waves simplify to  
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and 
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The derivations of the Fresnel Equations for waves with Tranversal-Magnetic 
(TM), or p-polarized fields, (E-field polarized in the plane of incidence) are very 
similar.  For a p-polarized, monochromatic plane wave incident on an interface as 
shown in Fig. 3.1, continuity of the tangential E-field requires   
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( ) ttirittrrii EEEEEE θθθθθ coscoscoscoscos 000000 =⋅+⇒=+⋅  (3.19) 

Similarly, continuity of the magnetic field at the interface allow us to write 

tri HHH 000 =−  (3.20) 

 
The reason for the minus sign in the equation is that we are again explicitly taking 
into account the fact that the reflected wave, which is traveling away from the in-
terface, must have its H-field reversed.  Note that this choice is different from 
what is done in many text books, which write this equation as tri HHH =+ .  
Both methods are equally valid, provided that it is applied consistently and that the 
results of the calculations are correctly interpreted.  The advantage of our ap-
proach is that it implies a definition of phase shift that yields the same results for 
p-polarized and s-polarized waves at normal incidence, as our intuition tells us 
that it should be.  
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Substituting into the equation of continuity of the electric field at the interface we 
find  
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Similarly we find the following expression for the transmitted field 
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In summary, we have found the following complete set of Fresnel Equations for 
the reflection and transmission of plane waves through a dielectric interface: 
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Often these Fresnel equations are presented in a slightly different form, in which 
the last equation is the negative of what we have derived here.  This inversion is a 
consequence of the choice we made to explicitly take into account the phase re-
versal of the reflected magnetic field.   
 
The advantage of our notation is that the reflection at normal incidence is the same 
for s and p-polarized waves.  This can be verified by observing that if the incident 
angle is zero, then  

it

ti
TETM nn

nnrr
+
−==  (3.28) 

This simple formula for reflections at normal incidence is useful to memorize, but 
keep in mind that this is the field reflections.  The power or intensity reflections 
are the square of the field reflections as we will see.   

3.2.3 Numerical Evaluation of the Fresnel Equations 

To get a better understanding of the physics of planes waves at interfaces, we nu-
merically evaluate the Fresnel Equations at an interface between two media of in-
dex 1.0 (air) and 1.5 (glass) respectively.  Figure 3.2 shows graphs of reflection 
and transmission at the interface when the plane wave is incident on the low-index 
side of the interface.  This situation of light impinging from the low-index side is 
called external reflection.  
 
The results shown in Fig. 3.2 are not very surprising.  The magnitudes of the re-
flection and transmission coefficients are all between zero and unity for the whole 
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range of input angles.  The phase of transmission is zero, while the reflection for 
transversally polarized E-fields is π radians for all angles.   
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Figure 3.2.  Absolute values (left) and phase (right) of reflection and transmis-
sion when ni<nt (external reflection) as a function of incident angle 
(in radians).  The phases of the transmitted fields are zero for all 
angles.  Notice the null in rTM at the Brewster angle. 

 
The reflection for transversally polarized magnetic fields is more interesting with 
a null and a phase shift at the Brewster angle.  This is a phenomenon that is useful 
in many optical devices, and we will look closer at it in Section 3.2.4.  As pointed 
out above, with our definitions, we find that the magnitude and phase of the reflec-
tions are the same for TE and TM at normal incidence, as we would expect.   
 
Figure 3.3 shows the numerical evaluation of reflection and transmission when the 
plane wave is incident on the high-index side of the interface.  This situation is of-
ten referred to as internal reflection.  The graphs show that beyond a critical angle, 
the reflections for both TE and TM waves go to unity.  This phenomenon is called 
Total-Internal-Reflection (TIR).  It is a consequence of the fact that beyond the 
critical angle, there simply are no plane wave solutions on the low index-side that 
can match the periodicity of the incident field on the high-index side.  There are 
therefore no plane waves that can transition and travel away from the interface.   
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Figure 3.3.  Absolute values (left) and phase (right) of the reflection and trans-
mission when ni>nt (internal reflection).  Again we notice the null 
in rTM at the Brewster angle.  Beyond the Total Internal Reflection 
(TIR) angle the transmitted energy is zero. 
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Figure 3.3 shows that the transmission of the electric field is larger than unity for a 
wide range of input angles.  For relatively small angles (below the critical TIR an-
gle), this is simply due to the fact that matching the energy flows into and away 
from the interface requires higher fields on the low-index side.   
 
At incident angles beyond TIR we see that we have transmitted fields even though 
the reflections go to unity!  These transmitted fields are evanescent fields that are 
not carrying energy away from the interface.  This is our first indication of non-
traveling fields that we will study in more detail later. 

3.2.3 Reflectance and Transmittance 

To check that energy conservation is indeed satisfied by the Fresnel formulae we 
just derived, we’ll calculate the energies of the reflected and transmitted fields.  
The time-averaged radiant flux, or intensity, (W/m2) of the optical plane wave is 
given by  
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We define the reflectance as the ratio of the intensity reflected from an area, A, to 
the intensity incident on the same area 
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Similarly we define the transmittance as the ratio of the intensity transmitted 
through an area, A, to the intensity incident on the same area 
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These expressions for the reflectance and transmittance are plotted in Fig. 3.4.  As 
before we are considering an air (ni=1) to glass (nt=1.5) interface.  The graphs 
show that both the reflectance and transmittance are between 0 and 1 for all inci-
dent angles.  By combining Eqs. 3.30 and 3.31 with the Fresnel formulae, we find 
that R+T=1, as we intuitively know that must be the case. 
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Figure 3.4.  Reflectance and transmittance from an interface between air (ni=1) 

and glass (nt =1.5).  As expected for external reflection, the trans-
mittance is finite for all values of the incident angle between 0 and 
π/2.   

3.2.4 Brewster Angle 

Figures 3.2, 3.3, and 3.4 show that at a specific angle, called the Brewster angle, 
there is a null in the TM wave reflection, while TE reflections are finite.  This is 
an interesting phenomenon that is useful for many optical devices, e.g. windows 
on gas-laser tubes that ideally should be completely transparent for one polariza-
tion, while introducing losses for the other.   
 
By inspection of the formula for rTM, we find that the null occurs at the angle 
given by 

iBttBi nn θθ coscos =  (3.32) 

Combining this with Snell’s law  

ttii nn θθ sinsin =  (3.33) 

we find 
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θθθθ
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 (3.34) 

 
This equation has the trivial solution θiB=θtB (which means that ni=nt, i.e. there is 
no interface), but also the more interesting solution 

2
πθθ =+ iBtB  (3.35) 

Substituting back into the first equation we find the following expression for the 
Brewster angle 
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iB n

n=θtan  (3.36) 

We see that at the Brewster angle, the transmitted and reflected waves are perpen-
dicular.   
 
It is interesting to note that this fact (that when the transmitted and reflected wave 
are perpendicular, the reflection goes to zero), which we found by considering the 
continuity of the waves at the interface, is exactly what we expect if we consider 
the dipoles that drive the transmitted and reflected fields.  Because the reflected 
wave is perpendicular to the dipoles that set up the transmitted field, these dipoles 
cannot deliver power in the direction of the reflected wave, so the reflection goes 
to zero.  This is illustrated in the figure below. 
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Figure 3.5. A TM plane wave incident on a dielectric interface drives dipoles in 

the dielectric that set up the transmitted field.  If the reflected wave 
is parallel to the dipole axis (perpendicular to the transmitted 
field), the reflection disappears.  This condition is only possible for 
TM polarized light.  TE polarized light sets up dipoles perpendicu-
lar to the plane of incidence, so the dipole axis cannot coincide 
with the reflected wave vector. 

3.3 Wave description of Total Internal Reflection (TIR) 

As pointed out in the previous discussion, we see from Fig. 3.3 that when plane 
waves are incident on an interface between one material and another with a lower 
index of refraction (internal reflection), the reflection becomes unity for all angles 
beyond a critical value, θcr.  The value of the critical angle can be found by setting 
the transmitted angle equal to π/2 (the maximum value it can have and still be a 
transmitted wave) in Snell’s law.  The results is 
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where nt<ni.   
 
Beyond the critical angle the propagation vector of the transmitted wave is imagi-
nary in the low-index material.  This exponentially decaying wave, which is called 
an evanescent field, does not carry power into the low-index material (the electric 
and magnetic fields are 90 degrees out of phase so the time averaged Poynting 
vector is zero).  The evanescent field does, however, play a very significant role in 
the operation of directional couplers, ring filters, surface-plasmon sensors, and 
some types of fiber optic switches.  

3.3.1  Evanescent Fields 

To develop a quantitative understanding of Total Internal Reflection, including the 
evanescent field, consider a dielectric interface with incident and transmitted TE 
fields of the form  
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Here we have dropped the time dependence for convenience.  The incident and 
transmitted angles are related by 
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Notice that we use the positive square root.  There is no ambiguity here, because if 
we took the negative root we would have a wave propagating in a different direc-
tion (with a positive y-component of the propagation vector).  Using this expres-
sion, the transmitted field is  
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At the critical angle  

i

t
cr n

n=θsin  (3.41) 

the transmitted angle is 90 degrees and the transmitted field is a plane wave along 
the interface 
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( ) [ ]xnjkEtzyxE tiTEt ⋅−⋅⋅⋅= 00 exp,  (3.42) 

 
Beyond the critical angle our expression for cosine of the transmitted angle be-
comes imaginary.  Now there is an ambiguity in the choice of sign of the root of 
the expression for cosine of the transmitted angle.  To see the implications of this 
choice, we use the general expression  
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The transmitted field is then 
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To obtain a solution that is decaying exponentially in the negative y-direction, we 
must choose the negative root in this expression.   
 
Keeping in mind the choice of the negative root that we just made, let’s consider 
the phase shift of the reflected light under total internal reflection.  Substituting the 
above expressions for the sine and cosine of the transmitted angle we find 
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The phase shift is 
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We see that the phase shift goes from zero at the critical angle to +π at gracing in-
cidence, as shown in the graph in Fig. 3.3.  If we plot the phase based on the Fres-
nel Equations and simply choose the positive root of the equation for cosine of the 
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transmitted angle without concern for the unphysical nature of an exponentially 
increasing wave, then we get the exact opposite, i.e. the calculated phase shift then 
goes from zero at the critical angle to –π at gracing incidence.  This illustrates that 
we must be careful when applying the Fresnel equations to Total Internal Reflec-
tion!  

3.3.2 Goos-Hänchen Shift 

The phase shift associated with TIR appears to correspond to a an offset between 
the incident and reflecting planes as can be seen by considering the equation we 
used to derive the law of reflections 

( ) ( ) rriririrrrii krrrkkrkrk αα −⋅−=⋅−⇒+⋅=⋅  (3.47)

 
The offset, that is required to explain the phase shift of TIR, implies a shift of the 
beam along the interface as shown in Fig. 3.6.  A beam undergoing TIR therefore 
appears to be reflected not from the interface between the low and high index ma-
terial, but from within the high index material.  This shift has practical conse-
quences in some integrated optics devices.  
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Figure 3.6. The phase shift associated with TIR leads to a lateral shift of a re-
flected beam of finite cross section.  This shift is called the Goos-
Hänchen shift. 

3.3.3 Optical Devices Based on TIR 

Total Internal Reflection (TIR) is the basis of a variety of optical devices.  Many 
types of prisms that perform special function are based on TIR, and we will later 
use TIR for a first order explanation of optical waveguides.  The evanescent fields 
that are created as a consequence of TIR are used to advantage in numerous de-
vices, e.g. TIR spectrometers that allows spectra to be obtained in very small vol-
umes.      
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As an example of an optical MEMS device that depends on TIR, let’s briefly con-
sider the Champagne fiber switch developed by Agilent.  The basic principle is 
shown in Fig. 3.7.  The object is to switch light in one input waveguide between 
two output waveguides.   
 
The light is typically not guided in the switching region (or at least the guides are 
multimode in this region). In the off state, the light passes right through the 
waveguide crossing with little loss.  The light path has two discontinuities in this 
state; the light passes from the silica waveguide into an index match liquid and 
back into the silica.   
 
To switch the light the liquid in the switching cell is evaporated.  This changes the 
refractive index in the cell from about 1.5 (matched to the glass) to close to unity, 
i.e. a very large index shift.  By comparison, the index shift in most electrooptic 
materials never exceeds 10-4. 
 

 
 

Off-state - The TIR cell 
is filled with index-
matched liquid. 

On-state - The liquid in 
the TIR cell is 
evaporated  

In 

Out 

In 

Out 

 
Figure 3.7.  Fiber optic switch based on TIR.  In the off-state the TIR cell is 

filled with index-matched liquid, and the light is transmitted 
through the interface with very little reflection.  In the on-state, the 
liquid in the TIR cell is evaporated by resistive heaters.  This leads 
to TIR at the glass-gas interface, and virtually all the light is re-
flected.  

 
Notice the role of the Goos-Hänchen shift in the design of the champagne switch.  
The TIR interface is not placed at the intersection of the optical axes of the cross-
ing waveguides, to account for the lateral shift caused by TIR.   
 
The most significant advantage of the Champagne switch is its simplicity and 
compactness, which allow relatively large numbers (~ 1000) of switches to be in-
tegrated into moderately large switching matrices.  The drawbacks are speed, and 
the fact that each individual switching element is only capable of 1 by 2 switching, 
which means that N2 elements are needed for a N by N switch.   
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3.4 Multilayer Stacks 

Now we will expand on our plane-waves-at-an-interface model to find the reflec-
tion and transmission of layered materials with arbitrary layer thicknesses and 
parallel interfaces.  We will use an approach similar to the one we used to derive 
the Fresnel equations.  Our starting point is the reflections from a single dielectric 
film, i.e. two interfaces with a constant separation.  The incident, transmitted and 
reflected TM fields for a dielectric film are shown in Fig. 3.8.   
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Figure 3.8. Schematic of the incident, reflected, transmitted and back reflected 
components of a Transversal-Electric field (TE) plane wave inci-
dent on a dielectric film. 

 
The boundary conditions at interface I (0-1) are 

11110000 coscoscoscos θθθθ btriI EEEEE +=+=  (3.48) 

( ) ( ) 111000 coscos θθ btriI EEEEE +=+=  (3.49) 

and 

1100 btriI HHHHH −=−=  (3.50) 

 
We will continue to restrict our investigations to non-magnetic materials, so the 
magnetic and electric fields are related by 

E
k
knH ×⋅⋅=

0
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μ
ε  (3.51) 

We can rewrite the second boundary condition as 
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Similarly we have at the second boundary (1-2):  
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We now need to find the phase shift of a beam crossing a dielectric film of a given 
thickness, d, at a given angle, θ.  From Fig. 3.9 we see that the phase shift is   
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Figure 3.9. Geometry of plane wave reflected from a thin film.  The phase shift 

of the light reflected from the back of the film is equal to 2dcosθ. 

Phase delay through tilted etalon 

The result of the calculation in Fig. 3.9 is somewhat counterintuitive.  One expects 
that rotating the plate so that the beam goes a longer way would lead to a larger 

phase delay, i.e. 
θλ

π
cos

2 d⋅ , but instead we find the exact opposite ( θ
λ
π cos2 d⋅ ) 

when we also carefully consider the lateral shift of the beam.  This counter intui-
tive result has led to many embarrassing errors in optical design and analysis.  
Make sure you don’t become the next victim! 
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We then have the following relations between the waves on either side of the di-
electric film 
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and 
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Using these expressions we can write the fields at the interfaces in the following 
way  

( ) 111 cosθbtI EEE +=  (3.58) 
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We can now solve the last two equations for Et1 and Eb1 and substitute into the two 
first equations for the fields at interface I to find relationships between the fields at 
interfaces I and II.  In matrix form these relationships can be expressed as   
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where 11
0

0
1 cosθ

μ
ε nTM =Γ .  For TE (s-polarized) waves we get the same result, 

except we now replace Γ1TM with 11
0

0
1 cosθ

μ
ε ⋅=Γ nTE .   

 
This matrix formalism is conveniently extended to multi-layer systems.  We use 
the label M1 for the matrix connecting the fields on either side of film 1.  We can 
then relate the fields on either side of a stack of films by simply multiplying the 
matrices of all the films in the stack.  The fields at the front surface of a stack of p 
layers is then related to the fields at the bottom of film p in the following way 
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To see how this simple formalism can be used to find the reflection and transmis-
sion from stacks of dielectric films, we rewrite the last equation by using the 
boundary conditions on the first and last interface.  For TM (p-polarized) waves 
we find 
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where we as before have used the definition kkkTM n θ
μ
ε cos

0

0=Γ .  Solving 

these two equations in three unknowns we find the reflection and transmission ra-
tios for the electric field 
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We can apply the same procedure to TE waves to get similar expressions.  We just 
have to make the substitution  

kkTEkkkTMk nn θ
μ
εθ

μ
ε coscos

0

0
,

0

0
, ⋅=Γ→=Γ  (3.67)

3.5 Applications of Layered Structures 

The formalism we have developed can be used to calculate the reflection and 
transmission through any layered optical structure with parallel interfaces.  These 
types of stacks of multiple layers, or thin films, of different materials are techno-
logically very important with numerous applications throughout optics.  In the fol-
lowing we will show some important examples, and discuss their use in micro- 
and nano-optics. 
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3.5.1 Anti-Reflection Coatings 

First we consider the reflection from a single film at normal incidence.  Just as for 
Fresnel reflections, the reflections at normal incidence are the same for TE and 
TM waves, and it can be written 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )ndkjnnnndknnn

ndkjnnnndknnnr
⋅⋅+⋅+⋅⋅+
⋅⋅−⋅+⋅⋅−=

0
2
1200201

0
2
1200201

sincos
sincos  (3.68)

To find the reflectance we multiply r with its conjugate to obtain 

( ) ( ) ( ) ( )
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0

222
1200

22
20

2
1

0
222

1200
22

20
2
1

sincos

sincos*  (3.69)

 
For the important case that the film thickness is a quarter of a wavelength, i.e. 

2
4 0

0 π
π
λ =⋅⇔

⋅
= ndk

n
d , we find 

( )
( )22

120

22
120

nnn

nnnR
+⋅

−⋅=  (3.70) 

If the index of the film is the geometrical mean of the index of the incident me-
dium and the substrate, then the reflectance goes to zero!  In other words, a film of 

the correct thickness ⎟
⎠
⎞

⎜
⎝
⎛

⋅
=

n
d

π
λ

4
0  and correct index 201 nnn ⋅= removes reflec-

tions between an incidence medium and a substrate.  This is called a quarter-wave 
Anti-Reflection (AR) coating.   
 
Better AR coating consisting of multiple layers can be designed, but the single 
quarter-wavelength AR coating is still very much used, particularly in applications 
that cannot use traditional thin-film deposition techniques.  For example, multi-
layer thin film deposition is difficult in typical optical MEMS, because the films 
are challenging to pattern, and because the stacks typically have more built-in me-
chanical stress than can be tolerated by the MEMS structures.   
 
A simple, yet effective, technique for avoiding reflections from an air-silicon in-
terface is to apply a single silicon-nitride quarter-wave film.  The index of silicon 
in the optical-communication wavelength bands (1,200 nm to 1,600 nm) is about 
3.5, and the index of silicon nitride is about 2.0 in the same wavelength range (it 
can be adjusted to be even closer to the ideal value 87.15.31 =⋅=SiNn ).  A sin-
gle quarter-wave silicon-nitride film will then reduce the reflection at the an air-
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silicon interface from 
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3.5.2 Bragg reflectors 

The power of our formalism is that we can calculate reflections from any combi-
nation of parallel interfaces.  Let’s now use this capability to look at the reflec-
tions from a stack of films pairs of alternating high and low index as in Fig. 3.10 
that shows a reflector consisting of silicon films separated by air gaps.  Each sili-
con film and each air gap are adjusted to have an optical thickness of one quarter 
wave, i.e. their physical thickness is one quarter of the vacuum wavelength di-
vided by the index of refraction of the layer.  Such a mirror can be thought of as 
one-dimensional Photonic Crystals and are increasingly used in optical MEMS 
implementations.     
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Er0 
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nair=1 
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hair=λ0/(4nair) 

 
 

Figure 3.10. Silicon reflector consisting of alternating silicon layers and air 
gaps.  The layers and gaps are each nominally one quarter-wave 
thick at the center wavelength of interest. . 

 
The reflectance for Si-air multi-layer mirrors are shown in Figure 3.11.  We have 
chosen to plot the reflectance as a function of the wave vector, k=2π/λ, instead of 
as a function of wavelength, because it results in nice symmetric graphs as evident 
in Fig. 3.11.   
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Figure 3.11. Reflectance from a silicon-air Bragg mirror with 1 (dot-dashed), 2 
(dashed), and 3 (solid) layer pairs.  The maximum reflectance val-
ues at k=4.7636=2π/1.319 are 0.7209, 0.9737, and 0.9998 respec-
tively.   

 
Three different mirror configurations are shown; one layer pair, two pairs, and 
four pairs.  The refractive index of Silicon is assumed to be 3.5, and the thickness 
of each layer is chosen to be a quarter of a wavelength at 1.319 nm wavelength, 
which is the absorption minimum of Silicon.    
 
Bragg mirrors consisting of only a few layers have quite high reflectivity.  The 
maximum reflectances are larger than 0.9998 for four film pairs, 0.9737 for two 
pairs, and 0.7209 for a single pair.  We observe that the side lobes of the reflec-
tance spectra vary more rapidly with wave vector variations as the total mirror 
thickness increases.  This inverse relationship between physical thickness and pe-
riodicity in wave-vector or wave-length space is something we will see many ex-
amples of and come to expect as a general rule.  
 
Viewed as a filter, the four-layer-pair Bragg mirror has a flat pass-band and sharp 
transition bands between the pass band and the rejection bands.  These desirable 
characteristics are somewhat offset by the side lobes that in this example are unac-
ceptably large for most filter applications.  These side lobes can, however, be re-
duced by more sophisticated layer design that creates a softer transition into the 
high-reflectivity region of the filter.  Such “edge-softening” or “appodization” 
techniques are used in many optical devices to avoid just the type of “ringing” rep-
resented by the side lobes of the reflectance spectra of the high-reflectivity mirrors 
of Fig. 3.11. 

3.5.3 Photon Tunneling 

The reflections from a thin, low-index film provide a vivid example of the impor-
tance of evanescent fields.  Consider the structure shown in Fig. 3.12.  Here we 

k=2π/λ 

R=r2 
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have plane wave incident on a thin glass film between two thicker layers of sili-
con.   
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Figure 3.12. Structure that demonstrates photon tunneling.  If the glass film is 
thick, then total internal reflection will guarantee that the reflection 
is unity beyond the TIR critical angle.  In a film of finite thickness, 
the evanescent fields enable transmission of energy across the film 
and the reflection is reduced.  

 
We expect based on our earlier observation of Total Internal Reflections that be-
yond the critical TIR angle all the energy of the incident wave will be reflected 
from the silicon-glass interface.  Complete reflection beyond the TIR critical angle 
would indeed be the result if the film was infinitely thick, but with a thin film, we 
observe that there is transmission at all incident angle up to π/2!  This is shown in 
Fig. 3.13 that shows reflection as a function of incident angle at 1.319 um wave-
length for glass-film thicknesses of 2 um, 0.2 um, and 0.05 um.   
 
The reflection from the 2 um film is roughly what we expect, even though the 
transition to unity reflection at the TIR critical angle is not as sharp as it would be 
for an infinitely thick film.  The thinner films, however, clearly show that there is 
substantial transmission through the thin glass film beyond the critical TIR angle.   
 
The finite thickness of the film also gives rise to interference fringes that can be 
observed for angles less than the TIR critical angle.  When the film thickness in-
creases, the interference fringes will as expected be more densely placed in angle 
space.  Any finite film would show interference fringes, but an infinitely thick 
film would not, because there would be no second glass-silicon interface to pro-
vide interfering waves.    
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Figure 3.13. Reflection vs. incident angle of 1.319 um wavelength plane waves 
from a silicon-glass-silicon tunneling structure.  The thicknesses of 
the glass layers are 2 um (solid), 0.2 um (dot-dashed) and 0.05 um 
(dashed).  As the glass layer thickness is reduced, the evanescent 
fields in the glass facilitate photon tunneling that reduces the re-
flectivity to less than unity even beyond the TIR critical angle.   

 
The explanation of the reduced reflectivity of the thin glass films is that the eva-
nescent fields allow energy to flow across the film and to propagate away from the 
second interface as a plane wave in the silicon beyond the film.  This type of 
transmission by evanescent waves over short distances, called tunneling, is util-
ized in many important optical devices, including fiber-optic directional couplers, 
Near-field Scanning Optical Microscopes (NSOMs), and photon tunneling sensors 
that we will discuss later.     

3.5.4 Surface Plasmons 

So far we have used the Fresnel reflections and their extensions to multi-layer 
structures with real values for the dielectric constants.  There is, however, nothing 
in the formalism that forbids complex dielectric constants.  In fact, the formulae 
that we have derived for reflectivity and transmission are all valid for interfaces 
and layered structures involving absorptive materials that must be described by 
complex dielectric constants.   
 
As an example of a complex dielectric constant, consider the structure shown in 
Fig. 3.14.  It is similar to the tunneling structure of Fig. 3.12, except that the bot-
tom Si substrate is replaced by a gold layer.  Other metals, e.g. silver or aluminum 
could be used instead, but gold is most often the choice in practical applications of 
surface plasmons because it has better optical properties in the near-infrared than 
aluminum and it is technologically superior to silver from a manufacturing point 
of view.  Gold also has the advantage of being the substrate-material of choice for 
the preparation of a vast array of biological thin films. 
 

R=r2
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The dielectric constant of gold at near-infrared wavelengths is negative and it has 
an imaginary part that signifies the fact the gold absorbs electromagnetic energy at 
these wavelengths.  Specifically we have that gold at 1.319 um wavelength has a 
dielectric constant of -70.72-j7.06 [1].  The negative imaginary constant is due to 
our choice of signs in the description of plane waves.  We chose to write plane 
waves in the form ( )kztExE −⋅⋅= ωcos0 .  We could equally well have changed 
the signs of the argument in the co-sine function.  The consequence would have 
been that we would have to also change the sign of the imaginary part of the di-
electric constant of gold.  This subtlety is important to keep in mind when looking 
up values for the dielectric constant of materials. 
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Figure 3.14. Schematic of the incident, reflected, transmitted and back reflected 
components of a Transversal-Magnetic field (TM) plane wave inci-
dent on a dielectric film bounded by a gold layer. 

 
Figure 3.15 shows the reflectance from the Si-Glass-Au interface stack when the 
glass-film thickness is set to 1.365 um.  The left-hand graph in the figure shows 
the reflectance at all angles of incidence from zero to π/2.  It reveals that there is a 
very sharp reflectance minimum at one specific incident angle.  The close up of 
the reflectance minimum in the right-hand graph shows that it occurs at an inci-
dent angle of ~ 0.45, which is beyond the critical TIR angle for the Si-Glass inter-
face!   
 
The explanation of the sharp and deep reflectance minimum is that the incident 
field tunnels through the glass film and couples to a Surface-Plasmon on the 
Glass-Au interface.  This phenomenon is called Attenuated Total Internal Refec-
tion (ATIR).  Coupling of the incident field to the surface Plasmon can only hap-
pen at the incident angle that allows the incident field and the surface plasmon to 
match wave vectors along the interface (phase match).  Notice that this requires 
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that the electric field is in the plane of incidence, so, unlike photon tunneling that 
works for both TE and TM waves, only TM waves can couple to surface plas-
mons.  To get a reflectance minimum that approaches zero as in Fig. 3.15, the 
glass film thickness must be carefully chosen such that the coupling of the inci-
dent field to the surface plasmon is exactly equal to the absorption in the gold film 
(impedance match).         
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Figure 3.15. Reflectance vs. incident angle of 1.319 um light from a Si-Glass-Au 
structure, in which the thickness is optimized for coupling the inci-
dent plane wave to the Surface Plasmon on the Glass-Au interface.     

3.6 Summary of Plane Waves 

This chapter is in its entirety devoted to the study of how plane waves behave 
when they are incident on an interface or set of interfaces.  Plane waves are 
mathematical structures that cannot be physically implemented with perfect accu-
racy, but are still useful models for free-space propagation of optical fields.  Using 
the simple concept of phase continuity of planes waves at an interface, we were 
able to derive the Laws of Reflection and Refraction that form the basis of geo-
metrical optics.  The same principle of phase continuity also gave us the Fresnel-
reflection formulas that led to descriptions of several very important optical phe-
nomena, including Brewster angle, evanescent fields, Total-Internal-Reflection, 
and Goos-Hänchen shifts.  Finally, we extended the Fresnel formulas to multilayer 
stacks and used them to demonstrate the existence of Anti-Reflection coatings, 
Bragg mirrors, photon tunneling, and surface plasmons.   
 
The most important mathematical formulas that we derived in this chapter are 
summarized here. 

Law of reflection:  ri θθ sinsin =  (3.71) 

 

Snell’s law of refraction:  rtii nn θθ sinsin ⋅=⋅  (3.72) 

R=r2 R=r2
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Fresnel Equations  

Transmission and reflection for s-polarized waves (E-field polarized perpendicular 
to the plane of incidence):: 
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Fresnel Equations for p-polarized waves (E-field polarized in the plane of inci-
dence): 
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Brewster angle:  
i

t
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Critical Angle for Total Internal Reflection (TIR): ⎟⎟
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The phase shift associated with TIR appears to correspond to an offset between 
the incident and reflecting planes. 

Multilayer Stacks 

The following matrix formulation can be used to calculate reflection and transmis-
sion from any combination of parallel interfaces. 
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This formalism can be used to calculate the reflection and transmission through 
many important optical devices including Anti-Reflection coatings, Bragg filters, 
photon tunneling structures, and Surface Plasmon couplers. 

Further Reading 

E. Hecht, “Optics (4th Edition)”, Addison-Wesley, 2002. 

Exercises 

Problem 3.1 - Phase shift through a glass slide 

In the optics laboratory it is often useful to create a phase delay in an optical beam 
by letting it pass through a microscope cover slip (glass plate) as shown below.  
You can adjust the amount of phase delay the beam sees by changing the angle be-
tween the optical axis and the surface normal of the cover slip.   
 
Prove that the phase shift of the part of the beam that passes through the glass rela-
tive to the other part of the beam is given by: 

 ( ) ( )[ ]φφ
λ
πθ coscos2 −⋅⋅= inh  

where  h is the thickness of the cover slip 
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 n is the index of the glass 
 λ is the wavelength of the light 
 φ is the angle between the surface normal of the cover slip and the optical 
axis 
 φi is the angle of the optical beam inside the glass, i.e. sinφ=n·sinφi.  
 

 Glass slide that covers 
part of the optical beam 

Optical beam 

φ 

 
 

Geometry of set-up for modulating the phase front of an optical beam. 
 

Problem 3.2 – Waves at an interface 

Consider the figure below that shows a TM-polarized plane wave incident on an 
interface between dielectrics with refractive indices of 1.5 and 1.4.   
 

 

n=1.5

n=1.4

 
Figure 1: TM Plane wave incident on dielectric interface. 

 
a) Graph the amplitude and phase of the reflection of the field as a 

function of incident angle for the TM wave.  Calculate the Brew-
ster angle and the critical angle for TIR, and indicate their posi-
tions in the graph. 

 
The structure is changed so that there is only a thin film of the low-index material 
(Fig. 2).   
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Figure 2 TM plane wave incident on low-index film. 

 
b) Explain conceptually how the reflectivity changes as a function of 

the thickness, h, of the low-index film. 
 

Problem 3.3 – Brewster angle 

The figure shows a plot of the absolute value of the reflection of the electric field 
from an air-dielectric interface.   
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a) What is the polarization of the incident wave?  Explain. 
b) What is the index of the dielectric? 

Problem 3.4 - Reflections from an interface  

Calculate the output angle of the light after passing through the 8 layers of the 
structure below. 
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Problem 3.5 – Total Internal Reflection 

Explain the concept of total-internal-reflection using the wave description of light. 

Problem 3.6 – Waves at an interface: 

Consider the air-dielectric interface with an incident plane wave shown below.  
The incident angle is 45 degrees and the index of the dielectric is nt=2.5≈1.4142. 
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a) What is the direction of the propagation vector, tk , in the dielec-
tric? 

b) What is the direction of the magnetic field, tH , in the dielectric? 
c) What is the direction of the electric field, tE , in the dielectric? 
d) The same dielectric plate is used to make a prism as shown in Fig. 

1.2.  The incident angle is again 45 degrees.  Using the ray model, 
draw all beams that are created by transmission and reflection of 
the incident ray.  Note that the right surface of the prism has an 
anti-reflection (AR) coating.  

 

 
 

Problem 3.7 - Champagne switch 

Design a Champagne fiber optic switch based on TIR.  Assume that the effective 
index of the waveguides is 1.5, that the index of the evaporated gas is 1, and that a 
cross-talk between channels of less than –40dB is required.  Use the formulas for 
plane waves to calculate reflection and transmission.   

a) Choose values for the parameters θ, t, and h (defined in the figure) 
that will fulfill the requirements for the switch. Explain your 
choices and reasoning. 

b) How closely must the index of the liquid match the index of the 
waveguides? 
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Problem 3.8 – Surface Plasmons 

Calculate and plot the TM reflectance from the interface in the figure below as a 
function of incident angle at 1.319 micron wavelength.  The relative dielectric 
constant are: 12.295, 2.66 and –70.72-j7.06 for silicon, the dielectric and gold re-
spectively at 1.319 micron wavelength.   
 
What is the explanation for the sharp dip in reflectance at approximately 0.5 radi-
ans? 
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Problem 3.9 – Excitation of surface plasmons 

In the preceding problem you calculated and plotted the TM reflectance from the 
interface in the figure above as a function of incident angle using the following pa-
rameters: λ=1.319 micron, εsilicon=12.295, εdielectric=2.66, εAu = –70.72-j7.06, and 
found a sharp dip in reflectance at approximately 0.5 radians.  Now assume that 
the silicon is a flat wafer or chip with parallel surfaces.   
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a) Can you design a film or stack of films that allow you to get the 
light into the silicon at the angle that allow you to observe the re-
flectance dip? 

b) If you can, show an example of such a film or stack of films.  If 
you cannot, design another optical system that will allow the light 
to get in at the right angle. 

Problem 3.10 – Light Emitting Diodes 

One of the problems with Light Emitting Diodes (LEDs) is that most of the light 
that is generated cannot escape from the semiconductor material.  Assume that we 
can model an LED as a cube of semiconductor material with a refractive index of 
3.5, and that the light is generated at the center of the cube.   
 

a) Calculate approximately what percentage of the light that will be 
able to escape the LED.   

b) c) Explain why laser light does not suffer from the same in-
ability to escape the semiconductor material as light generated in 
an LED. 

Problem 3.11 – Polarized laser light 

The figure shows a typical He-Ne laser laser consisting of a gas-filled glass tube 
and external mirrors.  Notice the angled facets of the gas tube.   
 
What is the polarization of the laser light?  Explain. 
 

HeNe -gas
Laser
output  
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4: Diffraction and Gaussian Beams 

4.1 Introduction to Diffraction and Gaussian Beams 

The plane waves we have studied in Chapters 2 and 3 are useful models that give 
insight into the operation and design of many optical devices.  The mathematical 
description shows, however, that plane waves are not physically realizable, be-
cause if the wave has finite energy in any cross section, then the total energy is in-
finite.  In practice we can create good approximations to plane waves, but we 
know from energy conservation arguments presented in Chapter 2 that any physi-
cally realizable beam cannot propagate in a homogeneous medium without dif-
fraction.   
 
Many important optical systems can be modeled without consideration of diffrac-
tion.  This is particularly true for large-aperture systems like cameras and lithog-
raphy tools.  Microoptical devices, however, cannot be understood without wave 
diffraction, and in most cases, diffraction is the effect that limits miniaturization.  
In this Chapter we’ll focus on Gaussian beam propagation as tools to model and 
develop intuitive understanding of diffraction phenomena.    
 
There are many reasons to choose Gaussian beams as the starting point for the 
study of diffraction.  First, Gaussian-beam theory provides a convenient mathe-
matical formalism that allows closed-form solutions, or approximate solutions, to 
many diffraction problems.  The simplicity of the Gaussian formalism has lead to 
its use in modeling of dispersion of (temporal) Gaussian pulses.  The fundamental 
Gaussian is also a very good model for real modes on single-mode waveguides 
and for output modes of many important lasers.  This is very useful for deriving 
closed-form expressions for mode-coupling phenomena.   
 
A more fundamental reason for studying Gaussian beams is that they represent 
electromagnetic waves with minimum uncertainty, i.e. the product of the beam 
sizes in real space and wave-vector space is the theoretical minimum (in perfect 
analogy to Heisenberg’s uncertainty principle in Quantum Mechanics).  This 
means that the 0th-order, or fundamental, Gaussian has less diffraction than any 
other optical fields of the same size.  The fundamental Gaussian therefore estab-
lishes a lower limit for diffraction of real optical beams.   
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Finally, although the Gaussian beam is an approximate solution to the wave equa-
tion, we find that most major physical predictions come out correctly, so Gaussian 
beam theory establishes the correct physical understanding of diffraction. 

4.2 Paraxial Wave Equation 

Gaussian beams are paraxial approximations to the wave equation.  This means 
that they are good approximations for light “beams”, i.e. optical waves that have a 
well-defined direction of propagation, along which the variation of the beam cross 
section is relatively slow (a more precise formulation will follow).   
 
To derive the Gaussian beam equations we solve the paraxial wave equation.  
Consider a monochromatic optical field in the following form 

( ) ( ) tjezyxEtzyxE ω,,,,, 0=  (4.1) 

The spatial part must be a solution to the equation 

( ) ( ) 0,,0
22 =+∇ zyxEk  (4.2) 

We now assume that the light is propagating in the z-direction with only a slow 
variation of its envelope.  In other words, we express the field as the product of an 
envelope with a slow z-dependence and a phase term with a rapid z-variation 

( ) ( ) [ ]jkzzyxuzyxE −= exp,,,,0  (4.3) 

 
When we insert this formulation of the optical field in the wave equation, we will 
assume that the term ∂2u/∂2z can be neglected.  This is the paraxial approximation, 
resulting in the paraxial wave equation 
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The paraxial wave equation 

022

2

2

2
=

∂
∂−

∂
∂+

∂
∂

z
ujku

yx
 (4.6) 

has the solution 
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where P(z) is a complex phase shift and q(z) is a complex beam parameter associ-
ated with beam propagation.   

4.2.1 The Fundamental Gaussian Profile 

We now insert the above solution into the paraxial wave equation and compare 
terms in equal powers in r to get 
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In the next section, we will use the first of these equations to find the phase of the 
Gaussian Beam.  The second equation relates the complex beam parameter in one 
plane (1) to another (2) separated by z.  We express this complex beam parameter 
in terms of two real beam parameters
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With this definition of the beam parameter, the envelope f the Gaussian beam can 
be written  
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This expression shows that R is the radius of curvature of the wavefront of the 
propagating beam, and ω is the beam radius (1/e for the field).   
 
The field envelope is shown graphically in Fig. 4.1.  It has a symmetric bell shape 
with rapidly decreasing field as a function of distance from the center.  The fact 
that it has infinite extent, i.e. the field does not completely vanish for any values of 
r, means that Gaussian Beams, like plane waves, cannot be perfectly reproduced 
in practical experiments.   
 
Unlike plane waves, however, Gaussian Beams can be truncated and still behave 
very much like perfect Gaussians.  Later we will study truncated Gaussians and 
find that centered apertures with a diameter larger than 3ω have relatively minor 
effects on Gaussian Beam propagation.    
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Figure 4.1 Fundamental Gaussian beam profile. 

4.2.2 Beam Waist 

The Gaussian beam narrows to a minimum radius, ω0, called the beam waist.  The 
expressions for the fundamental Gaussian beam become particularly simple when 
written in terms of ω0 with z measured from the waist.  At the waist, the beam pa-
rameter is purely imaginary   
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With the origin of the z-axis at the waist we have 
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Using this expression with the definition of the complex beam parameter (Eq. 
4.10), we find the beam radius and curvature as a function of z (where z is now the 
distance from the beam waist)    
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These expressions show how the fundamental Gaussian changes as a function of 
propagation distance, z.   
 
The factor P in the expression for the Gaussian mode can now be calculated 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
−⎥

⎦

⎤
⎢
⎣

⎡
=⇒

+⋅
−=−=

∂
∂

2
00

2
0

arctanln
ωπ
λ

ω
ω

λ
ωπ

zjjP
zj

j
q
jP

z
 (4.16)

The real part of this expression is simply a renormalization accounting for the fact 
that the beam is diverging as a function of z, while the imaginary part shows that 
the Gaussian beam accumulates an extra phase shift (compared to a plane wave) 
when propagating.   
 
Using these established relationships, the fundamental Gaussian beam can be ex-
pressed 
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where 
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This last term quantifies the “extra” phase that the fundamental Gaussian beam 
accumulate compared to a plane wave.  The functional dependence on propagation 
distance shows that this extra phase shift, called Gouy phase, is concentrated 
around the focus of the beam, and that it only contributes a total phase of π radi-
ans.  For most calculations we can therefore assume that a Gaussian beam accu-
mulates phase in the same fashion a plane way.   
 
Another important concept is the Rayleigh range, which is defined as the distance 
from the waist to the point where the beam radius has increased by 2 . 
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The confocal parameter is defined as twice the Rayleigh length.   
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The Rayleigh length can be though of as the length of the “collimated” section of 
a Gaussian beam.  This might seem like an arbitrary choice, but we will find that a 
remarkable number of widely different miniaturized optical systems are optimized 
when we chose to separate focusing elements by the Rayleigh length of the propa-
gating Gaussian beam.    
 
Finally it is useful to define a far-field diffraction angle for the Gaussian beam 
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In this definition we have made the choice that angular extent is defined by the 
beam radius ω(z).  This is of course completely arbitrary.  When we discuss de-
sign of scanning Optical MEMS, we will introduce application-dependent criteria 
for Gaussian-beam widths that give far-field diffraction angles that are propor-
tional to (same dependence on ω0 and λ), but numerically different from the one 
defined here.  
 
The parameters of Gaussian-beam propagation are illustrated in Fig. 4.2.  The 
main concept is simply that any beam of any cross-sectional phase and amplitude 
distribution, has a converging regime, a focus, and a diverging regime.  The fun-
damental Gaussian has the smallest possible waist-angle product of λ/π.    
 

ω0 

20.5 ω0zR R

θ

 
Fig. 4.2 Illustration of the propagation of a fundamental Gaussian beam. 

 

4.2.3 Higher Order Gaussian Modes 

The fundamental Gaussian is the most important solution to the paraxial wave 
equation, but it is by no means the only one.  To find further solutions, we will try 
the following expressions  
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Substituting this into the paraxial wave equation, we find the following equation 
for the functions Hl,m. 
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This is the defining equation for the Hermite-Gaussian mode of order m,l.  (If we 
wrote the paraxial equation in cylindrical coordinates, we would find the equation 
for the Laguerre-Gaussian functions).  Some of the lower-order Hermite-
Gaussians are summarized below 
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The slowly-varying envelope of a Hermite-Gaussian mode of order m,l can then 
be expressed similarly to the fundamental Gaussian 
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Here the beam radius and radius of curvature are defined exactly as for the funda-

mental, i.e. we have ( )2
0 1)( Rzzz += ωω  and zzzzR R

2)( +=  as before.  The 

Rayleigh length is also defined as for the fundamental; λπω2
0=Rz .   

 
The intensity profiles of some of the low-order Hermite-Gaussian are shown in 
Fig. 4.3. 
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Figure 4.3 Intensity profiles of Gaussian TEM10, TEM20, TEM30, and TEM33 
modes. 

 
The higher-order Hermite-Gaussians functions are different from the fundamental 
in that they accumulate phase differently through focus.  The Gouy phase of an 
Hermite Gaussian function of order m,l can be written 
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This is the only parameter that depends on the mode numbers, m,l.  This through-
focus phase shift is important in establishing the resonance frequency in optical 
resonators, but, as for the fundamental Gaussian, it can most often be ignored in 
system designs that support freely propagating beams.   
 
We conclude that the propagation of the higher-order Hermite Gaussians is very 
similar to the propagation of the fundamental.  Higher-order modes occupy larger 
areas for a given beam radius, because the basic exponential function is multiplied 
by a higher order polynomial, but all Hermite-Gaussian modes propagate accord-
ing to the same simple rule ( zqq += 12 ), and all are described by the same two 
basic parameters; beam radius and radius of curvature.  Only their transversal field 
distributions and their Gouy phase shifts are different.  This is illustrated in Fig. 
4.4 that shows the the propagation of the 1,0 Hermite-Gaussian mode. 
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Figure 4.4 Propagation of first order Hermite-Gaussian mode. 

 
The Hermite-Gaussian modes form a complete, orthogonal set of functions, so an 
arbitrary optical field can be expanded on the Hermite-Gaussians.  A general dif-
fraction problem, i.e. one where we want to compute the shape of an arbitrary 
field distribution as it propagates over a certain distance, can therefore be solved 
by writing an arbitrary field distribution as a sum of Gaussians, calculate the 
propagation of each of the individual Gaussian modes, and re-sum.  The different 
Gouy phase shifts must be taken into account when propagating and summing sets 
of Hermite-Gaussian modes.   
 
This method is conceptually appealing, but computationally inefficient due to the 
large number of Gaussian modes needed to represent complex beam profiles.  The 
most common use of Gaussian is therefore (1) as a conceptual tool, and (2) for de-
tailed calculations of propagation of simple beams (i.e. beams that are close ap-
proximations to Gaussians).  We will use Gaussian beam propagation extensively 
for both these purposes.   

4.3 Gaussian Beam Transformation in Lenses 

To analyze optical systems, we need to understand how Gaussians are affected by 
lenses.  Together with the simple law of Gaussian Beam propagation found above, 
this will give us the tools needed to model a large number of practical systems.   
 
An ideal lens does not change the transverse distribution of an optical field, so a 
Gaussian Beam will remain in the same order after passing through a lens.  The 
radius of curvature, R(z), and the beam radius,ω(z), will in general change when 
passing through a thick lens consisting of two diffracting surfaces separated by a 
significant propagation distance .   
 
In a thin lens, which we can think of as two diffracting surfaces in the same plane, 
only R(z) changes.  The beam radius does not change, because there is no propaga-
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tion distance over which a change can take place.  When considering Gaussian 
beam propagation through systems of lenses, we therefore typically treat thick 
lenses as a combination of thin lenses separated by regions of unguided propaga-
tion.  To see how this is done, consider propagation of a fundamental Gaussian 
beam through a thin lens as shown in Fig. 4.5.  
 

R1 R2 

q1 

q2 q3 

q4 
d1 d2 

 
Figure 4.5 Propagation of a Gaussian beam through a thin lens. 

 
The beam propagates from z1, where it is characterized by the beam parameter q1, 
to the lens at position z2, according to the propagation law 

zqq += 21  (4.29) 

To understand how a thin lens changes the radius of curvature of an optical, con-
sider the geometrical-optics lens law  

fdd
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where f is the focal length and d1,2 are defined in Fig. 4.5.   
 
Comparing Gaussian and geometrical optics, we have that d1 = R1, and d2 = -R2, 
so  
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This expression can be considered the definition of a thin lens.  We know that a 
thin lens does not change the beam radius, so we can rewrite this equation in terms 
of the Gaussian beam parameter 

fqq
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=−  (4.32) 

Repeated applications of this lens law and the propagation law for Gaussian 
Beams allow us to find the transformation of the beam through any system of op-
tical elements.   
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Referring back to Fig. 4.5, we have for the beam parameter at the left side of the 
lens  

112 dqq +=  (4.33) 

The lens changes this into 
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Finally we have for the beam waist at the distance d2 from the lens 
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4.3.1 Focusing and Collimation of Gaussian Beams 

We will now use the expressions we have derived for the beam parameter in a lens 
system to investigate focusing of Gaussian beams.  We assume that the incoming 
wavefront on the lens is flat (R1=∞), i.e. we are considering the special case of 
d1=0 (i.e. position 1 and 2 are the same), as shown in Fig. 4.6.   
 

Flat wavefront at the lens 

ω01 
ω04 

d2 

 
 

Figure 4.6 Illustration of focusing of a Gaussian beam by a lens.  The beam 
has a waist (flat wave front) at the lens.  If the curvature is finite at 
the lens, it can be accounted for by defining an effective focal 
length of the lens (see text). 

 
The expression we just found for the beam parameter to the right of the lens then 
simplifies to 
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In this expression we used the ABCD matrix notation (se Appendix A) for a lens 
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The assumption that the input beam has its waist at the lens is not as restrictive as 
it may seem, because if the wavefront has finite curvature at the lens, we may 
simply incorporate that curvature into an effective focal length, feff, given by  
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With a flat wavefront at the lens, the equations for the beam parameter at the waist 
at the left simplifies to  
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so that we can write 
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At the waist, the complex beam parameter is purely imaginary, so we find 2d  by 
requiring the real part to be zero 
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We see that the distance, 2d , to the waist is always less than f, and it has a maxi-
mum value given by:
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The beam waist can never be further away from the lens than half the Rayleigh 
length of the beam at the lens.  This occurs when the focal length equals the 
Rayleigh length.   
 
The Gaussian beam parameter is purely imaginary at the focus.  Using this fact, 
we find that the beam waist at the focus is given by 
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From this equation we see that the beam radius at the focus increases asymptoti-
cally towards the beam radius at the lens with increasing focal length.  For very 
short focal lengths, the beam radius becomes  
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In this limit the paraxial approximation breaks down, because f<<zR1 implies that 
the optical field is converging at a large angle.  We will see, however, that Gaus-
sian Beam theory correctly predicts beam behavior even in this limit.   
 
The formulas we have found for the distance-to-focus and beam radius are plotted 
in Fig. 4.7.  We see that focusing and collimation of Gaussian beams can be sum-
marized as follows:   
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Figure 4.7 Plots of distance-to-focus (solid) and beam radius (dashed) of a 
Gaussian beam focused by a lens.  The parameters are normalized 
to the Rayleigh length and plotted as functions of the focal length 
also normalized to the Rayleigh length. 

 
The third of these regimes, described by Eq. 4.48, is not particularly interesting.  It 
simply says that if the focal length of the lens is long compared to the Rayleigh 
length, then the lens doesn’t do much; the beam-waist radius is unchanged and ap-
pears very close to the lens.  This is what we would expect from a weak lens.  The 
two other cases, on the other hand, have important consequences for miniaturiza-
tion of optics, so we’ll study each in some detail.   

4.4 Resolution of a Lens 

The resolution, or point-spread-function, of a lens is the size of the image that lens 
creates when the object is a mathematical point.  In general, it will depend on the 
imaging condition.  Most often we consider the imaging of a point at infinity so 
that the incident light on the lens has a flat wavefront and the image is formed in 
the focal plane as indicated in Fig. 4.8.  The figure explicitly shows the finite aper-
ture of the lens, and defines the two most important characteristic lens parameters; 
the focal length, f, and the lens-aperture diameter, D.  The ratio f/D is called the f-
number of the lens.   
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Figure 4.8 Schematics of a perfect lens that according to the Geometrical Op-
tics model will focus parallel input rays to a single point in the fo-
cal plane.  The most important lens parameters are the focal length, 
f, and the aperture diameter, D. 

 
In Geometrical Optics, the size of the image is simply determined by the quality of 
the lens.  If the lens is designed and manufactured perfectly, then Geometrical Op-
tics predicts that the image is a point in the focal plane.  It follows that a larger 
lens would create a less well-defined point image, because a larger lens surface 
would have more imperfections that a smaller one.  This loss of resolution with 
increasing aperture is what we observe in many practical systems, e.g. cameras 
that are limited by lens imperfections in the range of apertures that are typically 
used. 
 
In optical microsystems the situation is the opposite.  The limited apertures re-
quired by miniaturization increases diffraction to the point where it typically 
dominates over the effects of lens imperfections.  To understand the effect of the 
lens aperture on resolution, consider the formula we have derived for the Gaus-
sian-waist radius created by a lens in the limit of short focal lengths 
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To proceed we must relate the beam diameter at the lens to the lens diameter.  We 
will see shortly that if the aperture equals three times the beam radius, then the 
beam truncated by the aperture will behave as a Gaussian beam for practical pur-
pose, so we set D=3ωlens.  Likewise we say that the image diameter is three times 
the image beam radius.  The image beam diameter created by a strong lens (short 
focal length) can then be expressed  
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In contrast to the predictions made by Geometrical Optics, we have found that the 
point-spread function or resolution of a lens is of finite extent as shown in Fig. 4.9.  
The size of the focus is fundamentally limited by the f-number and the wave-
length.  The inverse dependence of focal-spot size on lens diameter is of course a 
challenge for designers of optical microsystems that ideally would have both small 
apertures and small spot sizes.  
 

In reality, diffraction limits the 
focusing ability of the lens 

In the ray-optics (geometrical-optics) 
approximation, the focus is a point 

 
 

Figure 4.9 Geometrical Optics predicts that a perfect lens can focus parallel 
input rays to a single point in the focal plane.  Gaussian-Beam the-
ory predicts that the focus will have a beam radius 

( )lensfocus f πωλω = .   

 
Our expression for the Gaussian beam diameter created by a lens is very close to 

the classical expression ⎟
⎠
⎞

⎜
⎝
⎛ ⋅⋅= = λ

D
frd AiryAiry 4.42  found for the diameter of the 

Airy disc, which is the central lobe of the diffraction-limited pattern created by a 
homogeneously illuminated lens [1].  The main source of numerical discrepancy 
between the two expressions is simply the differences in the definitions of the di-
ameters.  The correspondence of the formulae we have derived and the result of 
classical diffraction calculations show that the paraxial Gaussian theory correctly 
predicts lens focusing even in the non-paraxial, large convergence-angle limit.  

4.4.1 Focusing into High-Index Media 

The fact that the spot size created by a lens is directly proportional to the wave-
length makes short wavelength sources the preferred solution for critical imaging 
and data storage applications.  That has driven the development of short-
wavelenght sources for optical lithography and for optical-disk (CDs and DVDs) 
readers.  Another way to shorten the wavelength is to use a high index medium.  
All the formulas we have derived for Gaussian beams are perfectly valid for 
propagation in any uniform optical medium as long as we use the wavelength in 
the medium in the expressions.  The possibility of achieving smaller spot sizes in-
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side high-index optical media therefore motivates us to consider Gaussian Beam 
propagation across a dielectric interface. 
 

 

Converging 
beam 

Beam 
focus

Lossless 
dielectric 

 
 

Figure 4.10. A converging Gaussian beam crossing a vacuum-dielectric inter-
face creating a focus the high-index, lossless dielectric material.  
We find that the beam focus is the same as the one the converging 
beam would create without the presence of the dielectric.  

 
Consider a Gaussian beam crossing the planar interface between vacuum and an 
optical material of index n at normal incidence as shown in Fig. 4.10.  The con-
verging beam comes to a focus within the dielectric.  The beam radius does not 
change at the interface, but the radius of curvature increases due to refraction as il-
lustrated in Fig. 4.11.  Using Snell’s law we can write  
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In this paraxial limit, this simplifies to  

1
1

2
2 R

n
nR =  (4.52) 

The radius of curvature increases by the ratio of the indexes at the dielectric inter-
face. 



4: Diffraction and Gaussian Beams            93 

R1 

R2

z=0 z1 z2

ω1=ω2=ω 

n1 n2 

 
Figure 4.11. The radius of curvature of a Gaussian beam at a dielectric inter-

face increases by a factor equal to the ratio of the indexes. 
 
To understand how this change in radius of curvature affects the beam radius at 

the focus, we combine the definition of the beam parameter ⎟⎟
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With the dielectric in place the beam radius changes to 
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The interface does not change the beam radius at focus!  If, on the other hand, we 
use the same approach to solve for the distance from the interface to the focus 
with and without the high-index material, we find that that the distance to the fo-
cus increases by the index ratio.  The normal-incidence crossing of a dielectric 
planar interface therefore moves the focus further along the optical axis, but it 
does not reduce the beam radius at the waist. 
 



94      Photonic Microsystems 

 Converging 
beam 

Beam 
focus 

Lossless 
dielectric

The beam focus 
is unchanged 

 
(a)    (b) 

 
Figure 4.12. (a) A converging optical beam creates a well-defined focus in air.  

(b)  If a high-index, lossless dielectric material is inserted in the 
beam pathwith a planar surface perpendicular to the optical axis, 
then the beam focus moves, but its beam radius does not change. 

 
This result has important consequences for optical microscopy and lithography.  It 
says that we cannot use the wavelength reduction of high-index materials to im-
prove optical resolution by simply focusing the light into the material through a 
planar interface.  On the other hand it is well known, and of great practical utility, 
that a lens that is part of the high-index material, or that is placed directly in con-
tact with it (immersion lens), will lead to a reduced beam focus as illustrated in 
Fig. 4.13.   
 

 

Index-matching 
fluid

 
a   b   c 

 
Figure 4.13. The shorter wavelength of high-index materials does not lead to a 

reduction of the focus if the focusing lens is placed away from the 
high index medium (a).  If on the other hand, the lens is part of the 
high index material (b), or placed in contact with it (immersion 
lens, c) then the focus beam radius is reduced and better optical 
resolution is achieved.  

 
The fact that a converging beam will not focus to a smaller spot if it crosses a di-
electric interface can also be deduced from the energy-conservation argument we 
developed in Chapter 2.  Consider a Gedanken experiment in which we have a 
beam that runs parallel to the original converging beam, but with a small offset 
such that the two beams have a finite cross energy.  Now it becomes obvious that 
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although the position of the foci can change, their size cannot, because it would 
lead to a change in the cross energy.  This argument does not hold if the dielectric 
surface is not planar, because then the two beams (the real and the Gedanken 
beams) are no longer identical and parallel inside the dielectric, so even though the 
cross energy must still remain unchanged, that does not imply that the beam foci 
are unchanged.   

4.5 Projecting Gaussian Beams 

We have seen that the Gaussian-beam theory sets fundamental limits on how 
tightly we can focus an optical beam.  Equally important for design and operation 
of optical microsystems is the fact that an optical beam cannot be perfectly colli-
mated, but instead will converge to a focus before diverging.  Consider the dis-
tance from a lens to its focus    
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λ
ωπ
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ωπ 22 2 focuslensf

⋅
=⋅=  as demonstrated in Chapter 4.3.  This maximum value 

can be thought of as the collimated distance of the Gaussian beam.  It limits the 
distance between focusing elements for a beam of a given beam radius, and its 
square dependence on the beam radius represents a challenge for designers of op-
tical microsystems.   
 

 2d 

2ωlens 

2ωfocus 

 
 

Figure 4.14. A standard problem in optical MEMS design is to design a lens sys-
tem that maximizes the distance between the lenses for a given lens 
aperture.   

 
To begin to understand the design tradeoffs, consider the situation shown in Fig. 
4.14.  The problem here is to design a lens system such that the propagation dis-
tance between the lenses is as long as possible given the aperture of the lenses.  
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This is equivalent to minimizing the lens apertures for a given lens spacing.  So 
we fix the lens spacing and treat the beam radius at the focus as the independent 
parameter in the optimization. 
 
The beam radius at the lens can be expressed in terms of the beam radius at the fo-
cus and the lens separation 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⋅
⋅+=

2

2
2 1

focus
focuslens

d
ωπ
λωω  (4.56) 

We optimize this expression with respect to variations in the beam radius at the 
focus 
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This is of course the same result we found by a different method in Chapter 4.3.  
We will use this result over and over in design of chip-scale fiber optic switches 
and other optical Microsystems. 

4.6 Gaussian Beam “Imaging” 

The preceding treatment is quite general because we can apply it to incident Gaus-
sian beams with finite radius of curvature by adjusting the focal length as dis-
cussed above.  However, it is often useful to have formulas relating beam waists 
on either side of a lens similar to the ones we use to describe imaging in geometri-
cal optics (Appendix A).  Consider the situation depicted in Fig. 4.15, where a di-
verging Gaussian beam is converted into a converging beam by the lens.  This 
creates a situation in which the beam waist at a distance d1 in front of the lens is 
imaged to a waist at a distance d2 behind the lens. 
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Figure 4.15 Gaussian beam imaging 
 
Adopting the expression we found earlier (Eq. 4.35 derived in the calculation fol-
lowing Fig. 4.5), we can write 
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Equating imaginary parts of this equation allows us to find the beam radius at the 
image 
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Similarly, we find the distance d2 by equating real parts 
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This can be rewritten to show the correspondence to the lens law 
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or in normalized form 
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Here 
λ
ωπ 2

1⋅=Rz  is the Rayleigh length of the object waist.   

 
We notice these expressions become identical to the familiar one for Geometrical 
Optics as zR -> 0.  For the special case that the object waist is exactly one focal 
length away from the lens we find the following relationships 
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2,2
1,1 

yx
yx

f
πω

λω =  (4.66) 

Notice that the beam radii at the two foci are inversely related.  This is what we 
would expect from Fourier Optics.   

4.6.1 Graphical Description of Gaussian Beam “Imaging” 

It is instructive to use graphical representations of the formulas we have derived to 
better understand the nature of Gaussian Beam “imaging”.  Figure 4.16 shows a 
plot of the Gaussian beam radius of the “image” as given by the equation 
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The solid line in Fig. 4.16 describes the situation when zR=0, which corresponds 
to the geometrical optics limit.  We see that Gaussian beams of a finite Rayleigh 
length have well defined “images” for all positions of the object.  This is not the 
case for geometrical optics, in which the image disappears when d1=f. 
 
Figure 4.17 shows a plot of the position of the Gaussian “image” as given by the 
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does not suffer from the singularities predicted by geometrical optics. 
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Figure 4.16. Plot of Gaussian beam radius of the image normalized to the beam 
radius of the object as a function of object-to-lens separation nor-
malized to the focal length (see Fig. 4.9 for definitions).   
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Figure 4.17. Plot of Gaussian image-to-lens distance of the image normalized to 
the focal length as a function of object-to-lens separation, also 
normalized to the focal length.   

4.7 Truncation of Gaussian Beams 

It is clear from the preceding that an ideal Gaussian Beam cannot be realized in 
practical systems, simply due to the fact that in our mathematical description the 
Gaussian beam extend to infinity in both dimensions perpendicular to the optical 
axis.  The best we can do in practice is to create an approximation to the Gaussian 
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Beam.  In optical MEMS and integrated optics it is advantageous to keep all aper-
tures as small as possible, so we need to understand how truncation affects Gaus-
sian Beams.   
 
Truncation creates loss in two equally important ways; through direct blocking of 
the beam by the aperture and by forward scattering into higher-order modes.  The 
forward scattered light also interferes with the light passing the aperture in the 
Gaussian mode, and this interference changes the beams in ways that are unac-
ceptable for some applications.  We will start by calculating the energy loss and 
then proceed to investigate the effects of diffraction due to finite sized apertures.  

4.7.1 Energy Loss Due to Truncation of Gaussian Beams 

From the Poynting theorem we know that the energy in a Gaussian beam is  
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Gaussian beams have electric and magnetic fields that are polarized perpendicular 
to the direction of propagation, i.e. they are Transversal Electro magnetic (TEM) 
waves, so as for plane waves, we have the following relationship between fields  
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Using this relationship, the energy in the Gaussian can be written  
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This expression allows us to find a simple formula for the energy transfer of a 
Gaussian Beam that is centered on a rectangular aperture  
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The solid curve in Fig. 4.18 shows the energy transfer of a Gaussian that is cen-
tered on a square aperture.  In this plot, the size of the square is normalized to the 



4: Diffraction and Gaussian Beams            101 

beam radius.  We see that 99% of the energy in a Gaussian Beam will pass though 
an aperture with a side that matches the beam radius.  
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Figure 4.18 The solid line shows the total energy transfer of a Gaussian beam 
that has been truncated by a square aperture with a side of dx,y/ω.  
The dashed line shows the fraction of energy that is left in the fun-
damental Gaussian mode after truncation by the aperture. 

 
This energy-transfer calculation doesn’t tell the whole story.  In many cases we 
are more interested in how much of the energy is left in the fundamental Gaussian 
Beam.  In other words, we are interested in calculating not only what percentage 
of the energy is passed by the aperture, but also how much of the passed energy 
that remains in the fundamental Gaussian mode and how much that is transferred 
into higher order Gaussian modes.  From the point of view of the fundamental 
Gaussian Beam, both the blocked energy and the transferred energy are lost. 
 
To calculate the total loss of truncation, we express the truncated field in terms of 
the fundamental and higher-order modes. 
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Again we use the Poynting theorem to express the propagating power in mode n.  
Keeping in mind the orthogonality of the Gaussian modes, we find the following 
expression for the expansion coefficients  
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Transfer 
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Here we have simplified the expression by substituting dA for dx·dy.  
 
We normalize the expansion coefficients to find a transfer function of the trun-
cated field into the Gaussian-mode fields 
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The power transfer is the square of the field transfer  
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Again we use the fact that Gaussian Beams are TEM waves to simplify the ex-
pressions 
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Comparing this to the total energy transfer through an aperture, we find that the 
transfer coefficient into the fundamental mode is simply the square of the total-
energy transfer coefficient.  This is shown in the dashed line in Fig. 4.18.  
 
In optical system design we are typically more concerned with the energy that is 
left in the Fundamental Gaussian than in the total energy, so the dashed line of 
Fig. 4.18 is the more significant.  It shows that if we chose the aperture size equal 
to twice the beam radius, then we have that 98% of the energy is left in the Fun-
damental Gaussian Beam, 1% is scattered into higher order modes, and 1% is 
blocked by the aperture.  The blocked light might be reflected or absorbed.   
 
The results presented in Fig. 4.18 are important in themselves, but even more sig-
nificant are the concepts of projections onto Gaussians and over-lap integrals that 
are introduced in the derivation of Fig. 4.18.  We will use the type of projection 
demonstrated in this calculation over and over again to solve problems of light 
propagation through complex systems, e.g. fiber couplers, optical scanners, and 
fiber-optic switches that are the subjects of the next several chapters.  To readers 
who are unfamiliar with these concepts, it is therefore well worth the effort to 
carefully study this calculation and familiarize themselves with all the steps of the 
derivation.   

4.7.2 Far-field of Truncated Gaussian Beams – Frauenhofer 
Diffraction 

The forward-scattered light from an aperture interferes with light in the fundamen-
tal Gaussian and will in many cases create field variations that are detrimental to 
system operation.  These types of effects are particularly difficult in systems with 
multiple apertures.  To understand forward scattering and quantify its effect on 
system performance, we must develop models for diffraction of beams after trun-
cation by apertures.   
 
The truncated Gaussian will propagate (diffract) very differently from a complete 
Gaussian.  To find the profile of the truncated Gaussian after it has propagated to a 
plane (the output plane) a certain distance away from the aperture, we can in prin-
ciple write the truncated Gaussian as a sum of the fundamental and higher order 
Gaussians.  We then use the simple laws of Gaussian Beam propagation to find 
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the shape and phase of each of the components of the sum at the output plane.  Fi-
nally the components are re-summed to find the resulting beam profile at the out-
put plane.  This procedure is, however, impractical because of the large number of 
elements we have to sum to get a good approximation to a truncated Gaussian.  In-
stead the preferred method for such diffraction calculations is to use the Huygens-
Fresnel diffraction integral, typically in the Fresnel approximation [2].   
 
The truncated Gaussian is rather complex both in the near field close to the dif-
fracting aperture and in the far field.  Even moderate truncation leads to significant 
modulation of the Gaussian profile.  The modulation of the profile, including the 
on-axis intensity, varies along the propagation path in complex patterns that are 
characteristic of the aperture.  Due to the importance of truncated Gaussian Beams 
in laser technology, these effects have been thoroughly studied and documented 
[3].   
 
The complicated near-field effects of truncated Gaussians described by Fresnel 
diffraction are for several reasons of limited interest in optical microsystems.  
Many such systems, including fiber switches and confocal microscopes, use spa-
tial mode filters (pin holes or single-mode optical fibers) that reject all but the 
fundamental Gaussian of interest.  In systems where forward scattered light is im-
portant we can most often use the simpler Frauenhofer diffraction theory to model 
the relevant effects with sufficient accuracy.   
 
The standard criterion for validity of Frauenhofer diffraction is 

λ

22Dz >  (4.77) 

where D is the linear extent of the aperture, and λ is the wavelength.  Optical mi-
crosystems that operate at visible and near-infrared wavelengths with well-
confined beams and apertures less than 100 um typically meet this criterion.  Sys-
tems with lager apertures, e.g. laser scanners, are almost always designed with 
Fourier lenses that bring the far-field to their focal plane, so that the conditions for 
Frauenhofer diffraction are automatically fulfilled.   
 
In Fraunhofer Diffraction Theory the field distribution in a plane perpendicular to 
the optical maxis is described in terms of the field in an input plane a distance z 
away [2] 
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Comparing this expression to the Fourier transform defined as 
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we see that the output field is, to within a multiplicative factor, the Fourier Trans-
form of the input field evaluated at  
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It is sometimes more convenient to express the diffracted field in terms of angular 
coordinates  
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Using the standard formula for the Fourier transform of a Gaussian distribution 
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we find the following expression for the far field of a Gaussian Beam 
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In angular coordinates this becomes 
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These formulas for the Gaussian in the far field can be verified by direct substitu-
tion of the far-field expressions of the beam radius, radius of curvature, and Gouy 
phase into the Gaussian-Beam equation.   
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To understand the effects of truncation on Gaussian Beams we use the Fraunhofer 
Diffraction integral, E(θx, θy) to plot the far-field intensity profile (keeping in mind 
that intensity is proportional to the square of the field) of a Gaussian beam that 
passes through an aperture at its waist.  The results are shown in Fig. 4.19.  The 
Fraunhofer Diffraction integral is completely separable in rectangular coordinates 
if the aperture is rectangular with its sides along the principal coordinate axes.  
This means that for rectangular apertures the relative field strength along one co-
ordinate axis is not influenced by the size of the aperture along the orthogonal co-
ordinate.  We therefore only plot the far field along a single axis with varying de-
grees of truncation along this same axis.   
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Figure 4.19 Far-field (angular) profiles of Gaussians truncated in one dimen-
sion plotted against angle normalized to the Gaussian far-field an-
gle.  The graphs in (a) are on a linear scale, while (b) shows the 
profile on a dB scale (10 Lg).  The solid lines show the complete 
Gaussian with no truncation, the dashed lines show a beam trun-
cated by an aperture with a width equal to four times the beam ra-
dius (d=4ω0), and the dot-dashed line represent an aperture width 
equal to twice the beam radius (d=2ω0). 

 
Three different aperture sizes are chosen: infinite, twice the beam radius, and four 
times the beam radius.  The resulting beam profiles are plotted as a function of an-
gle normalized to the Gaussian-Beam far-field angle, λ/πω0.  The graphs in Fig. 
4.19a are on a linear scale to emphasize variation close to the optical axis where 
the intensity is high, while in Fig. 4.19b they are on a dB scale to show the nulls 
and side lobes of the truncated profiles.   
 
The graphs show that the effects of truncation depend strongly on aperture size in 
the range from twice the beam radius to four times the beam radius.  The beam 
that is truncated at its 1/e field (1/e2 intensity) radius has significantly lower on-
axis intensity and a wider central lobe than the unobstructed Gaussian.  It also has 
side lobes with peak intensity close to 1% of the on-axis intensity.  This means 
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that the field strength in the side lobes is at the 10% level, which leads to interfer-
ences, both in the near field and far field, that are unacceptable in many systems.   
 
The beam that passes through an aperture that is four times larger than the beam 
radius is indistinguishable from the complete Gaussian Beam when viewed on a 
linear scale.  Side lobes can be observed in the dB-scale graph, but they are at the 
10-5 intensity level.  This corresponds to field strengths on the order of 3·10-3, 
which is too low to create significant modulation through interference with the 
fundamental Gaussian.  This size aperture is therefore acceptable for all but the 
most stringent systems.  
 
The graphs of Fig. 4.19 tells us that only systems with relatively low requirements 
on contrast can tolerate apertures that are equal to or smaller than twice the Gaus-
sian Beam radius.  The good news is that the amount of stray light is a strong 
function of aperture sizea, so we don’t have to increase the apertures much to re-
duce stray-light interference to tolerable levels.  At four times the beam radius, the 
aperture only weakly distorts the Gaussian Beam.  This size aperture does not sig-
nificantly widen or weaken the central lobes, and it creates only in significant side 
lobes.  Most systems in which miniaturization is important are therefore designed 
with apertures that are between two and four times the beam radius.  A good rule 
of thumb for many designs is to make the apertures three times the beam radius.   

4.8 Summary of Gaussian Beams 

This chapter extends the plane wave picture developed in the first two chapters by 
introducing diffraction.  The essence of diffraction is that all electro-magnetic 
beams will converge to a focus of finite size and then diverge.  The Fundamental 
Gaussian Beam can be considered the “best” possible approximation to the geo-
metrical-optics concept of a light ray in the sense that it has the smallest possible 
product of beam size at the focus and angular spread in the far field.   
 
The mathematical description of Gaussian-Beam propagation can be summarized 
by the expression 
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a  In later chapters we will use Gaussian Beams to model electromagnetic waves 

that in reality do not have quite the same strong exponential dependence on dis-
tance from beam center.  In such systems we must be careful when applying the 
rule-of-thumb that has been stated here.  
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where ( )xHl  is the Hermite-Gaussian mode of order l, ω0 is the beam radius at 
focus, ω(z) is the beam radius, φ(z) is the Gouy phase shift, and R(z) is the radius 
of curvature.  The Fundamental Gaussian Beam is of order l=0, m=0, and 

( ) 10 =xH .   
 
The z-dependence of the characteristic parameters are described in the following 
equations 
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where we for convenience have introduced the Rayleigh Range that is defined as  

        
2
0

λ
πω=Rz  (4.90) 

 
Based on these formulas we find the far-field diffraction angle for the Gaussian 
beam 
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Gaussian beams are solution to the paraxial wave equation, and give an intuitive, 
and largely correct picture of diffraction.  The usefulness of Gaussian-beam theory 
stems from its mathematical simplicity and the fact that many practical lasers and 
waveguide devices produce optical fields that to a very high degree of accuracy 
can be modeled as Gaussian beams.  Gaussian modes constitute a complete set of 
basis function, so they provide means to solve general diffraction problems.  This 
is, however, not always a practical approach. 
 
Using the propagation law for Gaussian beams and the lens law, we can calculate 
the effect of lenses on the propagation of Gaussian beams, and we find that Gaus-
sian-beam theory corrects several erroneous results of geometrical optics.  In par-
ticular, Gaussian-beam theory predicts that: 
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1. There is no such thing as a collimated beam.  The best we can do is to create 
a Gaussian beam with a soft focus and a long Rayleigh range. 

2. A focused spot has a finite beam radius, and the focus can at most be half a 
Rayleigh length in front of the focusing lens.  

 
Figure 4.20 shows a comparison of Gaussian and geometrical optics.  Geometrical 
optics makes several erroneous predictions that are corrected by Gaussian beam 
theory.  Geometrical optics introduces the concept of a collimated beam.  We have 
seen that this violates energy conservation, so it is gratifying that Gaussian-beam 
theory does not support this concept.  Instead we see that a lens placed exactly one 
focal length away from a beam waist, produces another beam waist exactly one 
focal length away on the other side of the lens.  The beam radius at the focus is in-
versely related to the beam radius at the original waist, so a rapidly diverging 
Gaussian beam (i.e. one that originates from a waist with a small beam radius), 
will produce a large beam radius at the focus.  This creates a beam with a soft fo-
cus and a long Rayleigh length, i.e. the resulting beam is an approximation of a 
collimated beam.  
 

Focus is a perfect point 
with infinite intensity 

Focus is finite, 
limited by 
diffraction 

Collimation 

Focusing 

Perfectly 
parallel beam Soft focus f f

ff 

 
Gaussian Beams   Geometrical Optics 

 
Figure 4.20 Comparison of Gaussian and geometrical optics.  Gaussian Beams 

are the “best” approximations to Geometrical-Optics rays, but the 
predictions of Gaussian-Beam theory differ from those of Geomet-
rical optics in important ways as shown. 

 
Geometrical optics predicts that a perfect lens will focus light to a point, and that 
this focus can be obtained at any distance from the lens (by adjusting the lens-to-
object distance).  Gaussian-beam theory corrects this by showing that the focus 
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can be no further away than half the Rayleigh length of the incident beam, and that 
the beam radius is finite at the focus.   
 
Gaussian-Beam theory predicts that the waist radius created by a lens in the limit 

of short focal lengths is given by λ
ωπ

λ
D
ff

lens
⋅≈

⋅
9.12 , in good agreement with the 

classical expression for diffraction-limited spot size ⎟
⎠
⎞

⎜
⎝
⎛ ⋅ λ

D
f2.2 .  These expres-

sions show that the spot size is directly proportional to wavelength.  The shorter 
wavelength in high-index materials can, however, only be used to realize a smaller 
spot-size if the focusing takes place in the high-index material.  Gaussian-beam 
theory also sets fundamental limits on the distance from a lens to its focus 

(
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==  with focuslens ωω ⋅= 2 ) with important consequences for 

miniaturization of optics.    
 
A lens of focal length f images a beam waist ω1 at a distance d1 in front of the lens 
to a waist ω2 at a distance d2 behind the lens:  
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For the special case d1=f we find d2=f and 
2,2

1,1
yx

yx
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πω
λω = .  

In practical systems all Gaussian Beams are truncated by finite apertures.  The ef-
fects of truncation are first to remove energy by through the blocking of the finite 
aperture and second to scatter energy into higher order modes by the mode-shape 
change cause by truncation.  A much-used rule of thumb is to use apertures that 
are at least three times the beam radius to avoid significant effect of truncation.   

Further Reading 

H. Kogelnik, T. Li, “Laser Beams and Resonators”, Applied Optics, vol. 5, no. 10, 
October 1966, pp. 1550-1567. 
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B.E.A. Saleh, M.C. Teich, “Fundamentals of Photonics”, 2nd edition, Wiley, 
2007. 
 
A. Yariv, P. Yeh, “Photonics: Optical Electronics in Modern Communications”, 
6th edition, Oxford University Press, 2007.  

Exercises 

Problem 4.1 - Projecting Gaussian beams 

Consider a Nd:YAG laser at 1.06 um wavelength that emits a laser beam that after 
collimation has a beam radius of 1 m at its waist, which coincides with a projec-
tion lens.   

a) What is the longest distance from the lens that you can form another beam 
waist? 

b) What is the corresponding focal length of the lens?  

Problem 4.2 

You have a 1 mW HeNe laser at 630 nm wavelength, and you can make lenses 
that accommodate Gaussian beams with a beam radius of 0.3 m.  Using these 
components, design an optical system that delivers the maximum intensity at a 
distance of 1,000 km. 

Problem 4.3  

a) What is the minimum radius of curvature for a Gaussian beam, and where 
does it occur?  Express your answer in terms of Rayleigh length of the 
beam.  

 
You have a laser that has a Gaussian beam output at a wavelength of 1 um.  The 
waist of the Gaussian beam is at the laser output mirror and has a beam radius of 
ω0=100 um.  You want to use a lens to image the beam waist at a distance 5 m 
from the lens.   
 

b) As a practical matter, we want to use a lens with the smallest possible di-
ameter.  What should be the focal length of the lens? 

c) What is the beams radius of the imaged waist 5 m from the lens? 
d) What focal length would you find if you were using ray-optics to model 

the imaging?  Comment on how well the Gaussian-beam model and the 
Ray model agree.  
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Problem 4.4 – Imaging Gaussian beams 

Consider the Gaussian beam “imaging” set up shown below.   
 

 

d2 d1 

ω1 
ω2 

 
“Imaging” of Gaussian beam waist 

 
a) What is the longest possible distance, d2, from the lens to the “image”.  

Express your answer in terms of the beam radius at the lens.  
b) Under what conditions can a Gaussian beam waist be “imaged” by a lens 

that is placed less than its focal length away from the waist?  
c) Explain physically how this can happen. 

Problem 4.5 - Gaussian beams vs. geometrical optics 

Geometrical optics (ray tracing) predicts that an object placed 2f from a positive 
lens will be imaged to a position 2f behind the lens with a unity magnification as 
shown in the figure below.    

 f f f f

 
Geometrical optics model of imaging of an object 2f in front of a positive lens.  The 
image appears 2f behind the lens, and the magnification is unity. 

 
In Gaussian optics, this picture is quite different as shown below.  According to 
our formulas for Gaussian beam “imaging”, a beam waist located 2f in front of the 
lens will be “imaged” at a distance (d2) behind the lens that is given by:   
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In the no-diffraction limit (λ->0), we find that d2=f and ω2->0.   
 
Explain this discrepancy between the geometrical-optics picture and the Gaussian 
picture. 

 

d2 d1=2f

ω1 
ω2 

 
 

Lens transformation of Gaussian-beams. 

Problem 4.7 – Immersion optics 

Consider a Gaussian beam with a beam radius of 1 mm incident on a block of ma-
terial of index n=1.5 with a spherical front surface with a radius of -100 mm.  The 
incident beam has a flat phase front at the interface, and the wavelength is 1.06 
um.  The ABCD matrix of the spherical surface is 

nRn
n 111

01
−  

 
 D 

R= - 100mm 

n=1.5 

 
 

a) What is the beam radius at the waist?  
b) What is the distance, D, from the spherical surface to the waist?  
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Problem 4.8 – Gaussian beam overlap 

a) Show by detailed calculations (not energy methods) that two co-linear 
Gaussian beams of different waist size and position maintain their overlap 
integral as they propagate (i.e. their overlap integral in a plane perpendicu-
lar to the optical axis is independent of axial position). 

b) Do the same for two crossing Gaussian beams.  

References 

 
1.  For a derivation and discussion of the Airy’s disk pattern, see for example: 

E. Hecht, “Optics”, 3rd edition, Addison-Wesley, 1998. 
2 . J.W. Goodman, “Introduction to Fourier Optics, 2nd edition”, McGraw-Hill, 

1996. 
3  For a general discussion of some of the near-field effects of Gaussian-Beam 

truncation, see Chapter 18 of A.E. Siegman, “Lasers”, University Science, 
Mill Valley, CA 1989. 



5: Optical Fibers and Waveguides   

5.1  Introduction to Fibers and Waveguides 

A very large fraction of all micro and nano-photonics systems are designed to in-
teract with optical waveguides and optical fibers.  In this chapter we described 
analytical concepts and computational tools for the study of guided-wave propaga-
tion.  In the next chapter we will use these tools for analysis and design of guided-
wave optical devices.  We start the discussion with a complete derivation of the 
modes on a slab waveguide.  The modes on slab waveguides are only confined in 
one dimension, while most practical waveguides confine the light in two dimen-
sions orthogonally to the direction of propagation.  Nevertheless, slab-waveguide 
modes demonstrate many of the most important features of guided-wave optics 
and are good conceptual models for developing intuition about fiber optics.   
 
We then extend the slab-waveguide treatment to optical fibers of cylindrical sym-
metry, and demonstrate the existence of single-mode fibers.  A key finding is that 
we can develop a Gaussian approximation to the mode profile of the fundamental 
mode on step-index optical fibers.  This model allow us to use many of the tools 
we developed in Chapter 4 on Gaussian Beams to design and analyze coupling be-
tween optical fibers and integrated optics.   
 
In the last part of the chapter we investigate dispersion, i.e. wavelength depend-
ence, of the effective index on optical waveguides and fibers.  We consider mate-
rial dispersion, waveguide dispersion, and modal dispersion, and investigate how 
these effects influence the propagation of pulses on waveguides and fibers.  Again 
we use a Gaussian approximation, in this case in the time domain as opposed to 
the spatial domain, to find close-form expressions for pulse broadening and chirp 
of electromagnetic pulses propagating in the presence of dispersion.  

5.2 Geometrical optics description of waveguides 

The concept of Total Internal Reflection (TIR) that we have investigated in some 
detail in Chapter 3, allows us to make a first-order description of dielectric optical 
waveguides.  Consider the symmetric planar slab waveguide shown in Fig. 5.1.  
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For a guided ray, the incident angle on the cladding must not exceed the critical 
angle for TIR 

corecladcrit nn=> θθ sinsin  (5.1) 

This means that the maximum incident angle on the facet of the waveguide is 
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The Numerical Aperture (NA), which is the sine of the maximum acceptance an-
gle, is an important parameter for a waveguide. 
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Figure 5.1. For the optical ray to be confined to the core of the slab waveguide, 
the internal angle, θi, must not exceed the critical angle for TIR.  

 
The TIR picture is of limited use in detailed calculations of fiber transmission 
characteristics.  As shown in Fig. 5.1 it is a geometric-optics description that fails 
to take into account the inevitable spreading of the light “rays” as they propagate 
on the fiber.  We need more sophisticated models for detailed analysis and design. 
 
The TIR model is useful in that it allows us to predict the existence of optical 
waveguides, and speculate about their advantages.  We can imagine making opti-
cal waveguides using metallic reflectors, much like we make co-axial and other 
metallic waveguides for RF-communication.  The dielectric waveguide does how-
ever have several significant advantages: 

1. Much lower loss (metals absorb at optical wavelengths) 
2. Simpler and less expensive fabrication, particularly for single-mode 

waveguides. 
3. Better environment for waveguide devices. 
4. Lower modal dispersion. 

 
In the following discussion we will concentrate on the dielectric slab waveguide.  
It is a simple device that allows us to develop an understanding of the important 
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aspects of waveguide characteristics without being too mathematically complex, 
and it forms the basis of some important approximate methods for analyzing more 
complex (and realistic) waveguide structures.  

5.3 Three-layered Slab Waveguide 

Consider the dielectric stack in Fig. 5.2.  We will first investigate TE polarized so-
lutions, i.e. solutions that have their electric fields along the y-direction.  These 
has to fulfill the scalar wave equation  

( ) ( ) 0,, 22
0

2 =+∇ zxEnkzxE yiy  (5.3) 

in each of the three regions of the waveguide.  We are interested in solutions with 
amplitudes that are independent of z, i.e. solutions of the form 

( ) ( ) zj
yy exEzxE β−=,  (5.4) 

where ββββ is the longitudinal wave vector.  The term Ey(x) is the mode profile of the 
waveguide.  The equation expresses the fact that we are searching for profiles that 
propagate without changing.   
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Figure 5.2. The slab waveguide shown in this figure consist of a substrate, a 
thin dielectric film, and a cladding layer.  In our analysis we as-
sume that the substrate and cladding are both infinitely thick, while 
the film (core) has a thickness h. 

 
Substituting this description of a waveguide mode (Eq. 5.4) into the wave equation 
(Eq. 5.3), we find 

( ) ( ) ( ) 0222
02

2
=−+

∂
∂ xEnkxE
x yiy β  (5.5) 

Depending on the values of the wave vector, this transverse wave equation has so-
lutions with exponential x-dependence 
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and oscillatory x-dependence 
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The parameter 222

0 βκ −= ink  is called the transversal wave vector, and 
22

0
2

ink−= βγ  is the attenuation coefficient.  Once we have found one wave vec-
tor (i.e. either the longitudinal wave vector, the transversal wave vector, or the at-
tenuation coefficient) in any region for an optical mode, it is trivial to find the oth-
ers. 
 
We will now postulate that this structure can support a guided mode of the form 
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Notice that we have fields that are decaying in the direction away from the core of 
the waveguide.  At x=0, the boundary conditions require that  

( ) ( ) ABCBAe ff
c =⇒⋅+⋅=⋅− 0sin0cos0 κκγ  (5.9)

Now we could proceed by writing the equations for the magnetic fields and apply-
ing the appropriate boundary, but instead we note that 
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At x=0, this becomes 

( ) ( )
f

c
ffffc ACCBeA c

κ
γκκκκγ γ =⇒⋅+⋅−=− ⋅− 0sin0cos0  (5.11)

Using these two expressions for B and C, we can write the condition for continuity 
of the electric field at x=-h in the following way 
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The total field can then be written 
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Now we apply the final boundary condition, which says that 
x

Ey

∂
∂

 must be con-

tinuous at x=-h, to arrive at the eigenvalue equation for the longitudinal wave vec-
tor 
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This transcendental equation, and the corresponding one for TM polarized waves 
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must be solved numerically or graphically to find the eigenvalues for βTE and βTM.  
These eigenvalues define the guided modes of the slab waveguide.  Once they are 
known, we can find the field distribution of the modes.  Notice that these two 
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equations give us the values of the phase and group velocities of the guided 
modes.  We will investigate this aspect more carefully when we consider 
waveguide dispersion in the next chapter.  

5.3.1 Numerical Solutions to Eigenvalue Equations 

The right and left-hand side of the eigenvalue equation for the longitudinal wave 
vector for TE polarized guided waves are shown in Fig. 5.3.  The waveguide pa-
rameters are: Thickness: h=5 micron, Cladding index: nc = 1.4, Film index: nf = 
1.5, Substrate index: ns = 1.45, Wavelength: λ=1 μm 
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Figure 5.3. This graphical solution is created by plotting the two sides of the 
Eigenvalue equation for TE polarized modes as functions of the 
transversal wave vector.  Five candidate solutions (not all of them 
of practical interest) are indicated by red circles.  Waveguide pa-
rameters: h=5 um, nc=1.4, nf=1.5, ns=1.45 

 
From the figure we see that there are five possible solutions to the Eigenvalue 
equation.  Notice that the thickness of the waveguide only influences the green 
curves, which represent the right hand side of the equation.  We can therefore 
change the number of solutions by simply changing the waveguide thickness. 
 
Let’s start by investigating the solution at κ=0.  In this case we have a constant E-
field in the film.  Combined with the boundary condition requiring that the deriva-
tive of the E-field be zero at the film-cladding interface, this leads to the conclu-
sion that only a trivial solution (all field components are zero) can exist for κ=0.  
The other four solutions are all non-trivial.  There is no significant difference be-
tween the solutions in the upper and lower halves of the plane.  
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5.3.2 TM Solutions 

The TM solutions are found by graphically solving the eigenvalue equation for the 
TM longitudinal wave vector.  The nature of these solutions is very similar to the 
TE solutions as can be seen from Fig. 5.4, in which the TE and TM graphs are 
compared.   
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Figure 5.4. Comparison of the graphical solutions for the TE (solid) and TM 
(dot-dashed) guided waves.  Waveguide parameters: h=5 micron, 
nc=1.4, nf=1.5, ns=1.45 

5.3.3 Nature of the Solutions 

One way to visualize the optical guided modes we have just derived is to consider 
each mode as consisting of two plane waves with the same longitudinal wave vec-
tor and opposite transversal wave vectors of equal magnitude.  The two plane 
waves interfere to create the transversal field distribution of the mode.  The decay-
ing part of the mode corresponds to the evanescent fields of Total Internal Reflec-
tion.  This plane wave picture of optical waveguides is illustrated in Fig. 5.5. 
 
For the interference pattern to not change under propagation, we must have   

mhkn scf ⋅=Φ−Φ− πθ 2cos2  (5.16) 

where m is an integer, and Φc and Φs are the phase shifts of TIR at the cladding 
and substrate respectively.  This expression relates the effective propagation con-
stant along the waveguide to wavelength, so it is the dispersion relationship for the 
slab waveguide. 
 
The first mode has no nulls in the field distribution, the second has one, and so on.  
It follows that the nth mode has n-1 nulls.  We often call the modes with an even 
number of nulls the even modes and modes with an odd number of modes the odd 
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modes.  This does not imply that the even and odd modes in general have even 
and odd symmetry.  That is only the case if the waveguide itself is symmetric.   
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Figure 5.5. Plane-wave picture of modes on optical waveguides.  The funda-
mental mode (left) has the smallest transversal wavevector, and 
only one maximum in the field pattern.  The first order mode (right) 
has two maxima in the field profile. 

 
The fact that different modes have different numbers of nulls gives us a useful 
way of indexing the modes.  We call the mode with no nulls the zero-order mode, 
and the mode with one null the 1st order mode and so on.  With two sets of modes 
(TE and TM) we index the modes in the following way: TE0, TE1, TE2, TE3….. 
TEn and TM0, TM1, TM2, TM3….. TMn.   

5.3.4 Number of Modes 

It is clear from Fig. 5.3 and 5.4 that the total number of solutions depends strongly 
on the waveguide thickness, h.  If we decrease the thickness, the graph of the left 
hand side of the equation (dashed curve in Fig. 5.3) is stretched out along the κ-
axis until the first part of the curve is too close to the x-axis to cross the graph rep-
resenting the right hand side of the equation.  By decreasing the waveguide thick-
ness, we will therefore reach a situation in which there is no solution to the Eigen-
value equation for the longitudinal wavevector, i.e. no modes can propagate 
except if the waveguide is symmetric.  We note that this happens at close to, but 
not exactly, the same thickness for the TE and TM cases.   
 
A symmetric waveguide is different in this respect.  It will have a guided mode for 
any waveguide thickness.  This follows from the fact that when γc= γs, the right-
hand side of the Eigenvalue equation is zero at κf= κmax as illustrated in Fig. 5.6.  
That guarantees at least one solution even as the thickness-dependent graph is 
stretched out as a consequence of the reduction of the core thickness. 
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Figure 5.6. Graphical solution of the Eigenvalue equation for TE polarized 
modes in a symmetric waveguide.  The symmetry guarantees a non-
trivial solution for any waveguide thickness.  Waveguide parame-
ters: h=5 micron, nc=1.45, nf=1.5, ns=1.45 

 
Guided modes must have negative slopes in the outward direction at the core-
cladding interface to be exponentially decaying in the cladding.  This suggests a 
pictorial way to understand the difference between guided modes and radiation 
modes.  Consider first the TE1 mode on a symmetric waveguide as shown in Fig. 
5.7.  We will describe the modes in terms of their V-parameter 

22
0max sf nnkhhV −⋅=⋅= κ  (5.17) 

 
For V>> π, the field is well confined to the core.  As V is decreased to π, the con-
finement factor is also decreased, until, at V=π, the mode is no longer guided.  
One way to understand that that as h is decreased, the mode doesn’t have “room to 
turn”, meaning that the turning points of the mode fall outside the core. 
 

Guided TE1 
mode 

Core 

 
 

Figure 5.7. When the core is sufficiently wide, the TE1 mode is guided.  As the 
core width is decreased we reach a point where the turning points 
(extrema) of the mode profile falls outside the core.  At that point 
the mode is no longer guided. 
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The TE0 mode in a symmetric guide, on the other hand, exists for any thickness, 
because it only has one turning point placed in the center of the guide.  This is il-
lustrated in Fig. 5.8.  In an asymmetric guide, even the TE0 mode is cut-off at suf-
ficiently small core thicknesses when the single turning point falls outside the 
core.  
 

Symmetric TE0 
mode 

Core 

 
 

Figure 5.7.  Symmetric TE0 modes are always guided, while asymmetric TE0 
modes may be cut-off if the turning point falls outside the core. 

 
For large core thicknesses we can derive an approximate expression for the num-
ber of guided modes supported by the structure.  We note that if  κmaxh is larger 
than π/2, we are guaranteed at least one mode even in asymmetric guides, and that 
for each π increase in κmaxh we have another solution.  The total number of solu-
tions is then approximately given by 
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22
0max  (5.18)

5.3.5 Energy carried by a mode 

To find the energy carried by a mode we integrate the time averaged Poynting 
vector over the cross section.  For a slab waveguide we only integrate over one 
dimension to get the power per unit of length 

( )∫∫
∞

∞−

∞

∞−

⋅⋅×=⋅= dxzHEdxSP zz  (5.19) 

 
In practice we have waveguides with finite cross sections.  The total energy flow 
can the be found by integration over the full cross section 
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( )∫∫∫∫ ⋅⋅×=⋅=
AA

zz dxzHEdxSP  (5.20) 

The time-averaged power then becomes  

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅⋅×=⋅= ∫∫∫∫

AA
zz dxzHEdxSP *Re

2
1  (5.21) 

 
It can be shown that the modes are orthogonal.  If we also normalize the power in 
each mode to 1 W, we can write the orthonormalization condition as  

( ) lm
A

ml dxzHE δ=⋅⋅×∫∫ *

2
1  (5.22) 

where δlm is the Kronecker delta.  For TE and TM modes we get  

TE modes:   lm
A

ml
m dxzEE δ

ωμ
β =⋅⋅⋅∫∫ *

2
 (5.23) 

TM modes:  lm
A

ml
m dxzHH δ

ωε
β =⋅⋅⋅∫∫ *

2
 (5.24) 

 
Consider the energy flow in an arbitrary optical field on the waveguide.  The field 
can be expanded in guided and radiation modes as discussed above.  It follows 
that the energy flow in the guide is the sum of the energy flow in each mode.  The 
energy in the radiation modes will eventually be lost (a negligible amount will 
propagate in the vicinity of the waveguide).  We may therefore discount these 
modes when considering the power carried by the waveguide, and we reach the 
conclusion that the power propagating in a waveguide is the sum of the power 
in the guided modes. 

5.3.6 Properties of Modes 

Our modeling has shown that there are several different types of waveguide 
modes.  For longitudinal wave vectors in the range kns<β<knf, the modes of a slab 
waveguide are discrete and confined to the guiding film with exponentially decay-
ing fields in the substrate and cladding.  In the range knc<β<kns, the modes are 
continuous and have oscillatory behavior in the film and substrate, while they de-
cay exponentially in the cladding.  These modes are called substrate radiation 
modes.  For β<knc, the modes are oscillatory in all three regions.  These modes 
are simply called radiation modes. 
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There is a finite set of guided modes and a continuous, infinite set of radiation 
modes.  Each eigenvalue of the longitudinal wavevector, β, corresponds to one or 
more (in the case of degenerate modes) distinct modes with unique field profiles.  
The modes of the slab are orthogonal, and they form a complete set so that any 
field profile can be written as a superposition of modes  

( )∫∑ ⋅+=
radiationguided

ii dzyxAazyxAazyxA βββ ),,,(),,(),,(  (5.25)

where A(x,y,z) can be the E or the H field. 
 
The important properties of modes are: 

1. Each eigenvalue of the longitudinal wavevector, β, corresponds to a 
unique mode or field distribution. 

2. Most modes are not guided.  These are called radiation modes. 
3. A finite number of modes are guided. 
4. All modes are orthogonal. 
5. Some modes are degenerate, i.e. they have the same longitudinal wave 

vector, β, but different field distributions.  
6. The modes of an optical system form a complete set. 
7. The power propagating in a waveguide is the sum of the power in the 

guided modes. 

5.3.7 Normalized propagation parameters 

Now we will develop a more general description of slab waveguides.  Our ap-
proach is again based on graphical solutions of the characteristic equation for the 
guided modes, but we will generalize the parameters so that our results can be ap-
plied to a wide range of slab waveguides. 
 
An asymmetric slab waveguide have four free parameters; the thickness of the 
core or film, and the refractive indices of the substrate, core and cladding.  To-
gether with the wave vector or wavelength of the optical field, this gives five pa-
rameters to describe any asymmetric slab waveguide with any monochromatic op-
tical field.   
 
To generalize our description, we will use the following dimensionless parameters 
for TE modes 

Normalized frequency (V parameter):  22
0 sf nnhkV −=  (5.26) 
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The asymmetry parameter:  22
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Normalized effective index:  22
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where 
0k

neff
β=  is the effective index of the mode.   

 
Now we use these normalized parameters to rewrite the slab-waveguide dispersion 
relationship (Eq. 5.16) in the following form  

b
ab

b
bmbV

−
++

−
+⋅=− −−

1
tan

1
tan1 11π  (5.29) 

This expression is plotted for a=0 (symmetric waveguide) in Fig. 5.9.  We can use 
this plot of the dispersion relation of the modes of the slab waveguide in general-
ized parameters to find solutions for specific waveguide structures.   

Note on dispersion relations 

The graphs of Fig. 5.9 are not the same wavevector (β) vs. natural frequency (ω) 
plots that we called dispersion diagrams in Chapter 2.  They do, however, contain 
the same information as β−ω diagrams.  The reason for choosing other axes is that 
the deviation from linearity of the β−ω relationship is very slight for most practi-
cal optical waveguides and fibers.  A straightforward β−ω would not allow the 
slight, but important, non-linearities to be observed, so other plot parameters de-
signed to highlight the non-linearities are more useful.  
 
If we want to find the longitudinal wavevector at a given frequency in a given slab 
waveguide, we use the following procedure: 

1. Calculate the normalized frequency for the specific waveguide and 
wavelength 

2. Find the normalized index, b, for the desired mode from the plot (the 
plot shown in Fig. 5.9 is for a=0, but similar plots for any arbitrary a 
can easily be generated). 

3. Calculate neff for the different modes from the b values. 
4. The longitudinal wavevector is given by β= k0 neff 

This procedure gives results that are in excellent agreement with direct numerical 
solutions for specific waveguides.  
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Figure 5.9. Dispersion relation for the TE modes of a symmetric slab 

waveguide in terms of normalized parameters. 
 
In terms of the normalized parameters we have introduced, the cut-off condition is 
simply 0=b , which leads to 

[ ] νπ+= − aVcutoff
1tan  (5.30) 

It is much simpler to use this expression than to find the cut-off numerically. 
 
The above development is valid for TE modes.  For TM modes the treatment is 
similar, but we must adjust the asymmetry parameter 

Asymmetry parameter for TM modes:  22
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Dispersion diagrams like the ones of Fig. 5.9 contain a wealth of information 
about wave propagation.  We will use similar dispersion diagrams to understand 
the propagation characteristics of a variety of optical waveguides and fibers. 

5.4 Optical Fibers 

Optical fibers have revolutionized the communications industry due to their low 
loss and inexpensive fabrication.  This second point is often underestimated.  Op-
tical fibers are fabricated by pulling preformed rods with carefully designed index 
profiles into long fibers.  This process is well controlled and results in highly uni-
form core and cladding diameters.  The uniformity of the fibers is so good that for 
most practical purposes we consider the fiber a perfectly cylindrical waveguide.  If 
we also assume that the refractive index changes are binary, i.e. the index values 
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are constant in the core and cladding and change abruptly at the core-cladding in-
terface, then we have a step-index fiber.   
 
The attraction of the step-index fiber model is that the modes can be found ana-
lytically.  We will not go through the tedious derivation of the mode profiles, but 
we will freely use the results because of the insight they offer into the nature of 
wave propagation on optical fibers.  When applying the analytical solutions to 
practical situations, we have to keep in mind that real fibers do not have step-
function refractive-index variations.  

5.4.1 Modes in Step-Index Optical Fibers 

A step-index optical fiber is shown in Fig. 5.10.  In the mathematical treatment of 
the step-index fiber it is customary to assume that the cladding is infinite, so the 
fiber can be characterized by three parameters: The core radius, a, and the core 
and cladding refractive indices, ncore and ncladding.  Together with the wave vector 
of the optical field, these parameters completely determine the propagation of light 
on the fiber.  Just as for the dielectric-slab waveguide, it is very convenient to cap-
ture these four parameters in the normalized frequency  

2222
0

2
claddingcorecladdingcore nnannakV −⋅=−=

λ
π  (5.32)

Note that a here is the radius of the core.  In the fiber literature, this normalized 
frequency is referred to as the V-parameter or the V-number.  We will use both 
names interchangeably.  

 

a

Cladding

Core

 
Figure 5.10.  Geometry of a step-index cylindrical waveguide (optical fiber) with 

core radius a.  The cladding diameter (125 um for standard single 
mode fiber) is chosen large enough that we can consider it infinite 
in our calculations. 

 
The analytical description of the modes allows the dispersion relationship for the 
step-index fiber of Fig. 5.10 to be computed.  The results for a number of the low-
est order modes are shown in Fig. 5.11.  The most important things to note in this 
relatively complex dispersion diagram are that  (1) a step-index fiber supports at 
least one mode for any value of the analytical solutions V-parameter, and (2) the 
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fiber support only one mode, the HE11 mode, for V-parameters smaller than 2.405.  
The HE11 mode is really two orthogonally polarized modes.  Due to the circular 
symmetry of the fiber, these two modes are degenerate, i.e. they have the exact 
same effective index at any analytical solutions number. 
 

              
22

0 claddingcore nnakV −=  

Figure 5.11 Normalized longitudinal wavevector (or propagation constant) for 
the lower order modes of a step-index fiber as a function of normal-
ized frequency.  Reprinted from [1] with permission. 

 
The inequality V<2.405 is called the cut-off condition.  From the definition of the 
V-parameter, we see that single-mode operation require long wavelengths, small 
fiber radii, and small index contrasts.  The cut-off condition is often rewritten in 
terms of the wavelength 
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For typical fiber parameters (a = 3.955 µm, ncore = 1.4514 and ncladding = 1.4469), 
we find that the cut-off wavelength is 1.18 um.  In other words, a standard single 
mode fiber (SMF) is single-mode only at wavelengths beyond 1.18 um.  That in-
cludes the two most important fiber-optical wavelength ranges around 1.55 um 
and 1.3 um. 

5.4.2 Linearly Polarized Modes 

The modes of step-index fibers are very complex, to the point that their analytical 
descriptions are of limited value.  Weakly guiding optical fibers (i.e. fibers with a 
small refractive-index difference between the core and cladding), on the other 
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hand, have modes that are, to a good approximation, transverse electro-magnetic 
(TEM) waves.  These approximate TEM modes are simple to visualize and good 
models for understanding lower-order modes on real fibers.   
 
In the weakly-guided approximation, the amplitude of the electric field of the fiber 
modes can be described in the following way 

Core (r < a): ( ) ( )φκν lrJEEx cos0 ⋅=  (5.34) 

Cladding (r > a): ( )
( ) ( ) ( )φγ
γ
κ

ν
ν

ν lrK
aK
aJEEx cos0 ⋅

⋅
⋅=  (5.35) 

where Jν is the Bessel function and Kν the modified Bessel function of the second 
kind.   
 
The parameters κ and γ are found from the equations: 
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To be able to plot the modes of a cylindrical waveguide or fiber, we must solve 
these equations at the wavelengths of interest.  Assume the following fiber pa-
rameters: a = 3.955 µm, ncore = 1.4514 and ncladding = 1.4469.  At 1310 nm wave-
length we then have V = 2.166, and the characteristic equation has only one solu-
tion (ν = 0, κ = 0.39975525 µm-1, γ = 0.374337 µm-1).  The fundamental mode 
(LP01) can then be expressed as: 

Core (r < a): ( )rmJEEx ⋅= −1
00 39975525.0 μ  (5.38) 

Cladding (r > a):  ( )
( ) ( )rmK

amK
amJEEx ⋅

⋅
⋅= −

−

−
1

01
0

1
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0 374337.0
374337.0

39975525.0 μ
μ
μ  (5.39) 

 
As stated above, the LP01 mode is very similar to the HE11 on weakly guided fi-
bers.  Just like the HE11, it is really not a single mode, but rather two orthogonally 
polarized modes.   
 
At 670 nm wavelength we have V = 4.236.  The characteristic equation then has 
four solutions; LP01 (two degenerate polarization modes), LP11 (four-fold degener-
ate), LP21 (four-fold degenerate), and LP02 (two degenerate polarization modes).  
These modes are shown in Figs. 5.12 through 5.15.   
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The two circularly symmetric modes in these graphs are each two orthogonal po-
larization modes, and the two other modes consist of four degenerate modes.  In 
addition to the one shown and its orthogonal polarization, there are two or-
thogonally polarized modes with a sinφ or sin2φ angular dependence.  Counting 
all polarizations and both helical polarities of the LP11 and LP21 modes, we find a 
total of 12 modes for V = 4.236.  Not all of these produce distinguishable intensity 
patterns.   

LP01 mode (νννν = 0, κκκκ = 0.488154, γγγγ = 0.953337): 

Core (r < a): ( )rJEEx ⋅= κ00  (5.40) 

Cladding (r > a): ( )
( ) ( )rK
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aJEEx ⋅

⋅
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γ
κ
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0

0
0  (5.41) 
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Figure 5.12. (a) Electrical field amplitude of LP01 as a function of radius (in µm) 

at 670 nm wavelength.  (b) Contour plot of LP01 mode at 670 nm 
wavelength. 

LP11 mode (νννν = 1, κκκκ = 0.76807, γγγγ = 0.746468): 

Core (r < a): ( ) φκ cos10 rJEEx ⋅=  (5.42) 

Cladding (r > a): ( )
( ) ( ) φγ
γ
κ cos1

1

1
0 rK
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aJEEx ⋅

⋅
⋅=  (5.43) 
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Figure 5.13. (a)  Electrical field amplitude of LP11 as a function of radius (in 

µm) at 670 nm wavelength.  (b) Contour plot of LP11 mode at 670 
nm wavelength. 

LP21 (νννν = 2, κκκκ = 1.00806325, γγγγ = 0.361877): 

Core (r < a): ( ) ( )φκ 2cos20 rJEEx ⋅=  (5.44) 

Cladding (r > a): ( )
( ) ( ) ( )φγ
γ
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Figure 5.14 (a) Electrical field amplitude of LP21 as a function of radius (in µm) 

at 670 nm wavelength.  (b) Contour plot of LP21 mode at 670 nm 
wavelength. 
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LP02 (νννν = 0, κκκκ = 1.0482116, γγγγ = 0.219998): 

Core (r < a): ( )rJEEx ⋅= κ00  (5.46) 

Cladding (r > a): ( )
( ) ( )rK

aK
aJEEx ⋅

⋅
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0
0  (5.47) 
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Figure 5.15. (a) Electrical field amplitude of LP02 as a function of radius (in µm) 

at 670 nm wavelength.  (b) Contour plot of LP02 mode at 670 nm 
wavelength. 

5.4.3 The Fundamental Mode of a Cylindrical Waveguide 

The HE11 mode of the cylindrical waveguide is guided for all values of the nor-
malized frequency (V-number), and when the analytical solutions V-number is less 
than 2.405, the HE11 mode is the only guided mode.  The HE11 mode is of special 
importance, because single-mode operation is the preferred way to use optical fi-
bers in high-capacity communication systems.  The details of the field distribution 
of the HE11 mode is therefore important in a variety of calculations of mode 
propagation, dispersion, coupling, switching, cross talk, and modulation on optical 
fibers and waveguide devices.   
 
The difficulty of these calculations is often substantial because of the complex na-
ture of the HE11 mode.  Fortunately, the Gaussian approximation to the HE11 mode 
shape is sufficiently accurate for the majority of fiber mode calculations.  In the 
Gaussian approximation, the mode field is  
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where the beam 1/e-field beam radius (1/e2 intensity), ω, is chosen to give the best 
match to the HE11 mode shape.  For a step-index fiber with radius a, the best-
match beam radius is 

65.1 87.2619.165.0 −− ⋅+⋅+= VV
a
ω  (5.49) 

This Gaussian approximation is compared to the LP01 mode in Fig. 5.16 with the 
following fiber parameters: V-number: V=2.166, Core radius: a=3.955μm, Wave-
length: λ=1.310 μm. 
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Figure 5.16. Comparison of LP01 mode (solid) and the Gaussian approximation 
(dashed) to the HE11 mode.  We see that the two mode shapes are 
well matched, but that the Gaussian falls off quicker at large radii.  
That is of importance in some cross-talk calculations.  

5.4.4 Power Confinement  

As for the slab waveguide, the total power in a mode is calculated by integrating  

( )HESz ×= Re
2
1  (5.50) 

over the cross sectional area of the waveguide.  In the weakly guiding limit, the ra-
tio of the power carried in the core to the total power is 
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It follows that the ratio of the power carried in the cladding to the total power can 
be expressed as  

total

core

total

clad

P
P

P
P −=1  (5.52) 

 
As in the slab waveguide we studied before, the power confinement factor for a 
given mode is very low at the cut-off for the mode, and increases with increasing 
V-number above cut-off. 

5.5 Dispersion 

Dielectric optical waveguides have much higher bandwidth than coaxial cables 
and other metal waveguides used for radio-frequency communication, because 
higher frequencies are strongly attenuated on metallic waveguides.  The maximum 
frequency and bandwidth of metallic guides are therefore quite limited.  Dielectric 
waveguides, on the other hand, have very low loss, so the bandwidth is not limited 
by the range of frequencies that can propagate without excess attenuation, but 
rather by pulse spreading or dispersion.   
 
There are three types of phenomena that create dispersion on waveguides; material 
dispersion, waveguide dispersion, and modal dispersion.  These will be present in 
different amounts on different types of waveguides.  Metallic waveguides, for ex-
ample, have little material dispersion or waveguide dispersion, because the fields 
are propagating in vacuum or air.  In optical waveguides, the material is typically 
glass, and the distribution of fields in the core and cladding depends on wave-
length, so both material and waveguide dispersion are important. 
 
Modal dispersion is caused by the fact that different modes have different veloci-
ties, so it can be eliminated by using single mode waveguides.  We often say that 
modern optical fiber is single mode, so we should expect these types of 
waveguides to be free of modal dispersion.  The standard single mode fiber is, 
however, not single mode, but supports two nominally degenerate modes of or-
thogonal polarization.  In practice, these modes are not completely degenerate, and 
polarization mode dispersion (PMD) does in fact contribute to signal degradation 
on modern single mode fibers. 
 
We will now first consider the three sources of dispersion separately, and then we 
will describe their combined effects on the communication characteristics of opti-
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cal waveguides.  Finally, we will investigate approaches and devices designed to 
negate the negative effects of dispersion on signal fidelity. 

5.5.1 Material Dispersion 

Dispersion in a solid is caused by the fact that the index of refraction of the solid 
has a non-linear dependence on frequency or wavelength.  A linear dependence 
does not lead to pulse spreading because the group velocity is constant.  To quan-
tify our discussion of material dispersion, we develop a simple model of for the 
response of a solid to an electric field.  Consider the classical electron model or 
Lorenz model of Fig. 5.17 below. 
 

 

mn 
Electron 

m 

x x0 

k 

 
 

Figure 5.17 Classical Electron Model (CEO) of the atomic response to an ap-
plied optical field. 

 
Making the assumption that the mass of the nucleus is so much larger than the 
electron mass that we can consider the nucleus stationary, we find the equation of 
motion of the electron by summing the forces that are acting on it  

( ) ( ) ( ) ( )teEtkx
dt

tdx
dt

txdm −=++ γ2

2
 (5.53) 

Here we have introduced a loss term to account for absorption or emission of elec-
tromagnetic energy.   
 
We now rewrite this equation in terms of the resonance frequency of the spring 

mass system, 
m
k=0ω   

( ) ( ) ( ) ( )tE
m
etx

dt
tdx

dt
txd −=++ 2

02

2
ωγ  (5.54) 

With a harmonically varying optical field driving the dipole, we expect a har-
monic response.   
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( ) ( ) ( ) tjtj extxeEtE ωω ωω )(                 =⇒=  (5.55) 

 
We can then rewrite the equation in phasor form 

( ) ( ) ( ) ( ) ( )ωωωωωγωω E
m
exxjxj −=++ 2

0
2  (5.56) 

with the solution 
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The electric displacement can then be expressed 
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We see that the relative dielectric constant can be expressed  
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Finally we find the refractive index as the square root of the relative dielectric 
constant 

( )
( ) ( )

5.0

22222
00

2

22222
00

22
0

2

0
1

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎥⎦
⎤

⎢⎣
⎡ +−

−

⎥⎦
⎤

⎢⎣
⎡ +−

−
+==

ωγωωε

γω

ωγωωε

ωω

ε
ε m

eN
jm

eN
n  (5.60)

 
In a typical solid we have several electron states with different resonance frequen-
cies contributing to the dielectric constant, which then can be expressed 
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where fi is the oscillator strength of the resonance.   
 
This information is expressed in the empirical Sellmeier equation 

∑ −
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kGAn 22

2
2

λλ
λ  (5.62) 

The Sellmeier coefficients are available for many optical materials of interest.  
The most common materials can be conveniently looked up on Wikipedia. 

5.5.1.1 Frequency Dependent Dielectric Constant 

The dielectric constant, ε, is defined through the constitutive relation  

),(),( trEtrD ε=  (5.63) 

This time-domain equation has no frequency dependent terms.  To introduce fre-
quency dependence we turn to the phasor representation of plane waves.  
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 (5.64)

where the phase factor, exp[-jθx], has been included in the field amplitude in the 
last expression.   
 
In phasor notation we drop the explicit taking of the real part.  

( ) ( ) tjerEtrE ωω,, =  (5.65) 

where Ex is a complex quantity with six components (three vector components 
each with amplitude and phase).  Maxwell’s equations are linear so we can write 
an arbitrary time waveform as a sum of monochromatic plane waves  

( ) ( ) ( )[ ]∫
∞

∞−

−⋅= ωωω
π

dkztjrEtrE exp,
2
1,  (5.66) 

where again the electric field symbol in the integral is a phasor, i.e. a complex 
quantity.  The constitutive relation can now be written  

( ) ( ) ( )ωωεω ,, rErD ⋅=  (5.67) 
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In the time domain this becomes 
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where ε(t) is the impulse response of the dielectric constant.   
 
Only if the impulse response is a delta function do we recover the “standard” con-
stitutive relation.  Vacuum has a delta-function impulse response, but all real ma-
terials have impulse responses of finite duration.  When we talk about the relative 
dielectric constant of a material, we therefore always mean the proportionality 
constant relating the phasor or Fourier component of the electric displacement to 
the phasor or Fourier component of the electric field.  If we are considering arbi-
trary waveforms in the time domain, we must use the Fourier integral or the con-
volution with the impulse response.  Similar considerations are valid for the per-
mitivity. 
 
Now that we have established that we are interested in the dielectric constant in 
the Fourier or frequency domain, let’s see what values this quantity can take.  
Clearly the dielectric constant can be real and larger than unity.  This is the stan-
dard value for most optical waveguide materials.  By considering the Lorenz 
model for the polarization of a solid, we also realize that the dielectric constant 
can be less than unity and even negative.  That happens when the polarization of 
the material is out of phase with the applied optical field.  A negative value of the 
dielectric constant can be used as a functional definition of a metal.   
 
The dielectric constant may also be complex.  This is the case in materials with 
gain or loss.  The sign of the imaginary part of the dielectric constant for a lossy 
material depends on the convention we choose for the phasors.  One way to see 
this is to consider the complex Poynting theorem  
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The term jωεEE* is positive, which corresponds to energy loss, if the imaginary 
part of the dielectric constant is negative.  With the conventions we have chosen, 
lossy materials will therefore have a negative imaginary part of their dielectric 
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constant.  Another way to see this is to compare the loss term due to the dielectric 
constant to the current density in Ampere’s law   

JEjJDjH +=+=×∇ ωεω  (5.70) 

Again we see that a negative imaginary part of the dielectric constant is required 
to give the real part of the jωD term the same sign as the current density term. 

5.5.1.2 Group Delay Caused by Material Dispersion 

The frequency dependencies of the waveguide materials lead to variation of the 
group velocity as a function of frequency.  This variation means that the different 
frequencies of a pulse move at different speeds, leading to pulse spreading.  The 
details of how pulses are distorted by dispersion are analyzed in detail in Section 
5.6.  In this section we will just give a first-order description. 
 
Recall that the group velocity is given by 

dk
dvg
ω=  (5.71) 

The inverse of the group velocity is the group delay, which can be expressed 
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where Ng is the group index.  Here we have ignored the term 
0k∂

∂β , which de-

scribes how the wave vector depends on the wavelength in the absence of material 
dispersion.  This effect is called waveguide dispersion, and we will get back to it 
in the next section. 
 
The group index can be expressed 

λ
λ

ω
ω

d
dnn

d
dnnNg −=+=  (5.73) 

The term dn/dλ is negative in most materials in the wavelength range of interest.  
We therefore say that we have normal dispersion when the group index is larger 
than the refractive index.   
 
The spread of a pulse of bandwidth Δλ traveling a distance L is approximately 
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From the equation for the group index, we find 
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so pulse spread becomes 
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where D is the material dispersion.  We see that it is proportional to the second de-
rivative of the index with respect to the wavelength. 

5.5.2 Waveguide Dispersion 

Going back to Eq. 5.72, but this time ignoring material dispersion, we find that the 
group delay becomes 
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In the absence of material dispersion, the pulse spread can then be expressed  
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We typically don’t have closed-form solutions for β (we find it by solving the ei-
genvalue equation numerically or graphically), so we must evaluate Δτg numeri-
cally.  It is instructive, however, to consider the conceptual dispersion diagrams of 
typical guided modes as shown in Fig. 5.18.  Here we have greatly exaggerated 
the difference between the core and cladding index, to clarify the dependence of 
the phase and group velocities on frequency.   
 
If we follow an individual mode in Fig. 5.18, we see that at low frequencies just 
above cut-off, the mode is loosely bound to the core and therefore has an index 
close to that of the cladding.  As the frequency increases, the mode is better and 
better confined, so its phase and group index approaches that of the core.  In be-
tween these extremes, the curve goes through a point where the slope, and there-
fore the group index, is maximized.  At that point the curvature (second deriva-
tive) is zero, and so is the pulse spread (to first order).  There is also a point where 
the curvature, and therefore the pulse spread, is maximized.  This means that the 
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pulse spreading is maximied of modes that are transitioning between being 
loosely-bound and well-confined to the core.   
 

 

ω0

β=ωncore/c

ω

β

β=ωncladding/c

 
Figure 5.18. Schematic diagram of guided modes in a slab waveguide over an 

extended range of wavelengths.  The group index for a mode starts 
at a value equal to the cladding index for low frequencies, goes 
through a minimum (where the dispersion is zero), and approaches 
the core value for high wave vectors.  (This figure is not to scale.  It 
is conceptual and not meant for accurate graphical solutions.) 

 
The conceptual descriptions of the longitudinal wavevector, group velocity, and 
dispersion in Fig. 5.18 are valid for most standard wave guides.  It allows us to 
make the following observations:  

1. The waveguide wavevector, β, is very close to a linear function of the 
vacuum wave vector (β =n k0)  

2. The effective group index increases from the cladding to a value higher 
than the core index, before it asymptotically approaches the core value.   

3. The dispersion first decreases to a minimum negative value, goes through 
a null at the inflection point, increases to a maximum positive value be-
fore it asymptotically approaches zero for well confined modes. 

5.5.3 Modal Dispersion 

In addition to the material and waveguide dispersion described in sections 5.5.1 
and 5.5.2, multimode waveguides will also experience modal dispersion.  This 
arises from the fact that different modes have different propagation speeds.  An 
optical field that is coupled into a multimode waveguide will excite multiple 
modes that propagate at different velocities, causing pulse spread and distortion.   
 
The delay difference caused by modal dispersion is independent of the signal 
bandwidth.  This is contrary to material and waveguide dispersion that are both 
proportional to the signal bandwidth (Eqs. 5.76 and 5.78).  The effect of modal 
dispersion is, however, bandwidth dependent, because pulse spreading relative to 
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the pulse length is proportional to the bandwidth, so high-bandwidth signals are 
more adversely affected.  
 
To understand the range of group velocities on a typical waveguide, we again con-
sider Fig. 5.18.  It shows that the group velocity is a complex function of the mode 
number.  As we go from low to high mode numbers at a given frequency (i.e. we 
are following a vertical line downwards in the diagram), we see that the group ve-
locity decreases from the phase velocity of the core to a minimum velocity, and 
then increases again to the phase velocity of the cladding.    
 
The full range of group velocities therefore extend from the minimum velocity of 
the intermediate modes to the high velocity of the high-order modes.  The high-
order modes are, however, very loosely bound to the core, so they tend to have 
high loss in the presence of waveguide imperfections.  In practical waveguides we 
can therefore ignore the high-order modes.  The lowest group velocities we con-
sider are therefore those of the low-order modes, i.e. modes that are well confined 
and therefore have a group index close to the refractive index of the core.  The full 
range of group indecies therefore extends from the core index on the low side to 
the group index of the minimum-velocity, intermediate modes on the high side.  
 
To calculate the highest group velocity at a given frequency, we would need an 
accurate description of the waveguide dispersion diagram.  This level of sophisti-
cation is not required in most practical situations.  Typically it suffices to use a 
crude geometrical-optics model as shown in Fig. 5.19.  Here we say that slowest 
mode on the fiber is the one that is propagating at the Total-Internal-Reflection 
angle, given by  
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n1sinθ  (5.79) 

 

ncore 

θcr 

ncladding 

 
Figure 5.19. Simple geometrical-optics model for calculating the dependence of 

group velocity on mode number.  According to the model the low-
est-order modes travel along the axis of the optical waveguide 
(shortest path), while the modes close to cut-off travel at the TIR 
cut-off angle.   
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Within this model, the temporal pulse spread is  

c
n

c
n

n
n

c
n

c
n

c
n

claddingcore

cladding

corecorecore

cr

core
orderloworderhigh

−≈

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=−=−=Δ −− 1

sin
1
θ

τττ
 (5.80) 

This simple expression is very useful for calculating modal dispersion, although 
we should keep in mind that it really isn’t correct that the modes at cut-off propa-
gate slower than the ones that are well confined.  In fact, if we calculate the delays 
of the extreme modes, based on the equation   

ωω
βτ

d
dn

k
c

n
d
d ff

0+==  (5.81) 

we find that the temporal pulse spread is  
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This calculation yields the same absolute value, but the opposite sign.  This equa-
tion does in fact give the correct delay difference between the extreme modes, but 
Eq. 5.80 is the one that gives the practically-useful results for the typical case 
where the highest-order modes are attenuated to insignificance by waveguide im-
perfections. 
 
A final point to note about modal dispersion is that it is somewhat mitigated by 
mode coupling.  We will study mode coupling in detail in Chapter 6, but for now 
we assume that small perturbations will couple energy between the modes of our 
waveguides.  Energy from the extreme modes will therefore continuously be cou-
pled into modes of closer to average group velocity.  This coupling has the conse-
quence that instead of being proportional to the propagation length, modal disper-
sion has a length dependence of cLL ⋅ , where Lc is the characteristic coupling 
length for the particular coupling mechanism that dominates the waveguide.  

5.5.4 Total dispersion – Simultaneous Material, Modal and Waveguide 
Dispersion 

Material and waveguide dispersion act on individual modes, while modal disper-
sion acts on an ensemble of modes.  When we consider a single mode, we need 
only calculate the material and waveguide dispersion.  To first order the pulse 
broadening due to material and waveguide dispersion can simply be added.  We 
see this by calculating the wavelength derivative of the group delay 
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The approximation we make by adding the material and waveguide dispersion is 
to neglect the term ( ) λβ ddnk 1−∂∂ . 
 
Normally the material dispersion dominates over waveguide dispersion, particu-
larly in modern fiber with small index variations (which minimized waveguide 
dispersion).  However, close to the dispersion minimum, which in glass is close to 
1.3 μm wavelength, the waveguide dispersion becomes important.  Of particular 
interest is to use the waveguide dispersion to exactly compensate for the material 
dispersion at a chosen wavelength.  Indeed, it is possible to shift the dispersion 
minimum of optical fiber from 1.3 μm to 1.55 μm, which is the most popular 
wavelength for fiber optical communication due to the absorption minimum and 
the existence of efficient, low-noise optical amplifiers in this wavelength range.  
We will look closer at the principles of waveguide-dispersion engineering after we 
have developed a detailed model for pulse propagation in the presence of disper-
sion.   
 
When modal dispersion is present, it tends to dominate the other dispersion 
mechanisms.  In multimode systems, we therefore usually neglect material and 
waveguide dispersion.  In some cases, however, we would like to calculate the to-
tal pulse spread caused by all types of dispersion.  If we assume that both the sin-
gle mode dispersion and the modal dispersion both lead to broadened pulses of 
Gaussian shape, we find that the total pulse broadening is given by 

( ) 2
modal

2 ττττ ++= waveguidematerialtotal  (5.85) 
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5.6 Pulse Spreading on Fibers 

We will now take a more detailed look at what happens when a pulse of light 
propagates on a waveguide or fiber.  Assume that the pulse has a Gaussian profile 
in time  

( ) ( ) ( )[ ]tjtyxutyxE 0
2

0 expRe,,0,, ωα +⋅−=  (5.86) 

where u0(x,y) is the transverse profile of the mode.  The function exp(-αt2) repre-
sents the envelope of the pulse, while exp(jωt) is a rapidly varying optical oscilla-
tion.   
 
The envelope can be expressed in terms of its Fourier transform 
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Using this equation, the Gaussian pulse can be written 

( ) ( ) ( ) ( ) ( ) ΩΩΩ= ∫
∞

∞−

dtjFtjyxutyxE expexp,,0,, 00 ω  (5.88)

where we have dropped the explicit taking of the real part.  This expression shows 
that a pulse can be viewed as a sum of harmonics in much the same way that an 
optical beam can be viewed as a sum of plane waves.  In fact, there are strong 
analogies between dispersion (pulse spreading) and diffraction of propagating op-
tical fields.   
 
To find the field at a different location, we must multiply each frequency compo-
nent of the pulse with a phase factor, exp[-jβz], where the propagation constant is 
a function of frequency, β(ω0+Ω).  The description of the pulse then takes the 
form  

( ) ( ) ( ) ( )[ ] Ω⋅−Ω+Ω= ∫
∞

∞−

dztjFyxutzyxE βω00 exp,,,,  (5.89)

This description can be used for pulses with well-defined wave vectors, i.e. pulses 
of plane waves, “Bessel beams” (this is a class of optical beams that do not change 
their profile while propagating – just like plane waves, these beams contain infi-
nite energy and cannot be normalized, but are useful as basis functions for ex-
pressing physically realizable beam profiles), and guided modes, which is our fo-
cus here.  For pulses that are also experiencing diffraction (which all physically 
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realizable beams propagating in free-space do), we must consider this effect in 
combination with pulse spreading.   
 
In general, the longitudinal wave vector can be a complex function of wavelength 
in the range of wavelengths contained in the optical pulse, particularly for guided 
modes, where we must consider both material and waveguide dispersion.  In prac-
tice, however, optical pulses have a relatively small fractional bandwidth, so we 
can expand the wave vector in a Taylor series 
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Using this approximation, the pulse is  
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Substituting the Fourier transform of the pulse, we find 
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We see that this expression is identical to the initial Fourier transform of the Gaus-
sian pulse once we make the following substitutions 
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The pulse can then be expressed 
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Comparing this to the pulse at z=0 (eq. 5.86), we find that there are three changes: 
The pulse is displaced, broadened, and has acquired chirp.  The displacement is 
trivial.  The pulse is centered at t=z/vg, i.e. it has moved or propagated at the group 
velocity.  This is of course the expected result.  The broading and chirp are more 
interesting and will be discussed in detail 

5.6.1 Pulse Broadening 

Equation 5.95 shows that the pulse has been broadened while propagating.  If we 
define the pulse width, τ, as the Full-Width-at-Half-Maximum (FWHM) of the in-
tensity of the pulse (the field squared), we find 
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We see that the broadening of the pulse is a function of the derivative of the group 
delay with respect to frequency.  This is exactly what we would expect from our 
earlier treatment.   
 
Observing that the initial pulse width is ατ 2ln20 = , we can express the pulse 
width as 
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At large distances this simplifies to 
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In general, the wave vector of a mode is a function of the materials of the core and 
cladding of the guide, and the wavelength of the light.  The functional relation-
ships depend strongly on the geometry of the guide.  Expressing the wavevector in 
terms of the mode index, we can write  
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In a weakly guiding fiber, i.e. a fiber in which ncore•nclad, we assume that  
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This is a reasonable assumption if the core and cladding materials are essentially 
the same, with only a small index difference caused by impurity doping in the 
core.  With this assumption, the group delay simplifies to 
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To find the dispersion, we take the derivative with respect to the wavelength 
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 (5.104) 

The conclusion is that for weakly guiding waveguides, we can simply add the ma-
terial and waveguide dispersion.  As discussed before, we can utilize this phe-
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nomenon to create dispersion shifted and dispersion flattened fibers.  This is con-
ceptually illustrated in Fig. 5.20. 
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Figure 5.20. Schematic graphs of group-velocity dispersion on weakly guiding 

fibers.  The total dispersion of a single mode is the sum of material 
and waveguide dispersion. By correctly engineering the waveguide 
dispersion, dispersion shifted and dispersion-flattened fibers can be 
designed. 

5.6.2 Frequency Chirp 

Going back to our expression for the Gaussian pulse after propagation 
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we see that in addition to the spatial off set and the pulse broadening, we also have 
a z-dependent phase term in the expression.  The total phase is indeed given by 
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The instantaneous frequency of the pulse is 
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We see that the pulse does not have a uniform instantaneous frequency after 
propagation, but that the frequency varies throughout the pulse.  A pulse with a 
varying frequency is said to be chirped.  Positive dispersion results in a pulse that 
has lower frequencies (i.e. longer wavelengths, red shift) at its leading edge, and 
higher frequencies at its trailing edge.  This is illustrated in Fig. 5.21. 
 

 

z 

 
 

Figure 5.21. Schematic of chirped pulse on fiber with positive dispersion. 

5.6.3 Dispersion Compensation 

Our treatment of dispersion shows that it is a reversible process, i.e. the pulse 
broadening caused by positive dispersion can be undone by negative dispersion.  
This type of dispersion compensation is becoming increasingly common in fiber 
optic communication systems.   
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Typically, the installed fiber will have a specific dispersion at the wavelength in 
question, and the fiber that is used to “undo” the dispersion is placed in a switch-
ing center or other service building.  The compensating fiber is therefore not con-
tributing to transmission of the signals.  Some networks have alternating lengths 
of fiber with opposite dispersion.  This is preferable to simply using low disper-
sion, or dispersion flattened fiber, because dispersion helps mitigate non-linear op-
tical effects that create cross talk in WDM channels. 
 
Alternatively, dispersion can be controlled by spectral filtering (or spectral phase 
delay) as in the Heritage-Weiner[2] pulse compressor of Fig. 5.22 (see Chapter 13 
for further discussion of this device).   
 

f f 

Grating 

Incident 
laser beam

Phase 
shifting SLM

 
Figure 5.22. Schematic drawing of the Heritage-Weiner femto-second pulse 

compressor.  The short-pulse (broad band) laser beam is dispersed 
on an array of phase shifters that can be programmed to compen-
sate for the dispersion that the pulse has suffered. 

5.6.4 Dispersion Expressed in Normalized Propagation Parameters 

Finding the dispersion relationship is tedious in any of the waveguide structures 
we have studied so far, and those are the simple ones!  We must solve the charac-
teristic equation for the longitudinal wave vector for a range of wavelengths or 
frequencies using graphical or numerical means.  Once that is done, we can find 
the appropriate derivatives.  This procedure must be repeated for every mode we 
are interested in.  Once found, the dispersion relation of a waveguide structure can 
be depicted in several ways, but the most common is to plot the normalized index 
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vs. the normalized frequency 22
0 cladcore nnhkV −= .   

 
Earlier we showed how we could generate such a plot for the asymmetric 
waveguide by rewriting the characteristic equation in terms of normalized parame-
ters.  Similar plots for particular optical waveguides and fibers can be generated 
by finding solutions to the characteristic equations for these structures.  These 
plots of normalized index vs. normalized frequency contain the dispersion relation 
of the waveguide.   
 
To see how, consider the group delay 
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The definition of the normalized frequency results in  
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The definition of the normalized index allows us to write 
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where 
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Practical fibers have low index differences so we can to a good approximation 
write the longitudinal wave vector as a binomial expansion 
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Using this approximation we find the following expression for the group delay 
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Ignoring the weak wavelength dependence of Δ, this evaluates to 
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The first term describes the material dispersion that we have discussed before, and 
the second term gives the waveguide dispersion in terms of the normalized pa-
rameters.   
 
Using the approximation  
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the last term (waveguide dispersion) can be rewritten as 
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Expressions for d(Vb)/dV can be found analytically for the LP modes and numeri-
cally for the exact fiber modes.  Some modes (LP0n) have zero waveguide-based 
group delay close to cut-off.  These modes tend to have large losses due to bend 
etc. so they play no significant role in practical fiber optical communications.   
 



5: Optical Fibers and Waveguides            157 

Away from cut-off the dispersion is a function of the azimuthal mode number as 
demonstrated by Marcuse 
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Considering only modes with ν>1 (modes with n=0, and n=1 have extreme modal 
delays, but, as noted above, tend to be strongly attenuated close to cut-off), we 
find the following modal dispersion 
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We have used the relation νmax=2V/π, to derive the last expression.  In the large V-
number limit, this is identical to the simplified expression for modal dispersion we 
found earlier. 

5.6.5 Single-Mode Dispersion Expressed in Normalized Parameters 

The dispersion for a single mode is given by 
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where again we have neglected the dependence of Δ on wavelength.   
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To evaluate the dispersion for single mode fibers we use Gloge’s expression for 
the LP01 mode 
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together with the definition 
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ab κ  to plot the normalized index (b) and 

it’s derivatives (d(Vb)/dV and Vd2(Vb)/dV2).  The results are shown in Figure 7.5.   
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Figure 5.24. Normalized index (dotted), group delay term (d(Vb)/dV - dashed), 
and dispersion term (Vd2(Vb)/dV2 - solid) of the LP01 mode. 

 
At low frequency the fundamental mode is not well confined, and the normalized 
index, group delay, and dispersion are all zero.  At high frequencies, the mode is 
well confined, and the normalized index approaches unity, while the dispersion 
term approaches zero.  The waveguide dispersion is maximized close to where the 
slope of the group delay has its maximum.   
 
The LP modes are good approximations to the exact modes of the cylindrical 
waveguide, but real optical fibers have more complex index profiles, for which we 
cannot find analytical solutions or even good analytical approximations.  To find 
the dispersion of practical fibers, we must therefore resort to numerical calcula-
tions of the wave vector as a function of wavelength. 

5.6.6 Single Mode Fiber Design 

To ensure single mode operation of a fiber, we must have 

405.222
0 <−= cladcore nnakV  (5.126) 
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This requirement can be met by a small core size or by a small index difference.  
A small core size complicates coupling, termination, and splicing of the fiber, 
while a small index difference leads to losses because the fundamental mode is not 
well confined.  A compromise between practical fiber handling and loss must 
therefore be found.   
 
The optical-fiber designer also must also carefully consider the dopants used to 
create the index profile.  Impurities that led to excess absorption are unacceptable.  
Modern fibers have Germanium doped cores to (slightly) increase the index over 
that of pure SiO2.  (Doping here means adding some GeO2 to the SiO2). 
 
To have the design flexibility to optimize mode-field diameter, confinement, and 
dispersion while maintaining single-mode operation, fiber with slightly more 
complex index profiles than the step-index fiber we have studied, have been de-
veloped.  One example is the so-called W-profile fiber.  The exact wavevectors, 
mode diameters, and dispersion of these fibers must be found numerically. 

5.7 Fiber Calculation Example 

Consider a single-mode, step-index fiber with the following characteristics:  a = 4 
µm, ncore = 1.45 and ncladding = 1.446.   

a) What is the normalized frequency at 1550 nm wavelength? 
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b) How many guided modes does the fiber support?  

Two degenerate HE11 modes. 

c) What is the waveguide dispersion, Dguide, for this fiber? 
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From the Fig. 5.24 we see that the expression in square-parenthesis is approxi-
mately 0.97, so 
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d) A transform-limited, Gaussian pulse with a FWHM width of 10 ps is 
launched on the fiber.  What is the pulse length after it has propagated 
100 km on the fiber?  Assume that the material dispersion at 1.55 nm is 
10ps/(km·nm) for both the core and cladding materials. 

The total dispersion is 10 ps/(km·nm) - 8.3ps/(km·nm) = 1.7 ps/(km·nm).  The 
width of the pulse in wavelength space is  
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e) Design a fiber to compensate for the dispersion caused by propagation 
as described in d).  The compensating fiber should also be a step-index 
fiber of the same material, but may have a different core size.  

As for any design problem, this does not have a unique solution.  The approach is 
to shrink the core radius until waveguide dispersion has a larger absolute value 
than the material dispersion.  This happens for a range of V-values around 1.2 – 
1.3.  Once the fiber parameters are chosen, the length of fiber must be adjusted 
such that the net dispersion of the two fibers in series is zero.  

5.8 Summary of Fibers and Waveguides 

Fiber optics forms the infrastructure for all optical communication devices, includ-
ing those that are implemented in Optical MEMS and Nanophotonics.  This chap-
ter lays the foundation for understanding of guided-wave and optical-fiber compo-
nents.  The first part of the chapter is devoted to building an intuitive 
understanding of guided-wave physics through a detailed derivation and discus-
sion of slab two-dimensional) waveguides.  The second part of the chapter ex-
tends, without detailed derivations, the slab-waveguide picture to cylindrical 
waveguides or optical fibers.  The basic characteristics, as well as the important 
technological features, of modern optical fibers are described.  The last part of the 
chapter is focused on dispersion (wavelength dependence) of wave propagation on 
optical fibers.  Here we use make use of a formalism very similar to the Gaussian-
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Beam theory we used in Chapter 4 to described spatial diffraction to model the 
temporal behavior of guided-wave optical pulses.  Our Gaussian-pulse model al-
lows us to derive compact analytical formulas for pulse spreading on optical fi-
bers.  The most important mathematical models used in waveguide calculations 
are summarized in the following.  
 
The total field of a TE guided mode on a slab waveguide can be written 
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where β is the longitudinal wave vector, 222
0 βκ −= if nk , is the transversal wave 

vector, and 22
0

2
ii nk−= βγ are the attenuation coefficients.   

 
The transversal wavevector is determined by the eigenvalue equation  
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These equations must be must be solved numerically or graphically to find the ei-
genvalues for βTE and βTM, which define the guided modes of the slab waveguide 
 
The planewave picture of the guided modes leads to the dispersion equation  

mhkn scf ⋅=Φ−Φ− πθ 2cos2  (5.136) 

where m is an integer, and Φc and Φs are the phase shifts of TIR at the cladding 
and substrate respectively.  Graphical solutions show that as the ratio h/λ in-
creases, the number of guided modes supported by the guide also increases.  For 
sufficiently small h/λ ratios, a symmetric guide will have only one mode while an 
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asymmetric guide will support no guided modes.  For a given h/λ ratio, there is a 
finite set of guided modes and a continuous, infinite set of radiation modes.   
 
The important properties of modes are: 

1. Each eigenvalue of the longitudinal wavevector, β, corresponds to one 
unique mode (field distribution), or a unique set of degenerate modes.   

2. There is a finite number of guided modes. 
3. Most modes are not guided.  These are the radiation modes. 
4. The modes form an orthogonal, complete set, which means that any field 

profile can be written as a superposition of modes  
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              where A(x,y,z) can be the E or the H field. 

Guided Modes on Step-Index Fibers - LP modes 

The modes on weakly guiding fibers (ncore~nclad) can be approximated as linearly 
polarized modes, which are degenerate combination of the exact modes. 

The Fundamental Mode of a Cylindrical Waveguide 

The HE11 mode of the cylindrical waveguide is guided for all wavelengths.  When 
the V-number is less than 2.405, the HE11 mode is the only guided mode!   
The following Gaussian approximation to the HE11 mode is sufficiently accurate 
for most fiber calculations:  
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where   
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Dispersion in homogeneous media: 

In a homogeneous medium, the group velocity, group delay, and group index can 
be expressed 
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The derivative dn/dλ is negative (normal dispersion) in most materials of interest 
for optical waveguides.  The spread of a pulse of bandwidth Δλ traveling a dis-
tance L is 
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where D is the material dispersion.   

Waveguide Dispersion 

The group delays and pulse spreads of guided modes in media without material 
dispersion are  

kcd
d

g ∂
∂== β

ω
βτ 1  (5.144)

kc
k

kd
d

cd
d g

2

22

2
1

∂
∂

⋅
−=⎟

⎠
⎞

⎜
⎝
⎛

∂
∂= β

π
β

λλ
τ

 (5.145)

Modal Dispersion 

The longitudinal wave vector of the lowest order mode of a waveguide is ap-
proximately equal to the wavevector in the core material, and the highest-order 
guided mode of practical interest can be though of as propagating at the TIR an-
gle, so the maximum delay difference is   

c
n

c
n claddingcore −≈Δτ  (5.146) 

Modal dispersion is mitigated by mode coupling, which means that instead of be-
ing proportional to propagation length, modal dispersion has a length dependence 
of cLL ⋅ , where Lc is the characteristic coupling length.  
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Total Dispersion 

Assuming that single mode dispersion and modal dispersion both lead to broad-
ened pulses of Gaussian shape, the total pulse broadening is  
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Gaussian Pulse Propagation 

A Gaussian pulse of the form 
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has an intensity FWHW of 
α

τ 2ln2
0 = , and its spectrum is given by its Fourier 

transform 
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It follows that the intensity FWHM of the spectrum is  
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After propagation through a distance z, the pulse takes the form  
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The longitudinal wave vector is a function of wavelength, but in practice optical 
pulses have relatively small fractional bandwidths, so we neglect higher-than-
quadratic terms and obtain 
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Comparing this to the pulse at z=0, we see that the pulse is displaced by z/vg, it is 
broadened, and it is chirped.  The broadening can be expressed  
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where ατ 2ln20 =  is the FWHM of the transformed-limited pulse, and 
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that is manifest in the expression for the instantaneous frequency of the pulse  
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The frequency varies throughout the pulse. 

Further Reading 

C.R. Pollock, Fundamentals of Optoelectronics”, Richard D. Irwin, inc. 1995. 
J.C. Palais, “Fiber Optic Communication”, 5th edition, Prentice Hall, 2005. 
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Exercises 

Problem 5.1 – Boundary Conditions 

a. What are the boundary conditions for the E field of a TE mode at the 
film/cladding interface in a symmetric slab waveguide? 

b. What are the boundary conditions for the E field of a TM mode at the 
film/cladding interface in a symmetric slab waveguide? 

c. Is it possible to have an asymmetric field distribution on a symmetric slab 
waveguide?  Explain. 

Problem 5.2 – Slab Waveguide 

Consider the structure shown below.   
 

 

n=1.4 

n=1.5 

n=1.4 

h 

 
 

Plane wave incident on high-index film. 
 

a. How many guided modes will the structure support (h=3λ)? 
b. At what incident angle, if any, will the plane wave be phase matched to the 

fundamental TM mode of the waveguide (h=3λ)?   

Problem 5.3 - Modal Dispersion and the Goos-Hanchen Shift 

The modal dispersion on multimode waveguides are sometimes erroneously mod-
eled as being caused by the difference in path length of a ray propagating along 
the axis of the waveguide and a ray that is propagating at the TIR angle.  
 

a. Using this overly simplified model, what is the maximum difference in 
time delay per unit of length of a step -index optical waveguide in terms of 
its core thickness, core index, cladding index, and the wavelength of the 
propagating light? 
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b. Calculate the maximum difference in time delay per unit of length of the 
same optical waveguide when the effects of the G-H shift are included.  
Assume that the thickness, h, equals 50 wavelengths.  Explain how you 
model the path of the ray in the cladding, and why you chose this model.  

c. Compare the models of a) and b) by plotting the delay through the 
waveguide as a function of the angle the ray makes with the axis from zero 
to the TIR angle for a waveguide with the following parameters: h=50 λ, 
ncore=1.5, and nclad=1.45.  Based on these plots, comment on the physical 
realism of the two models.  Are there angle ranges for which one or the 
other model is unphysical? 

 

G-H shift (z)

Core (ncore) h

Cladding (nclad) 

 
Step-index waveguide.  

 

Problem 5.4 – Waveguide Modes: 

The figure shows a graphical solution of the characteristic equation for the TE 
modes of a dielectric slab waveguide of thickness 5 micron at 1 micron wave-
length.  The refractive index of the core is 1.5. 
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a. What is a mode?  Explain in terms that can be understood by people not 
trained in physics or engineering. 

b. How many guided-TE modes does this waveguide support?  How many 
TM modes?  Label the TE modes on the graph. 

c. Sketch the transversal mode profile of the three lowest order TE modes. 
d. Use the graph to find the value of the longitudinal wavevector for the high-

est order mode.   
e. Is this a symmetric waveguide?  Explain. 
f. Use the graph to find the V-number of the waveguide. 
g. What happens to the modes of the waveguide as the wavelength increases?   

Problem 5.5 - Confinement of Waveguide Modes  

Consider a symmetric slab waveguide with a core index of 1.5 and cladding index 
of 1.45.   
 

a. What thickness of the core results in the smallest width (FWHM) of the 
lowest order TE mode?   Find the solution graphically by plotting the 
FWHM (normalized to λ) as a function of the waveguide thickness (also 
normalized to λ). 

b. What thickness of the core results in the smallest group velocity of the 
lowest order TE mode?  

c. What thickness of the core results in the smallest waveguide dispersion of 
the lowest order TE mode?  

Problem 5.6 – Combinations of Modes 

a. Which of the profiles in the figure represent realizable guided modes?  
Explain.   

 
 

4 
31 

2 

Cladding 

Cladding 

Core

 
The cladding regions have uniform indices, while the index may vary across the 
core. 
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b. We measure the intensity distribution on a waveguide as a function of 
length (in practice we would do this by cutting the waveguide back and 
measure each cross section), and we find a periodic variation.  There are no 
backwards propagating waves on the guide.  Explain what is going on.  
What is the significance of the period of the intensity fluctuations? 

Problem 5.7 – Single-Mode Optical Fibers 

a. Explain what it means that a fiber is “single-mode”.  How must a fiber be 
designed to have this property? 

b. What is the main advantage of single-mode fiber over multimode fiber?  
(Explain) 

Problem 5.8 – Single-Mode Operation  

We have a step-index fiber with the following parameters:  Core index: ncore=1.45, 
cladding index: nclad=1.446, core radius: a=5 um.   
 

a. Is the fiber single-mode at 1.3 um wavelength?  (Explain)  
 
We are designing a fiber for single mode operation at 1.55 μm wavelength.  The 
core index is 1.45, and the cladding index is 1.446.   
 

b. How large can we make the core radius and still have the fiber be single-
mode (two-mode if you consider the two degenerate polarization modes)?  

Problem 5.9 – Mode Radius vs. Core Radius  

Consider an step-index, optical fiber with ncladding=1.445 and ncore=1.45.   
 

a. Plot the mode radius (normalized to the wavelength) of the fundamental fi-
ber mode as a function of core radius (normalized to the wavelength) for 
the range 0.1 to 10 wavelengths.  Explain the results physically. 

b. Assume that the fiber has a core radius of 4 um and that it has an incident 
field with a circular and constant intensity with a radius of 2 um perfectly 
centered on the fiber core.  What is the coupling efficiency under these 
conditions?  

Problem 5.10 – Orthogonal Modes  

Orthogonality of fiber modes is a central concept in waveguide theory.  Presume 
that two functions f(z) and g(z), defined for 0≤z≤h, are orthogonal if and only if 
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( ) ( ) 0
0

* =∫
h

dzzgzf .  Assume that f(z) and g(z) are both harmonic functions with 

nodes at z=0 and z=h.  Show that all modes of this type are orthogonal.   

Problem 5.11 – Surface-Plasmon Dispersion Relation 

Consider the dielectric interface shown in the figure below.  It can be treated as a 
slab waveguide of zero thickness.  Use the approach taken in section 5.3 to find 
the field distribution and longitudinal wave vector of the surface-plasmon mode 
that is confined to the interface. 
 
 

nc 

z ns 

x 

y 

 
The interface between to semi-infinite dielectrics can support guided TM waves.  
We’ll treat this structure as an asymmetric slab waveguide with zero thickness. 

Problem 5.12 – Interacting Surface Plasmons 

What types of guided modes are supported by the following structure?  Explain 
qualitatively. 

 

Metal, ε=-100 

Dielectric, ε=1 

Dielectric, ε=1 
 

Problem 5.13 – Pulse Propagation on Optical Fibers 

Consider a single-mode fiber with a=5μm, ncore = 1.45 and ncladding = 1.44.  As-
sume that the normalized index is related to the normalized frequency by 

( )22 4 VVb +=  
 

a. What is the waveguide dispersion at λ=1μm. 
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A transform-limited, Gaussian pulse (λ=1μm) with a FWHM width of 10 ps is 
launched on the fiber.   
 

b. What is the pulse length after it has propagated 100 km on the fiber?  As-
sume that the material dispersion at the pulse wavelength is 10ps/km/nm 
for both the core and cladding material.   

Problem 5.14 – Fiber Dispersion 

a. What is the shortest possible Gaussian pulse that can be observed at the 
output of a single-mode fiber?   

b. What is the corresponding initial pulse length?  Consider both transform-
limited and non-transform-limited input pulses.  Express your answers in 
terms of wavelength, total dispersion, and length of the fiber. 

 
Consider the single-mode fiber of Problem 5.13 (a=5μm, ncore = 1.45, and ncladding 
= 1.44).  You want to launch 10 ps pulses that are chirped such that the output 
pulse is also 10 ps.   
 

c. What is the longest length of fiber over which you can do this?  

Problem 5.15 - Gaussian Pulse Propagation 

What is the shortest possible Gaussian pulse that can be observed at the output of 
a single-mode fiber for a fixed length of the input pulse (i.e. the length is fixed, 
but the chirp is not)?  Express your answers in terms of input pulse length, wave-
length, total dispersion and fiber length.  Notice that is NOT the same as the last 
problem.  The difference is that here the length of the input pulse is fixed. 

Problem 5.16 – Modal Dispersion 

Consider a step-index optical fiber with the following parameters: a = 4.0 µm, 
ncore = 1.45 and ncladding = 1.444.  The normalized longitudinal wave vectors for the 
lower order modes can be found from Fig. 511.   
 

a. How many modes does the fiber support at 1.0 μm wavelength? (count all 
degenerate modes)  

 
A 10 ns Gaussian pulse is launched on a 10 km length of this fiber such that all 
modes carry the same energy.  Assume that there is no mode coupling on the fiber, 
and that the material and waveguide dispersion exactly compensate each other so 
that the total dispersion is negligible.   
 

b. Sketch the time waveform of the output power from the fiber.  (Detailed 
calculations of group velocities are not needed.  Your sketch should just 
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indicate the order of arrival and relative power in the pulses on the output.)  
State your assumptions! 

Problem 5.17 - Fiber Modes 

The figure shows the transversal electric fields of some of lower order modes on a 
step-index optical fiber.   
 
Show how these modes can be combined to obtain the LP11 modes. 
 

 

HE21 TE01 TM01  
 

Problem 5.18 – Fiber Polarizers 

When a fiber is forced into the shape of a loop, the core deforms into an elliptical 
shape.  Assume that the radius is decreased by δa in the plane of the loop and 
enlarged by the same amount in the orthogonal direction.   
 

a. Name two effects that will contribute to birefringence of the fiber loop. 
b. Which one of the two is dominant? 
c. How can you utilize this effect to make a very useful fiber-optic device?  
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6: Fiber and Waveguide Devices 

6.1  Introduction to Fiber and Waveguide Devices 

Chapter 5 covered the basics of wave propagation on optical waveguides and fi-
bers.  In this chapter we use the concepts from Chapter 5 to develop models for a 
number of devices and systems that are of importance for microphotonics.  The 
first “device” we consider is simply the optics required for coupling of light into, 
and out of, optical fibers.  We introduce the concept of mode matching and quan-
tify the coupling losses that result from imperfect alignment and matching.   
 
We then develop a perturbation theory, called coupled-mode theory, that is useful 
for modeling of optical devices based on coupling and interference between two or 
more modes.  Coupled-mode theory is used to describe two fiber devices that are 
very important in microphotonics and optical MEMS: Directional couplers and 
Fiber Bragg filters.   
 
Directional couplers are beam splitting, or beam combining, devices with two in-
puts and two outputs.  Their operation is based on evanescent interactions between 
guided modes.  Directional couplers are important in their own right because they 
comes in many different varieties and are used in one form or another in almost all 
fiber-optic systems.  In addition, evanescent interactions are important in a large 
number of optical devices other than directional couplers.   
 
We also use coupled mode theory to describe Bragg reflectors.  These devices can 
be implemented both as fiber components and as multi-layer film stacks, and play 
important roles as filters and reflectors in many optical systems.  Bragg reflectors 
can also be thought of as one-dimensional Photonic Crystals.  As such they repre-
sent our first introduction to a concept that will be investigated in detail in Chap-
ters 14 and 15 of this book.   
 
We wrap up the chapter with a discussion of optical modulators.  It is not a com-
prehensive treatment, but rather an introduction to central concepts, including de-
vice architecture, figures of merit, and modulating effects.   
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6.2  Coupling to Fibers and Waveguides 

To make use of optical fibers and optical waveguides we need to couple light in 
and out of them.  There are several ways to excite propagating modes on optical 
waveguides, but the most straightforward is end-fire, in which we simply launch 
an optical field at the end of an optical fiber or waveguide.  To maximize the cou-
pling, we must maximize the overlap of the exciting field and the mode we want 
to excite [1] as illustrated in Fig. 6.1. 
 

Incoming field Single Mode Fiber 

Propagating 
mode  

 
Figure 6.1. End-fire coupling of an optical field to a waveguide.  The profile of 

the incoming field should match the profile of the waveguide mode 
we wish to excite to maximize the coupling. 

 
Assume that the incoming electric field can be expressed in terms of the guided 
modes on the fiber as follows  
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Using the Poynting theorem to express the propagating power in mode n, we find 
the following expression for the expansion coefficients  
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Here we have used the fact that the guided modes of an optical fiber are orthogo-
nal.  The expression for the expansion coefficients of the incoming field is more 
useful when normalized 
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The reflections at the waveguide interface complicate matters considerably be-
cause the reflection coefficients will depend on the propagation constants of the 
modes on the two sides of the interface.  Finding exact solutions to this problem 
require that the incoming, as well as the transmitted fields, must be expressed in 
terms of modes with well-defined propagation constants.  In most cases of practi-
cal interest, we may simply set the interface reflection and transmission coeffi-
cients to  
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The total coupling coefficient from the incoming field into mode n, is then  
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The power coupling equals the square of the magnitude of the field coupling  
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These coupling formulas are significantly simplified if only the transversal com-
ponents of the fields are considered.  Most guided optical waves are close to 
Transversal Electro Magnetic (TEM), so ignoring the relatively small longitudinal 
part of the guided modes lead to insignificant over-estimation of the coupling co-
efficient in most, if not all, practical situations.   
 
We observe that for TEM waves  
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The coupling coefficient then becomes 
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and the corresponding power coupling is  
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6.2.1 Loss in Single Mode Fiber Splices 

An important application of the formalism we have just developed is analysis of 
loss in single mode fiber splices.  Practical fiber splices have several sources of 
power loss as illustrated in Fig. 6.2.  The relative importance of the different 
sources of misalignment depends on the type of optical waveguide (its size, mode 
properties etc.) and on the splice technology that is used (fusion splicing, gluing in 
v-grooves, connectors).   
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Figure 6.2. Sources of power loss in single-mode fiber splices include mode 
mismatch, longitudinal and transversal offset, and tilt. 

 
In most practical situations, however, the transversal offset is the most critical.  
This is especially true for single-mode guides made in high-index materials like 
semiconductors and ferroelectric materials, because the mode sizes required for 
low-loss, single-mode operation are small and therefore relatively sensitive to 
transversal offset.   
 
Single mode fibers are designed to have the largest practical mode size to reduce 
the transversal-offset sensitivity.  Even so, transversal offset tends to dominate the 
losses in practical fiber connectors.  Modern high-quality splicing equipment has 
reduced transversal offset, and therefore splicing loss, to the point where it is of 
little significance in splices between identical fibers.  Coupling losses between dif-
ferent fibers, and between optical sources and fibers, are still very much an issue 
in optical communication, however. 
 
To analyze how the different alignment errors influence splice loss, we will use a 
Gaussian approximation to describe the waveguide modes.  Assume that the field 
on the input fiber can be described 
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Similarly, the mode on the output fiber is  
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We assume that the beam radius, ω, is related to the V-number and the core radius 
by the standard formula for step-index fiber found in Chapter 5 
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The Gaussian-beam approximation can easily be extended to elliptical beams.  
The basic Gaussian profile then becomes  
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6.2.2 Coupling Coefficients 

The Gaussian beam approximation allows us to find closed form solutions to the 
loss caused by the alignment errors of Fig. 10.2.  As an example, we will find the 
formula for the coupling coefficient in the presence of longitudinal offset between 
a waveguide with an elliptical mode profile, and a fiber.  A separation, D, between 
the waveguide and fiber leads to the following coupling coefficient (assuming the 
propagation coefficient is the same on the waveguide and fiber) 
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where k=2π/λ.  The corresponding expression for the power coupling is  
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In these expressions, the beam radii and radii of curvature are given by  
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The maximum coupling coefficient (perfect alignment, but imperfect mode match-
ing) between an elliptical Gaussian mode with half axes ωx and ωy, and a circular 
Gaussian mode with mode radius ωfiber, is given by  
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Similar calculations allow us to find closed-formed solutions for other types of 
misalignment.  If the fiber axis is tilted with respect to the optical axis of the lens 
system, the coupling is given by 
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where θx and θy are the tilt angles in the x and y directions respectively.   
 
If there is lateral offset between the axis of fiber and the axis of the lens system, 
the coupling is given by  
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where dx and dy are the lateral offsets in the x and y directions respectively.   
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Notice the opposite dependence on the mode sizes in these last two expressions.  
We see that a large mode size is relatively strongly affected by angular misalign-
ment, while small modes sizes are more susceptible to lateral offset.   
 
If tilt, offset and separation are present simultaneously, there will be cross-terms.  
These can be neglected provided that each of the errors (tilt, offset and separation) 
are small. 

6.2.3 Laser to Single-Mode-Fiber Coupling 

The formulas for coupling between fibers can also be used to describe coupling 
between single-spatial mode sources and single-mode waveguides.  Unless we are 
using Anti Reflection (AR) coatings, we must also consider effect of reflections 
from the waveguide facet.  This is neglected in the following examples, but can 
easily be included if dictated by the practical situation.   
 
To achieve high-efficiency coupling from the laser to the fiber, we must transform 
the laser mode size to match the fiber mode.  An imaging system with a single 
lens of the right focal length in the correct configuration is sufficient.  The set-up 
is shown in Fig. 6.3.   
 

ωx1,y1 

 

ωx2,y2

d2 d1  
Figure 6.3. Lens transformation of Gaussian beams. 

 
We now consider the effect of the lens on a Gaussian beam.  From Chapter 4, we 
know that the Gaussian beam radii at the waists are related by  
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With the laser at the focal point of the lens (Fourier Transform regime), we have 
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If we make d1 > f, we will image the beam waist to a position d2 > f.  We call this 
the imaging regime.  In this case, the transformed beam radius can be approxi-
mated as 
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and the distances, d1 and d2, are related by the standard formula 
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Using these formulas, we can calculate the focal lengths of the lenses required to 
perfectly match any Gaussian-shaped laser mode to any Gaussian-shaped 
waveguide mode.  Cylindrical lenses can be used to transform for elliptical beams 
to spherical Gaussians, but in most cases, this is an unwarranted complication.  
What is typically done is to transform the beam equally in both dimensions such 
that optimize the coupling is achieved.  To see how, consider the following opti-
mization   
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It comes as no surprise that the optimized fiber mode radius is the geometrical 
mean of the two elliptical half-radii. 

6.2.4 Laser-Mode Size Measurements Using the Knife-Edge Method 

A very convenient way to measure the size of a Gaussian beam is to chop the 
beam, detect the light using a photodiode, and observe the rise or fall time of the 
chopped pulses on an oscilloscope.  The advantages of this technique, illustrated 
in Fig. 6.4, are that it requires only inexpensive, standard optical measurement 
equipment, and that it allows the relevant beam parameter, i.e. the Gaussian beam 
radius, to be directly read out on there oscilloscope.  The drawbacks are that it 
only gives the integrated beam profile, so it does not allow detailed investigation 
of mode shapes.  In practice it only works well for known beam shapes.   
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Figure 6.4. Set-up for measurement of laser mode size. 
 
Figure 6.5 illustrates in detail how the shape of the beam influences the rise-time 
of the chopped signal.  It is clear from the illustration that what is measured is the 
beam size at position of the knife edge, not at the detector.   
 

 Laser beam 

Knife edge (blocks 
part of the beam) 

Detector

 
Figure 6.5. Illustration of knife-edge method for measuring the size of a laser 

beam. 
 
When measuring elliptical beams, we must make sure to chop the beam such that 
the edge of the chopper intersects the beam along the axis we want to measure.  It 
is practical to use a large photodetector when employing this technique, so we 
must be careful to chop the beam at sufficiently low frequency that our measured 
rise or fall time is not influenced by the detector.  If the measured rise time is 
comparable to the rise time of the photo detector, our measurements will be inac-
curate.   
 
The beam-half-axis (in the direction of the edge movement) of the laser beam can 
be found from the following formula 
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where d10-90 is the 10 to 90% integrated intensity width of the optical beam.  This 
quantity can be expressed in terms of the rise time in the following way 
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where t10-90 the 10-to-90% rise (or fall time) of the oscilloscope trace, R is the ra-
dius of the chopper where it intersects the laser beam, and f is the chopper fre-
quency.   

6.2.5 Coupling from Spatially Incoherent Sources to Multi Mode 
Fibers 

In principle we can calculate a coupling coefficient from each mode of a spatially 
incoherent source (these modes are by definition delta functions) into each mode 
of a multimode guide, and integrate the coupled power over the source to find the 
total coupled power.  In practice, however, most multimode waveguides have a 
large number of modes (there are some notable exceptions, particularly two-mode 
fibers used as acousto-optic modulators), so we can simply assume that the guide 
accepts all light incident on its core at below the critical angle.   
 
The power coupling can then be expressed 
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where B is the brightness of the source, rmin is the smaller of the source and fiber 
radii, and θmax is the acceptance angle of the fiber.  Applied to the coupling be-
tween an LED (a Lambertian source, i.e. the brightness is B=B0cosθ), this gives 
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The power of an LED is  
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so if the source is smaller than the fiber, the coupling is 
2NAPP s ⋅=  (6.32) 

and if the fiber is smaller, we get 
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If the source is smaller than the fiber core, the coupling can be improved by mag-
nifying the source.  The magnification reduces the angle spread of the source, so 
that the net effect is to increase the coupled power. 

6.2.6 Coupling between Spatially Coherent Sources and Multimode 
Fibers 

When using a spatially coherent source, we have full control over the mode pro-
file, and in principle, we can couple to any mode, or combination of modes with 
arbitrarily high coupling efficiency.   

6.2.7 Coupling from Spatially Incoherent Sources to Single Mode 
Fibers 

Coupling from spatially incoherent light sources (Lambertian sources) to single 
mode optical waveguides is very inefficient.  This is so because the source is ef-
fectively a combination of point sources with randomly varying relative phase.  In 
other words, a spatially incoherent light source is in reality a combination of mul-
tiple sources.   
 
As we saw in Chapter 2, it is impossible to combine optical fields, so the best we 
can do with multiple sources is to pick the strongest and couple it to the single 
mode fiber.  Typical incoherent sources consist of hundreds of independent 
sources of roughly equal strength, so the coupling to single mode fiber will be less 
than 1%.  In practice we therefore very rarely use LEDs or other spatially incoher-
ent sources, with single mode fibers.  An exception is super luminescent diodes, 
which are used in fiber gyros and other interferometric measurement systems that 
require sources with low temporal coherence. 

6.2.8 Prism Coupling 

Plane waves can couple to quasi-guided waves if the two waves are phase 
matched.  This principle can be used to couple into waveguides, but the incoming 
field must be phase matched to the guided wave, which is not possible for an os-
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cillatory wave in the cladding of the guide.  The solution is to use an evanescent 
wave that is phase matched to the guided wave, and that has a finite overlap with 
the guided mode.  This is illustrated in Fig. 6.6. 
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Figure 6.6.  Illustration of prism coupling.  The plane wave in the high-index 

medium is phase matched to the guided wave, and power is ex-
changed between the plane wave and the guided mode through the 
evanescent fields. 

 
For the plane wave and the guided mode to couple, their wave vectors along the 
guide must be identical (which is to say that the evanescent field of the plane wave 
is phase matched to the guided wave).  This requirement determines the incident 
angle, θmatch, of the plane wave on the prism-cladding interface  
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A prism must be used to launch the plane wave at the correct phase-matching an-
gle. 
 
If the plane wave couples to the guided wave, then reciprocity mandates that the 
guided wave couples to the plane wave.  When using a prism to couple into a 
waveguide, we must therefore align the incoming beam to the end of the prism as 
shown in Fig. 6.6.  If the prism extends beyond the incoming beam, the power will 
simply couple out of the waveguide again.  
 
Prism coupling can be used to find the modes of a waveguide; either by observing 
reflection dips in the incident beam as a function of angle, or by measuring the an-
gles at which light is coupled out of the prism (this technique requires that we can 
excite all the modes of interest on the waveguide).  Once the phase match angles 
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are determined, the wave vectors of the guided modes can be found from the equa-
tion above. 
 
Prism coupling is complicated by the need to establish a near perfect optical con-
tact between the prism and the waveguide structure.  This is a non-trivial problem 
that, together with the fact that prisms are bulky and expensive, reduces the utility 
of prism coupling in practical applications. 

6.2.9 Grating Coupling 

Gratings can also be used to facilitate phase matching between an incident optical 
field and a guided mode.  To understand why, recall that a grating that is periodic 
in the z-direction, adds a propagation vector 

Λ
= π2qKz  (6.35) 

to the optical field.  In this formula q can be any integer (positive, negative, or 
zero).  The additional k-vector provided by the grating can be designed to phase 
match a plane wave in the cladding of a waveguide to a guided mode.  This is il-
lustrated in Fig. 6.7.  We see that in addition to the diffracted beam that is phase 
matched to the waveguide mode, there also exist other diffracted modes.  Any 
power that is coupled into these modes is wasted in that it is not transferred into 
the guided mode.  In designing rating couplers we therefore must pay careful at-
tention to all diffraction modes to ensure efficient coupling.    
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Figure 6.7. Grating coupling.  The incident light (dashed arrow) is coupled to 
several diffracted orders by the k-vectors of the grating (solid ar-
rows).  In addition to the reflected wave (dashed), and the guided 
wave (dotted), we also have one diffracted wave propagating in air 
(dot-dashed), and one in the substrate (dot-dashed). 
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Just as in the case of prism coupling, the phase matching provided by gratings can 
also be used for coupling out of waveguides.  Creative design of the grating and 
waveguide structure will allow most of the light to be coupled into a single output 
mode as shown in Fig. 6.8. 
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Figure 6.8. Grating output coupling.  The grating vector (solid arrow) is cho-
sen large enough that the guided wave (dotted arrow) only couples 
to one diffracted output mode (dot-dashed arrow).  This wave can-
not be coupled out of the substrate without a prism. 

 
Symmetric gratings tend to put too much power into unwanted diffraction modes, 
so to achieve efficient coupling, blazed gratings must be used.  In any grating the 
power in the diffracted orders are given by the radiation pattern form the individ-
ual element of the gratings as illustrated in Fig. 6.9.  A blazed grating in which the 
grating elements are aligned with the preferred diffraction order can therefore 
have high diffraction efficiency as shown in Fig. 6.10.  
 

 

 
 

Figure 6.9  The power in the diffracted orders is determined by the radiation 
pattern of the grating elements. 
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Figure 6.10. Blazed grating output coupler.  The preferential radiation of the 
grating elements leads to high coupling efficiency of the guided 
wave (dotted arrow) to the output (dot-dashed arrow). 

 
Grating couplers based on the principles described here are becoming increasingly 
popular for coupling light into high-index guided waves and photonic crystal 
structures made in silicon and other semiconductors.  The main advantages of 
grating coupling for such applications are that the coupling optics can be miniatur-
ized and that the coupling takes place on a planar surface without requiring access 
to the cross sectional plane of the waveguides.   

6.3. Coupled Optical Modes 

Propagating modes on optical waveguides can interact, and therefore be coupled, 
just as the mechanical and other types of oscillators.  Consider the waveguide 
structure of Fig. 6.11.  The individual waveguides of this structure are slab 
waveguides (i.e. they are of infinite extent in the y coordinate that is perpendicular 
to the plane).  Their fields can therefore be expressed in rectangular coordinates 
without coupling between the fields along the coordinate axes.  This greatly sim-
plifies the problem, because it allows us to find each of the field components as a 
solution to the scalar wave equation.   
 
The full mode structure in the region where the waveguides are in close proximity 
is considerably more complex, so we are compelled to search for approximations 
that will give us analytical solutions.   
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Figure 6.11 Waveguide structure consisting of two waveguides that are brought 
into close proximity over a finite distance.  In the area where the 
two waveguides are close, the modes of the waveguides will inter-
act, which means that their propagation vectors will be shifted, and 
their modes modified. 

 
Our starting point is the scalar wave equation 
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2
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,
t
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zxE y

y ∂

∂
⋅=∇ εμ  (6.36) 

that is valid in all the regions of the waveguide.  The electric permittivity, or di-
electric constant, and the magnetic permeability are both time invarianta, so the so-
lutions we are interested in are independent of z, i.e. they are of the form 
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where β is the longitudinal wave vector, Ai is the amplitude of the mode and uyi is 
the normalized amplitude distribution of the mode.   
 
If we now chose to first consider the fundamental TE mode of a symmetric 
waveguide, then the mode profile is given by 
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 (6.38) 

where is C is determined by the requirement 

                                                           
a  We see examples of time varying permitivities later in our discussions of optical 

modulators, but even in those cases the time variations are so slow compared to 
the optical oscillations that we can consider the permitivity time invariant. 
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As mentioned above, solving the wave equation on coupled waveguide structures 
is prohibitively hard and cannot be done analytically.  Our approach to this prob-
lem is to consider the simpler structure, for which we can find the modes, and in-
troduce the coupling as a perturbation of the polarization of the medium.  To do 
that, we write constitutive relation for electric field as 

pertPEPEED +=+== εεε 0  (6.40) 

which means we can write the wave equation in the following way 
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First we set the perturbation to zero and find the modes of the unperturbed or un-
coupled waveguide.  The fields of the perturbed guide can be expressed in terms 
of these unperturbed modes 
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where we have included both forward and backward traveling waves.   
 
If we carry the full field expansions, we haven’t made any approximations, but we 
haven’t simplified the problem either.  To make the problem tractable, we will as-
sume that coupling to the radiation modes is negligible and therefore drop these 
modes from the expansion.  Coupled-mode theory relay on this approximation, so 
negligible coupling to radiation modes can therefore be used as a criterion for 
when to apply coupled mode theory.   
 
Now substitute the expanded solution back into the wave equation   



192      Photonic Microsystems 

( )[ ]

( )[ ]

( )[ ]

( )[ ]
( )

[ ]

[ ]

[ ]

[ ]

[ ] ( )
2

2

2

2

2
2

2
2

2

2

2
2

2
2

2

2

2

2

2

,,
exp2

..exp)(2

exp)()()(

..exp)(2

exp)()()(

,,

.exp)(
2
1

exp)(
2
1

.exp)(
2
1

exp)(
2
1

t
tzxP

tj

cczjxu
dz

Ad
dz

dAj

zjxu
x

xuxuA

cczjxu
dz

Ad
dz

dAj

zjxu
x

xuxuA

t
tzxP

cctzjxuA

tzjxuA

t

cctzjxuA

tzjxuA

pert

i
ii

ii
i

ii
i

iii

i
ii

ii
i

ii
i

iii

pert

i
iii

i
iii

i
iii

i
iii

∂

∂
⋅−=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

+−⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅⋅+

∂
∂+−

+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−

+−⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅⋅+

∂
∂+−

⇒
∂

∂
+

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

++⋅+

−−⋅

∂
∂⋅

=

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

++⋅

+−−⋅
∇

∑

∑

∑

∑

∑

∑

−−

−

++

+

−

+

−

+

μω

ββ

βεμωβ

ββ

βεμωβ

μ
ωβ

ωβ
εμ

ωβ

ωβ

 

(6.43)

 
Notice that the first three terms of each of the two summations equals zero.  The 
expression then simplifies to 
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We also assume slow variations of the amplitudes 
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so 
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We multiply this equation with ui(x), and integrate over the cross section of the 
guide (from – • to • in x), and use mode orthogonality to arrive at our final result 
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This equation can be used to treat a variety of waveguide structures with different 
types of interactions or coupling between guided modes.  The exact form of the 
perturbation will depend on the waveguide structure at hand, but the general form 
of the coupled-mode equations will be the same.   

6.4 Directional Couplers 

We will now apply our coupled mode formalism to directional couplers.  These 
devices are very important in integrated optics and optical communications in 
general.  Directional couplers are used as optical modulators, optical power split-
ters and combiners, sensors, and most importantly they form the basis for 
waveguide optical switches, which presently represents the most promising ap-
proach to all-optical packet switching.   
 
The directional coupler consists of two waveguides, which are brought into close 
proximity so that their modes overlap.  The proximity of the other guide and the 
evanescent field of modes that may propagate on the other guide, represent pertur-
bations of the modes of each of the waveguides.  In general the two guides are not 
identical (although they often are in practice), but may have different core index 
and core width as illustrated in Fig. 6.12.  
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Figure 6.12. Directional coupler consisting of two single-mode waveguides that 

are brought into close proximity over a finite distance.  In the area 
where the two waveguides are close, the modes of the waveguides 
will interact, which means that their propagation vectors will be 
shifted, and their modes modified because of the perturbed polari-
zation resulting from the other guide. 

 
Before we start our mathematical treatment of the directional coupler, let’s see 
what we can learn about it by considering simple energy-conservation arguments, 
and our intuition about coupled oscillators.  The first thing we should ask is 
whether it is reasonable to use the coupled-mode theory we have derived to de-
scribe directional couplers.  The basic assumption we made is that we can neglect 
coupling to radiation modes.  Our earlier investigations showed us that we can in-
deed have energy conservation without considering radiation modes provided that 
we have an equal number of output and input modes.  The directional coupler ful-
fills this criterion so it seems plausible that we should be able to get accurate de-
scriptions of well-designed directional couplers in spite of the fact that we neglect 
radiation modes.  This is in contrast to the waveguide Y-junction or Y-coupler.  
When analyzing this device we must consider radiation modes to achieve energy 
conservation, so the Y-coupler is not a candidate for coupled-mode modeling.  
 
Based on the structure shown in Fig. 6.12, we expect to get energy transfer be-
tween the coupled modes of the waveguides, and that the perturbation caused by 
the coupling will modify the propagation constant and the mode profiles of the in-
dividual waveguides.  We expect, just like in the case of two coupled mechanical 
oscillators, to get total energy transfer between the modes when they are degener-
ate, while two non-degenerate modes will have incomplete energy transfer. 
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6.4.1 Coupled Mode Description of Directional Couplers 

We start our derivation of the coupled mode equations for the directional coupler 
by describing the field in the coupled-guide structure as a sum of the unperturbed 
modes 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]ztjxuzBztjxuzAE bbaay βωβω −⋅+−⋅= expexp  (6.48)

where indexes refer to waveguide a and b in Fig. 6.12.   
 
Recall that the perturbation is given by 
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where indexes c and u refer to the coupled and uncoupled waveguide structures 
respectively.   
 
Substituting the above expression for the field in the coupled guide into this ex-
pression for the perturbation polarization results in  
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where nc(x) is the index profile of the coupled structure.   
 
Now recall the fundamental coupled mode equation 
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We are not considering backward propagating waves in the directional coupler 
(i.e. we expect scattering into backward propagating modes to be negligible), so 
this simplifies to 
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Substituting the expression for the polarization perturbation into this equation, and 
integrating over x, gives  
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We find a similar expression for the mode amplitude in guide b.  These two equa-
tions can be written in the following compact form  
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The phase terms Ma and Mb in the above equations reflect the fact that the longitu-
dinal propagation vectors of the modes are influenced by the presence of a second 
guide.  We can incorporate this correction to the propagation vector in the field 
expression as follows 
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This modified field expansion allow us to simplify the coupled-mode equations, 
which become 
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Let us now consider these equations from an energy conservation point of view.  
The first of the two equations can be manipulated to yield 
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We see that to make this expression zero in general, we need  

baab KK =*  (6.67) 

 
The phase of the coupling factor K depend on the choice of the origin of our coor-
dinate system, so without loss of generality we can set 

baab KK =  (6.68) 
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Notice that this is in agreement with our earlier formulation of energy conserva-
tion, in which we require that the overlap integral is unchanged under propagation 
though a linear loss-less system. 
 
The above set of equations can be solved by differentiating the first equation with 
respect to z.  Assuming Kab=Kba=K, we get 
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This differential equation has the solution 
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With the boundary conditions A(0)=A0 and B(0)=0, this becomes 
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and 
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Figure 6.13 Power coupling between two 10 um wide slab waveguides sepa-

rated by 4 um.  In the symmetrical case (nf=1.5, nc=1.499), the 
power coupling is complete.  A finite difference in propagation con-
stant between the two modes leads to less than perfect power ex-
change. 

 
When δ=0 Eqs. 6.77 and 6.78 simplify to 

|A|2 

|B|2

|A|2 
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[ ]KzAA cos0 ⋅=  (6.79) 

[ ]KzjAB sin0−=  (6.80) 

These expressions are plotted for various values of δ in Fig. 6.13.  We see that 
when the longitudinal wavevector of the two propagating modes are the same 
(δ=0), then the power is periodically transferred from one guide to the other and 
then back to the first.  

6.4.2 Eigenmodes of the Coupled System  

Now let’s go back and take a closer look at the coupled mode equations 

zjjKBe
dz
dA ⋅−−= δ2  (6.81) 

zjjKAe
dz
dB ⋅−= δ2  (6.82) 

 
The field on the coupled waveguide system can be described in terms of the 
(modified) modes on the two separate guides, so 
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The coupled-mode equations are then in matrix form 
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 (6.84)
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We now postulate that this coupled waveguide structure has guided modes with a 
well-defined propagation constant 
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zje
E
E

zE
zE ⋅= β

)0(
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)(
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2
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1  (6.86) 

Substituting the guided wave solution into the above matrix equation gives 
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so 

( ) 021 =−+− jKEEj a ββ  (6.88) 

( ) 021 =+−− EjjKE b ββ  (6.89) 

 
Non-trivial solutions require a zero determinant 
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The corresponding eigenvectors are  
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and  
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In the degenerate case, ba ββ = , the eigenvectors simplify to 

zje
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and  

zje
zE
zE ⋅+⋅

−
= β

1
1

)(
)(

2

1  (6.95) 

 
We see that the symmetric eigenmode has a lower longitudinal wave vector than 
the anti-symmetric eigenmodeb.  This means that the effective index is lower for 
the symmetric mode, which is reasonable when we consider the shape of the ei-
genmodes.  The symmetric mode has a higher field in the area between the guides 
(the fields of the symmetric mode add in this region, while the fields of the anti-
symmetric mode subtract).  The index in the region between the guides is lower 
than the index in the cores, so the symmetric mode effectively sees a lower index 
than the antisymmetric mode.   
 
In the non-degenerate case, the eigenmodes carry different amount of energy in 
the individual guided modes, i.e. the eigenmodes are not symmetric and antisym-
metric.  In the extreme case of vanishing coupling, the eigenmodes of the total 
systems simply equal the modes of the individual guides as we would expect.  An 
interesting situation arises when the two coupled waveguide modes are degenerate 
at a specific wavelength, but has different dispersion characteristics. 
 
In the non-degenerate case with differences in wave vector that are small com-
pared to the coupling coefficient, we can write  
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and  

zj
ba e
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1  (6.98) 

 
We see that for small wave vector differences the eigenmodes are no longer sym-
metric and antisymmetric, but have unequal power in each guide. 
                                                           
b  This splitting of the values of the longitudinal wave vectors due to coupling is 

observed in any set of coupled oscillators, including coupled mechanical oscilla-
tors and molecules (coupled atoms).  
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6.4.3 Conceptual Description of Directional Couplers Based on Eigen 
Modes 

The eigenmodes we have found for the coupling sections of directional couplers 
provide a simple description of the operation of directional couplers.  Consider the 
Directional Coupler of Fig. 6.14.  The modes of the waveguides that make up the 
coupler interact in the coupling section and create two eigenmodes.  The ampli-
tudes of the even and odd eigen modes can be expressed in terms of the mode of 
the single-mode waveguides 

( ) ( ) ( )
( ) ( )

2

2

2

2

ωω
dxdx
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These expressions are approximate.  The even and odd eigenmodes will not be ex-
actly equal to the sum and difference of the waveguide modes, but for weakly 
coupled waveguides this approximation is very good.  The waveguide modes can 
then be expressed in terms of the eigenmodes 
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Figure 6.14. In the directional coupler, the modes of two fibers are brought 

close enough that they interact to create two eigenmodes of the 
coupling section.  One of the modes is even and one is odd. 

 
Now we assume that we have an input field that can be written 
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( ) ( ) ( )[ ]xACxACExE oeinin 210 +=  (6.103) 

The output field consists of the same two eigenmodes (the definition of a mode is 
that it propagates without changing), but the phase difference between the two ei-
genmodes has changed due to the fact that they have different propagation con-
stants on the waveguide.   
 
Let’s assume that the propagation-constant difference is Δβ.  The output amplitude 
is then    

( ) ( ) ( )[ ]Lj
oeinout exACxACExE βΔ+= 210  (6.104) 

or in terms of the waveguide modes 

( ) ( ){ } ( ){ }[ ]Lj
sm

Lj
sminout eCCdxAeCCdxAExE ββ ΔΔ −+++−= 21210  (6.105)

 
The output on port 2 is approximately equal to the amplitude in the upper wave 
guide (x=d), so we can write 

( )( )Lj
smin eCCdxAEE βΔ+−⋅≈ 2102  (6.106) 

The power on port 2 is then 

( )( )LCCCCEP in βΔ++⋅≅ cos21
2
2

2
1

2
02  (6.107) 

Likewise we find the amplitude and power on port 3 

( )( )Lj
smin eCCdxAEE βΔ−+⋅≈ 2103  (6.108) 

( )( )LCCCCEP in βΔ−+⋅≅ cos21
2
2

2
1

2
03  (6.109) 

 
We see that these expressions are corresponding to the formulas we found earlier 
through detailed calculations.  This shows that the simple and conceptually power-
ful eigenmode picture of the directional coupler is capable of explaining all as-
pects of this device. 

6.5 Optical Devices Based on Directional Couplers 

As mentioned in the introduction, the directional coupler is used in many, if not 
most, fiber-optical systems.  In this section we describe a few such applications.  
The list is by no means exhaustive, but rather a selected set that demonstrates the 
power of the directional coupler.   
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6.5.1 Modulators and Switches Based on Directional Couplers 

Directional couplers can be used as light modulators and switches.  Consider the 
symmetric directional coupler of Fig. 6.15.  Its symmetry guarantees that the 
waveguides are degenerate when no voltage is applied.  The length is chosen for 
complete power transfer, i.e. KL=π/2.  An optical signal on guide A will then be 
transferred to guide B.  The signal can be switched back into guide A by changing 
the propagation constant in either or both guides.  If the switch is made in an elec-
trooptic material like a ferro-electric or electrooptic polymer, then the effective in-
dex of the propagating modes can be modulated by applying a voltage to either or 
both guides.    
 

 Vcos(ωt) 

-Vcos(ωt) 

A 

B 

 
 

Figure 6.15. Directional coupler as modulator.  The modulator is designed so 
that without a signal applied, the two waveguides are degenerate 
and the coupling length is chosen for complete power transfer.  
With a signal applied, the degeneracy is broken, and the power 
stays in the input guide. 

 
From the expressions for the amplitudes in the two guides when A(0)=A0 and 
B(0)=0,   
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we see that we need a shift of 

( ) ⇒=+⇒=+⇒=⎥⎦
⎤

⎢⎣
⎡ + 22222222 0sin πδπδδ LKLKLK  (6.112) 
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to switch the optical signal back to guide A.  If the propagation difference is in-
creased further, some of the power is again in waveguide B, but the power transfer 
is not complete.  This is illustrated in Fig. 6.16. 
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Figure 6.16. Directional-coupler modulator.  The plot shows the power in the 
two output guides as a function of δ, the difference in propagation 
constant between the two modes.  The length of the coupler is cho-
sen for complete power transfer when δ=0.  With no voltage ap-
plied, the optical power is completely transferred between guides.  
Applying a voltage decreases the transfer. 

 
The change in effective index of the modes is approximately equal to the shift in 
refractive index caused by the electrooptic effect, so 

rEnn 3

00

22
λ
π

λ
πδ ≈Δ≈  (6.114) 

where r is the appropriate electrooptic coefficient for the modulator geometry.   
 
Now let’s use these expressions to find approximately how long an interaction re-
gion will be required for a high-contrast electrooptic directional-coupler switch.  
For any integrated optics device, the size is an important figure of merit.  It tells us 
how many devices can be integrated on a single substrate, and ultimately deter-
mines the complexity of the systems we can build.   
 
The minimum length of the directional-coupler is  
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Assuming the following parameters; λ0=1.55 μm, n=3.5, R=20 pm/V, and E=1.0 
V/ μm, we find Lmin=780 μm.  This is a relatively long interaction length, and it 
complicates integration of large switches based on directional couplers.  

|A|2 

|B|2

δ [cm−1] 
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6.5.2. Power Combiners and Filters Based on Directional Couplers 

Directional couplers are used in a number of passive optical devices including 
sensors, power dividers, power splitters, and filters.  In these devices we exploit 
the wavelength dependencies of the directional coupler, which are explicit in the 
formulas for the coupling coefficient and the correction to the propagation con-
stant of the guides. 

( ) ( )( )∫
∞

∞−

⋅−⋅= dxnnxuxuK bacabbaab
2
,

20
, 4

εω  (6.116) 

( )( )∫
∞
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⋅−⋅= dxnnxuM bacbaba
2
,

22
,

0
, 4

εω  (6.117) 

 
To achieve a sharp filter function, we use different waveguides, so that the cou-
pling coefficient, the propagation-constant corrections, as well as the wavelength 
dependencies of the individual modes all contribute to create non-degenerate cou-
pling for all but a narrow band of frequencies.   
 
If the waveguides are identical, the only wavelength dependence is in the coupling 
constant, which leads to a relatively wide filter function as shown in Fig. 6.17.  
This relatively broadband operation is desirable for switching and some filter 
functions (e.g. power combining).  The majority of filter applications require more 
narrow-band operation than what is shown in Fig. 6.17.  
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Figure 6.17. Directional coupler as filter.  The powers in the two output guides 
are plotted as a function of wavelength.  The length of the coupler 
is chosen for complete power transfer at λ=1.55um.  The relatively 
weak wavelength dependence of the symmetric directional coupler 
can be used for power combining in optical amplifiers.  
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6.6 Periodic Waveguides – Bragg Filters 

We will now apply coupled mode theory to counter-propagating waves in a single-
mode waveguide with a periodic corrugation as shown in Fig. 6.18.   
 

 x Λz=0 z=L n1 

n2 
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z 

 
 

Figure 6.18. Waveguide with periodic corrugation in one of the core-cladding 
interfaces.  The waveguide is single mode, and we make the as-
sumption that the only significant coupling is between counter-
propagating guided modes (i.e. radiation modes are unimportant). 

 
The corrugation is scalar and we don’t expect coupling between TE and TM 
modes, so in the following treatment we’ll consider TE modes.  We start by de-
scribing the field in the corrugated structure as a sum of the forward and backward 
propagating modes 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]ztjxuzBztjxuzAEy ⋅+⋅+⋅−⋅= βωβω expexp  (6.118)

where A and B are the amplitudes of the forward and backward propagating 
waves, and u(x) is the mode profile.   
 
The perturbation in the corrugated region is 
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2, εΔ=  (6.119) 

We substitute the expression for the field into this expression to get 
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Recall the fundamental coupled mode equation (Eq. 6.47) 
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which simplifies to 

{ } ( )∫
∞

∞−

⋅⋅ Δ+⋅−=⋅+− dxxunBeAje
dz
dB
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dA zjzj 22202

4
ββ εω  (6.122) 

 
We will now assume that the corrugation has a square-wave shape as indicated in 
Fig. 6.18.  The general conclusions are not dependent on the exact shape, so the 
following treatment, with appropriate adjustments, is valid also for non-square 
corrugations.  The square-wave corrugations can be expressed as a series in the 
following form 

∑ Λ
⋅

Δ=Δ
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zmj
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By comparing this expression to the above coupled mode equations, we realize 
that only modes that are close to phase matched will experience significant cou-
pling.  In other words, we need only keep terms of the same periodicity.  In a 

range of wave vectors around 
Λ
π2m the equations can be simplified to  
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Λ
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and  
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Λ
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2
20

4

π
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These equations are on a form similar to the ones describing the directional cou-
pler 

                                                           
c  Here we are making the implicit assumption that the lengths of the high and low 

index regions (LH and LL) are the same.  It might seem intuitive that the high-
index region should be shorter (LH<LL), but if we insist on matching both physi-
cal (Λ=LH+LL) and optical lengths (n·Λ=(n+Δn)LH+(n-Δn)LL), then it follows 
that the two regions must have the same length (LH = LL).  
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zjBeK
dz
dA ⋅Δ= β2*  (6.127) 

zjKAe
dz
dB ⋅Δ−= β2  (6.128) 

where 
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∞

∞−
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4
εω  (6.129) 

Λ
−=Δ πββ m  (6.130) 

6.6.1 Energy Conservation in Counter Propagating Waves  

Let us check energy conservation in the systems of equations we have found for 
modes in a Bragg grating.  We start by deriving expression for the energies in the 
forward and backward propagating waves.  Based on Eqs. 6.127 and 6.128 we can 
write  

zjzj eKBAKeAB

A
dz
dAA

dz
dAAA

dz
dA

dz
d

⋅Δ⋅Δ− ⋅+⋅=

+==

ββ 2**2*

***2

 (6.131) 
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The difference between the rate of change in the forward-propagating and back-
ward-propagating energy is then 
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We see that the rate of change in forward-propagating energy is exactly balanced 
by the rate of change in backward-propagating energy, which is the correct result 
for loss-less, counter-propagating waves. 
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6.6.2 Modes of the Bragg Grating 

The set of equations describing the modes of the Bragg Grating (Eqs. 127-130) 
can now be solved.  Assuming that the forward propagating mode has an ampli-
tude A0 at z=0, and that the backward propagating wave is zero at z=L, we find 

( )[ ] ( )[ ]
[ ] [ ]SLjSSL

LzSjSLzSeAA zj

coshsinh
coshsinh

0 +⋅Δ−
−+−⋅Δ−⋅= ⋅Δ
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( )[ ]
[ ] [ ]SLjSSL

LzSejKAB zj
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β
β  (6.135) 

where 

22 βΔ−= KS  (6.136) 

 
When Δβ=0 this simplifies to 
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cosh
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−⋅=  (6.137) 

( )[ ]
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sinh
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These expressions are plotted in Fig. 6.19 for two different lengths of the corru-
gated region.   
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Figure 6.19. Power coupling between counter propagating modes in a corru-
gated waveguide.  The powers in the two waveguides are plotted as 
a function of length along the waveguide in the corrugated region.   
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Figure 6.19 shows that as the corrugated region gets longer, more of the power is 
coupled into the reflected wave.  This is what we would expect; a longer grating 
leads to smaller transmission and larger reflection, which means that the forward 
and backward propagating fields are closer in magnitude.  In the extreme case of 
an infinite grating, the forward and backward propagating waves are equal at all 
points in the grating. 

6.6.3 One-Dimensional Photonic Bandgaps 

The amplitudes we have found for the Bragg reflector (Eqs. 6.134 and 6.135) 
shows that the general solution (Eq. 6.118) consist of forward and backward 
propagating waves with the following propagation constants  
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We see that when the unperturbed propagation constant, β, is far from being reso-
nant with the fundamental or higher order variations of the Bragg grating 
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⎜⎜
⎝
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>>

Λ
− Kmπβ , then the expression simplifies to ββ ±=bragg .  In other words, 

off resonance the solutions are forward and backward propagating harmonic 

waves.  Close to resonance ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≈

Λ
− Kmπβ  the solutions are no longer simple 

harmonic waves, but have complex-valued propagation constants.  
 
To better understand the implications of the complex-valued propagation constant, 
we consider the special case of m=1.  Equation 6.139 then becomes 
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The real and imaginary parts of this expression are plotted in Fig. 6.20 for 

1.0=Λ⋅
π

K .  Not all solutions to Eq. 6.140 give realizable field distributions.  The 

sign in front of the square root must be picked correctly in the different ranges of 
β values to yield forward and backward propagating waves as shown in Fig. 6.20.   
 
The plots show that when the wave vector of the unperturbed guide is close to that 
of the periodic grating, the propagating fields have a z-dependence with an imagi-
nary part.  This means that the fields are not oscillating, but are exponentially 
damped.  In these resonant regions we therefore cannot have an undamped propa-
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gating mode.  We say that the waveguide structure has a bandgap.  This concept 
will be further developed in Chapters 14 and 15. 
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Figure 6.20. Normalized real and imaginary parts of the  longitudinal wavevec-

tor of forward (solid) and backward (dashed) propagating modes in 
a periodically corrugated waveguide vs. longitudinal wavevector of 
the unperturbed modes (dot-dashed and dotted lines in upper 
graph).  In the region close to the Bragg vector, the longitudinal 
wavevector has an imaginary part, and the mode is evanescent.  We 
call this region the bandgap of the waveguide structure.  

6.6.4 Bragg Filters 

The expressions we have found for the field amplitudes in the periodically corru-
gated waveguide allow us to calculate the reflection and transmission spectra of 
the Bragg grating.  For example, the field reflection is simply the ratio of the for-
ward propagating and backward propagating wave at the input to the Bragg sec-
tion: 

βΛ/π 
Im[βBraggΛ/π] 

Re[βBraggΛ/π] 

βΛ/π 
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The power reflectance corresponding to this field reflectivity is plotted in Fig. 
6.21a for a Bragg grating with a coupling constant of K=0.1cm-1 and a length of 
L=10cm.  The reflectance is plotted on a logarithmic scale to clearly show the 
structure of the side bands.  Figure 6.21b shows the phase of the reflections with 
the power reflectance overlaid for reference. 
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(a)     (b) 
 

Figure 6.21 (a) Reflectance of a Bragg grating as a function of detuning.  The 
flat pass band is one of the unique characteristics of the Bragg fil-
ter.  (b) Reflectance and phase-shift of a Bragg filter as a function 
of detuning.  Note that the phase shift is close to linear throughout 
the pass band.   

 
Figure 6.21 shows that Bragg reflector has several desirable features.  The pass 
band has a flat amplitude response and a linear phase variation that avoids distor-
tion of reflected signals.  The side band rejection can be improved by using 
weaker coupling or fewer periods, such that the product KL is reduced. 
 
Bragg reflectors with the characteristics reflectance of Fig. 6.21 are implemented 
as dielectric stacks or as waveguide gratings.  Fiber-Bragg grating are fabricated 
by illuminating standard fiber with near-UV light in a standing wave pattern (set 
up by interference between two laser beams).  These fibers can therefore be made 
relatively simply with varying Bragg frequencies.  The flat pass band is another 
strong advantage of fiber-Bragg filters.  For these reasons, the fiber-Bragg filters 
are among the leading candidates for implementation of multiplexers for optical 
communication systems based on Wavelength Division Multiplexing (WDM).   

βΛ/π 
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6.7 Waveguide Modulators 

Because the optical field is strongly confined in optical waveguides, they in many 
ways represent the ideal environment for manipulating light.  In particular this is 
true for propagation of light over long distances, but also for more localized opera-
tions like modulation, switching etc.  If we compare free-space optical modulators 
to waveguide modulators, and we will see that the absence of diffraction in the 
waveguide leads to reduced modulation voltage, reduced size, and increased 
bandwidth of the modulator.   

6.7.1 Mach-Zender Modulators 

A very popular waveguide modulator geometry is the Mach-Zender modulator, 
shown in Fig.6.22 and 6.23.  In the Mach-Zender, the incoming optical field is 
split in two parts, usually by a Y-coupler.  The two parts are phase shifted with re-
spect to each other, and then recombined in a second Y-coupler.    
 

 

Optical 
Waveguide 

Electrical 
Waveguide Y-junction 

 
 

Figure 6.22. Top-view of Mach-Zender modulator.  The optical waveguide is 
split in two to create an interferometer.  The modes in the two arms 
of the interferometer experience a phase modulation of equal mag-
nitude, but opposite sign.  The terminations of the electrical 
waveguide are not shown. 

 
 

Electrooptic crystal

Indiffused 
waveguides 

 
 

Figure 6.23.  Layout of waveguide optical modulator for high frequency opera-
tion.  The optical waveguides and the electrodes are fabricated on 
the electrooptic substrate using techniques borrowed from inte-
grated circuit technology. 

 
We assume that assuming that the output Y-coupler is well designed, i.e. incoming 
power on the single arm will be split equally in the two arms.  Simple energy con-
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servation considerations then tells us that the mode amplitude at the output single-
mode waveguide is   
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where A1 and A2 are the mode amplitudes of the upper and lower waveguides in 
the center section of the Mach-Zender modulator.  The output power is then 
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If the input Y-coupler is also well designed, the amplitudes in the two arms are the 
same and we find  

( )φcos1
2
1 += inout PP  (6.144) 

We see that, as in any interferometer, the output is a harmonic function of the 
phase difference between the two modes.  If the amplitudes in the two arms are 
different, the modulation waveform has less than perfect contrast.  This is illus-
trated in Fig. 6.24. 
 

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

 
 

Figure 6.24. Modulation curves for Mach-Zender modulators.  The solid curve 
shows a modulator, in which the power is split evenly between the 
two arms.  The dashed curve is valid for a modulator with a power-
splitting ratio of 1:4 in the input Y-coupler and an even split in the 
output Y-coupler.   

 
This type of waveguide modulator has several advantages over bulk modulators:  

Pout/Pin 

φ [rad] 
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1) The fabrication is done with diffusion and lithography on a flat substrate, 
i.e. the fabrication is compatible with modern integrated-circuit technol-
ogy. 

2) The electrodes can be placed very accurately with respect to the 
waveguides to optimize the modulating field strength in the waveguides 
without introducing excessive losses due to absorption in the metal elec-
trodes. 

3) The electrodes can be designed to act as an electric waveguide phase-
matched to the optical waveguide such that high-speed operation can be 
obtained. 

6.7.2 Figures of Merit for Optical Modulators 

The modulation curve for the Mach-Zender illustrates the important parameters of 
optical modulators.  The modulation index is defined as the ratio of the maximum 
change in transmitted power to the maximum transmitted power  

max,

min,max,

out

outout

P
PP −

=η  (6.145) 

Sometimes you see the following alternative definition 

( ) 2min,max,

min,max,

outout

outout

PP
PP

+
−

=η  (6.146) 

 
Often this information is expressed as a contrast ratio instead 
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which we like to express in decibels if it is small 
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The insertion loss is the ratio of the maximum transmitted power to the input 
power 

in

out

P
P

L max,=  (6.149) 

Other important parameters of optical modulators are discussed briefly below.  
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The bandwidth of an optical modulator depends ultimately on the physical effect 
used to create the phase modulation.  In practice, however, we find that RC-time 
constants often are the determining factors.  Traveling-wave optical modulators 
are therefore popular.  In these modulators, the modulating field is traveling on an 
electrical waveguide structure with the same group velocity as the optical 
waveguide.  The bandwidth of a traveling wave modulator is determined by the 
group-velocity mismatch between the electrical and optical wave.    
 
The modulating voltage, required to create a phase shift of π (Vπ), should be as 
low as possible.  This is particularly important in high-frequency modulators.  A 
related issue is power consumption. 
 
Linearity is important for analog communication formats, e.g. for video signal 
distribution.  
 
Polarization dependence is important in some applications, but modulators are 
most often used in a transmitter with a source of controllable polarization.  Under 
these circumstances, polarization dependence is of little consequence. 
 
Wavelength dependence is increasingly important as we start using wider and 
wider wavelengths bands for fiber optic communications. 
 
Environmental Sensitivity (e.g. temperature sensitivity, shock sensitivity, ro-
bustness) is important in any commercial product , but it is particularly significant 
in telecommunication equipment which must pass very stringent reliability tests. 
 
Compatibility with standard fiber, and other standards is very important both 
from the point of view of fabrication and sales. 
 
In the final analysis, it is the size and cost of the modulator, which will determine 
its competitiveness in the market place. 

6.7.3 Phase Modulation 

The phase modulation required to operate the Mach-Zender can be accomplished 
through a number of physical effects. 

Electrooptic effect 

The electrooptic or Pockels effect is caused by the fact that the polarizability, and 
therefore the index of refraction, of some solids can be influenced by an applied 
electric field  

Ecn ⋅=Δ  (6.150) 
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where in general the electrooptic coefficient and the index change are tensors.   
 
A simple symmetry argument shows that materials with inversion symmetry can-
not be electrooptic.  Assume that a material with inversion symmetry exhibits an 
electrooptic index change, Ecn ⋅=Δ .  If the field is inverted, the index change 
must be the same, i.e. ( )Ecn −⋅=Δ , which means that c=-c=0.   
 
In a crystal, the index change for a mode of a certain polarization will depend on 
the relative orientation of the crystal axes, the applied electric field, and the mode 
polarization.  The optical-modulator designer must therefore consider the elec-
trooptic tensor (relatively simple in cubic crystals like GaAs, more complex in 
ferro-electrics) and design the optical waveguide as well as the electrical elec-
trodes such that the index change is optimized.  A typical arrangement is shown in 
Fig. 6.25.     
 

w

 
 

Figure 6.25.  Detail of waveguide modulator showing the field distribution in the 
optical guide.  The orientation of the electrooptic crystal is chosen 
to optimize the index change for a given applied modulating elec-
trical signal. 

 
As in our earlier treatment we make the approximation that both the modulating 
field and the optical mode are uniform, which leads to  
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where w is the width of the optical waveguide, and Vπ is the voltage required for a 
phase shift of π radians, which again is the required phase shift for high-contrast 
modulation.   
 
We see that Vπ decreases linearly with the length of the modulator.  This should be 
compared to the square-root dependence on length, which is characteristic for 
free-space modulators.  The difference is that the cross section of the waveguide is 
independent of its length, while in a free-space modulator, the length and thick-
ness are related.   
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To compare this to the directional coupler modulator, we solve for the minimum 
length that will ensure 100% modulation index 
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This is a factor of 
3

2  larger than the minimum length of the directional-coupler 

modulator (but remember that in directional-coupler modulator, we assumed that 
all the power saw this phase shift, while in the one-sided M-Z we are only modu-
lating half the power.  Assuming the following modulator parameters: λ0=1.55 
μm, n = 3.5, R = 20 pm/V, and E = 1.0 V/ μm, we find Lmin=900 μm, again a rela-
tively long interaction length. 

Thermooptic effect 

The thermooptic effect can create large index changes, but it is slow and requires 
relatively large power consumption. 

Liquid crystals 

Liquid crystals also exhibit large index changes.  The speed are orders of magni-
tude lower than required for optical packet switching (nano second response 
times), but LC are significantly faster and less power hungry than thermooptical 
devices. 

Band-edge effects 

Large index changes and absorption changes can be created in semiconductor ma-
terials and waveguides by moving the band edge as a function of applied voltage 
or injected carriers.  These effects are fast and large, but strongly dependent on 
wavelength. 

Displacement 

An effective way to change the refractive index is to physically displace materials.  
That is the approach taken in the Agilent Champagne Switch and in switches and 
modulators based on micromirror technology that will be discussed in later chap-
ters. 
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6.7.4 Acoustooptic Modulators 

Acoustic waves in bulk (as opposed to waveguides) crystals are widely used for 
optical modulation.  The acoustic wave creates a periodic index variation in the 
crystal.  This index grating can be used to reflect, deflect, disperse, or even fre-
quency-shift (if the acoustic wave is a traveling wave, the optical frequency will 
be shifted due to the Doppler effect).   
 
In waveguides or fibers, acoustic waves are used to couple modes.  A typical ex-
ample is shown in Fig. 6.26.  The periodic force applied to the suspended fiber 
creates index differences that act as a long period Bragg grating.  If the period of 
the grating matches the difference in wave vector of a guided and unguided mode, 
then the Bragg grating will provide the necessary phase matching for coupling be-
tween the modes, and the guided mode will be attenuated.  Unwanted acoustic 
waves can under special circumstances present problems in optical communica-
tion systems (e.g. attenuation of solitons).   
 

 

Clamp 

Two-mode fiber 

Periodic applied 
force 

 
 

Figure 6.26. Schematic of acoustooptic coupling in waveguides.  The periodic 
force on the waveguide creates an acoustic wave on the fiber that 
couples modes on the fiber if the periodicity of the acoustic field 
matches the longitudinal wavevector difference between the modes. 

6.7.5 Modified Mach-Zender Modulators 

The Y-couplers in the standard Mach-Zender are problematic because they couple 
light into radiation modes.  In many applications, particularly ones that require in-
tegration of many modulators or switches (which is what we want to do, because 
high levels of integration is one of the primary motivations for integrated optics), 
radiation modes will lead to unwanted and unpredictable coupling between de-
vices.  To avoid this problem, directional couplers can be used instead of Y-
couplers.  This approach, illustrated in Fig.6.27, solves the problem of cross-talk 
caused by unpredictable radiation modes at the cost of increased wavelength de-
pendence.   
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Figure 6.27. Modified Mach-Zender modulator with directional couplers instead 
of Y-couplers.  The directional couplers are designed to split the 
power on each input guide evenly between the two output guides.  
Typically the two waveguides are degenerate.  This layout has the 
advantage of acting both as a switch and as a modualtor, but at the 
cost of larger area requirement. 

6.7.6 Directional Coupler Switches 

We have already studied the directional-coupler modulator, shown again here in 
Fig. 6.28.  Recall that this device is designed for complete power transfer with no 
modulating electrical signal applied.  Once a voltage is applied, the optical signal 
on the input guide will not be transferred to the other guide.  The signal can there-
fore be switched back and forth between the outputs by changing the propagation 
constant in either or both guides.   
 
This modulator is unique because it can also be used as a switch, i.e. the power 
can be transferred between two well-defined guided modes (as opposed to be-
tween a guided mode and radiation modes as in the Mach-Zender).  The modified 
Mach-Zender can also be used for switching, but that is because it incorporates di-
rectional couplers.   
 
Note however that the directional coupler is a 1 by 2 switch (or 2 by 1), and can-
not be used as a 2 by 2 switch.  If there are optical signals at the same wavelength 
on both inputs on a directional coupler, the distribution of power at the output will 
depend on the relative phase of the two input signals.  Such dependence on the 
phase of the input signals (as opposed to the relative phase of waves that both are 
generated by a y-splitter on chip) is of course unacceptable in practical switches.  
 



6: Fiber and Waveguide Devices            223 

 Vcos(ωt)

-Vcos(ωt)

A 

B 

 
 

Figure 6.28. Directional coupler modulator.  Without an applied electrical sig-
nal, the two waveguides are degenerate and the optical power is 
completely transferred between the guides.  Once the degeneracy is 
broken, the power stays in the input guide. 

6.7.7 Fabry-Perot Modulator 

We can utilize resonant enhancement in an optical resonator to increase the effect 
of the relatively small index changes we can obtain by electrooptic means.  The 
Fabry-Perot modulator of Fig. 6.29 is an illustration of this.  This type of optical 
modulator can be implemented in many different ways in optical waveguides.  In 
optical fibers, it is most practical to use fiber Bragg mirrors to create the resonator. 
 

 

L  
Figure 6.29. Fabry-Perot modulator.  The large circulating field in the cavity 

means that a small change in index is sufficient to break the re-
quired phase-matching condition for the transmitted field. 

 
The optical power transmission for a symmetric Fabry-Perot is (see Chapter 12.2.4 
for a detailed derivation) 
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where R is the power reflectivity of the mirrors, n is the optical index of the cavity, 
L is the length of the cavity, and λ0 is the vacuum wavelength of the light.  This 
expression is plotted in Fig. 6.30, which shows that the higher the mirror reflectiv-
ities, the smaller the change in index required for high-contrast modulation.  The 
limited free-spectral range of the F-P is an issue in many applications. 
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Figure 6.30. Transmission through a Fabry-Perot resonator as a function of 
normalized length with mirror reflectance as parameter: Solid: 
R=0.99, Dashed: R=0.9, Dot-dashed: R=0.5, Dotted: R=0.2. 

6.7.8 Resonant Waveguide Coupling 

Consider a directional coupler with optical power on both inputs.  The power in 
the two output guides will depend on the relative phases of the input fields.  This 
is most easily seen by considering the eigenmodes of the coupler.  If the two input 
modes are of equal amplitude and in phase, the combination of the two modes 
matches the even eigenmode, and the input field distribution travels unperturbed 
along coupler.  Something very similar happens if the two inputs are of equal am-
plitude and exactly out of phase (π phase difference).  An arbitrary amplitude and 
phase distribution leads to an output that depends on the interference of the ei-
genmodes, i.e. it can be modulated by changing the index in the coupling region.   
 
Now we will see how the interactions between two modes in a directional coupler 
can be used to create the waveguide equivalent of the Fabry-Perot resonator we 
just studied.  Consider the ring-resonator structure with two resonantly-enhanced 
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directional couplers shown in Fig. 6.31.  This device acts like a Fabry-Perot inter-
ferometer if we think of Input1 as the input field of the F-P, Output1 as the re-
flected field, and Output2 as the transmitted field. 
 

Coupling regions
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Output 2
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Waveguide ringWaveguide 1

Waveguide 2

Input 2

 
 

Figure 6.31. Resonant ring filter.  The optical field entering the device on Input 
1 is coupled (weakly) into the ring resonator.  If the circumference 
of the ring is an integer number of wavelengths, then the field in the 
ring will build in phase, and the amplitude will build until the cou-
pling from the ring back into waveguide 1 exactly cancels the am-
plitude in that waveguide.  Under these circumstances, all the 
power on Input 1 is coupled onto Output 2, provided that all the 
waveguides are loss less.  

 
Before we can derive the response of the ring filter of Fig. 6.31, we must calculate 
the coupling coefficient of the two directional couplers involved.  The index pro-
file is show in Fig. 6.32. 
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Figure 6.32. Index profile in the guided region of ring resonator.  The center-to-
center separation, s, between the two waveguides varies because of 
the curvature of the ring.  

 
Using the same procedure as in our discussion of the directional coupler, we find 
the following coupling coefficient  
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which is now z-dependent, because of the curvature of the ring.  Recall the cou-
pled mode equations for the directional coupler. 
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where 

( ) ( )wwrr MM +−+= ββδ2  (6.157) 

Here βr and βw are the longitudinal wavevectors of the ring and straight waveguide 
respectively.   
 
In the ring coupler, we may consider the amplitudes (A and B) constant in the cou-
pling region (correct in the weak-coupling limit).  We can then integrate the equa-
tions to get 

∫
∞

∞−

⋅−⋅−=⋅−=Δ dzezKjtj
B
A zj δ2)(  (6.158) 

and similarly 

tAjB ⋅−=Δ  (6.159) 

 
We will now model the curvature as parabolic in the interaction region.  This isn’t 
exact, but a good approximation, if the ring is circular, and it simplified the analy-
sis considerably.  The z-dependent ring-waveguide separation can then be ex-
pressed 

R
zszs

2

0)( +=  (6.160) 

where s0 is the smallest distance between the ring and the straight waveguide, and 
R is the radius of the ring (or the geometric mean of the two radii if both 
waveguides are circular).  The coupling coefficient can now be found in closed 
form [2]  
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Here Pi is the normalized mode power, αi is the decay constant in the cladding, 
and κxi is the transverse propagation constant in the core.  These parameters can be 
expressed as 
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where k0 is the free-space wave vector. 
 
Once the coupling between the straight waveguide and the ring is established, we 
can calculate transfer and reflection characteristics of the ring filter.  The treat-
ment is similar to that of the Fabry-Perot interferometer.  The circulating ampli-
tude in the ring is given by 
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where t1 is the coupling coefficient between guide 1 and the ring, and grt is the 
roundtrip gain of the ring.  It can be expressed as 

( ) Rj
rt

rerrg ⋅−−= πβα 2
21  (6.166) 

where α is the loss in the ring, R is the radius of the ring, and r1 and r2 are the at-
tenuation or “reflection” coefficients in the two coupling regions.   
 
The coupling is taking place at a point of the waveguides, so there is no phase 
shift on the light that is transmitted straight through, only attenuation.  The at-
tenuation coefficients are then 

( )( ) ** 11 iiiii ttjtjtr −=−−−=  (6.167) 

The transmitted amplitude is  
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The transmittance through the filter is given by 
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When the ring losses are negligible, this simplifies to 
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In a symmetric ring (r1=r2=r) filter this further simplifies to 

( )
( )[ ]

( )
( )

( ) ( )R
r

r

Rrrr
r

Rrr
rT

r

r

r

⋅⋅
−

+
=

⋅⋅+−+
−=

⋅⋅−−+
−=

πβ

πβ

πβ

2
22

2

2224

22

224

22

sin
1

41

1
sin421

1

sin2121
1

 (6.171) 

 



6: Fiber and Waveguide Devices            229 

Comparing this to the transmission through a Fabry-Perot filter,  
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(6.172) 

we see that the expressions are identical assuming the following substitution 

nLRr
0

2
λ
ππβ →⋅  (6.173) 

that simply says that the optical circumference of the ring corresponds to twice the 
optical thickness of the etalon. 
 
Just as for Fabry-Perot interferometers, we usually want the losses of ring filters to 
be as low as possible.  In practical situation, the losses are often dominated by 
scattering from roughness on the side walls of the ring waveguide.  In addition to 
these kinds of technology dependent losses, there is also a fundamental (i.e. un-
avoidable) loss mechanism in any curved waveguide.   
 
To see how curved waveguides are fundamentally lossy, consider the basic defini-
tion of a waveguide mode 

( ) ( ) zjeyxEzyxE ⋅−= β0,,,,  (6.174) 

where β is the longitudinal wave vector of the mode, and z is the coordinate along 
the waveguide axis..  We see that if the waveguide is curved, this equation cannot 
be fulfilled, because it would mean that some point sufficiently far from the 
waveguide core, the field must propagate at a velocity higher than the speed of 
light as illustrated in Fig. 6.33. 
 

 

Waveguide 
core 

Critical radius 

Mode profile 

In this region, a guided mode will 
have to propagate at a velocity 
exceeding the speed of light 

 
 

Figure 6.33  There can be no loss-less guided modes on simple curved 
waveguides, because it would mean that part of the mode have to 
propagate at a velocity beyond the speed of light. 
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The curved waveguide can be modeled as a straight waveguide with a linearly 
varying index, which is increasing on the outside of the curve.  (The higher index 
makes it harder for the field in this region to keep up with the rest of the mode, 
just like the longer path length makes it harder for the mode on the outside of the 
curve to keep up.)  This is illustrated in Fig. 6.34.  Again, we see that a curved 
waveguide cannot support completely guided modes.  
 
 

Guided Wave on 
straight waveguide 

A curved waveguide cannot 
support guided modes  

 
 

Figure 6.34. Bending loss.  Bending of a waveguide can be modeled as a linear 
variation of the refractive index perpendicular to the waveguide 
axis.  This means that at some distance from the core, the cladding 
index will exceed the core index, and the mode will not be truly 
guided. 

 
The losses cased by bending can be found analytically for some simple cases.  For 
rectangular single-mode waveguides, it can be shown that the loss is given by [3]  
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where R is the bend radius, k3 = k0n3 is the wavevector in region 3, ky is the trans-
versal wavevector of the mode in the y direction, and the other parameters are 
given in Fig. 6.35. 
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Figure 6.35.  Geometry and parameters of bent rectangular waveguide.  
 
The attenuation in curved step-index, single-mode optical fibers is given by  
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where κ ( )222
0

2 βκ −= corenk  is the transversal wavevector, a is the core radius, K1 
is the modified Bessel function of the second kind of order 1, V is the V-number 
of the fiber, and R is the radius of curvature.  The parameters γ and U are given by 

 22
0

22
cladnk−= βγ  (6.177) 

( )
cladnaV
aU 2

3

3
4 ⋅Δ= γ  (6.178) 

Together with the formulas we have found earlier, this expression for the loss al-
lows us to calculate the transmittance and reflectance from a ring filter.   
 
As is the case with F-P filters, we can cascade ring filters to achieve faster roll-off 
and flatter pass-band.  Combinations of two or more rings also give us the flexibil-
ity to design filters with wider Free-Spectral-Ranges (FSR), and favorable 
waveguide orientation (the power isn’t necessarily propagating back towards the 
source as in Fig. 6.31.) 

6.8 Summary of Fiber and Waveguide Devices 

In this Chapter we study fiber-optic devices that are important in Optical MEMS 
and Nanophotonic.  The first class of devices that is described simply provides a 
means for coupling to optical fibers and waveguides.  We use Gaussian Beam the-
ory to derive closed-form analytical expressions to calculate the effects of mis-
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alignment on fiber-to-device coupling efficiency, and we describe a set of practi-
cal implementations that are well suited for miniaturized optical devices.   
 
We then develop a perturbation theory that simplified modeling of devices with 
interacting modes.  This coupled-mode theory and the adjunct eigen-mode model 
are applied to two very basic fiber-optic devices; the directional coupler and the 
Bragg reflector (which we also studied in Chapter 3).  These two structures hold a 
special place in optical communications for several reasons:  (1) They are used in 
their elementary form in many optical systems, (2) they form the basis for a large 
number of advanced optical devices, and (3) their descriptions build intuitive un-
derstanding of central optics concepts, including photonic bandgap structures.  
 
The last part of the chapter is focused on optical modulators, starting with a gen-
eral description of waveguide modulators and the physical effects they utilize to 
create optical signals.  Finally we describe the modulator designs that are best 
suited for miniaturization.  These designs include acousto-optic modulators, 
Mach-Zender modulators, directional-coupler modulators, Fabry-Perot modula-
tors, and coupled-resonator modulators. 

Exercises 

Problem 6.1 - Coupling to Single-Mode Fibers 

We are designing a fiber for single mode operation at 1.55 μm wavelength.  The 
core index is 1.45, the cladding index is 1.446, and the core radius is chosen such 
that the mode radius is 5 um at 1.55 um wavelength.  We want to couple light from 
a semiconductor laser diode (SDL) at 1.55 μm wavelength into the fiber using the 
set-up shown below.  The SDL has a circular fundamental Gaussian mode with a 
1.0 μm mode radius.  The focal length of the first lens (f1) is 5 mm.   
 

 ωLD 

ωF

f1 f2

f1 + f2

SDL

 
Coupling from a Semiconductor Laser Diode (SDL) to a single mode fiber. 

 
a. What should the focal length of the second lens (f2) be to optimize the cou-

pling? 
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In addition to the fundamental circular Gaussian mode with the field distribution 
( ) 222

01
LDyxeEE ω+−⋅∝ , the laser also supports a second mode with a field distribu-

tion given by ( ) 222
202

LDyxexEE ω+−⋅⋅∝ .   
 

b. In the case of perfect coupling of the first mode to the fiber, how much of 
the second mode will be coupled?  (Explain). 

c. How can you modify the coupling set-up such that you can switch between 
coupling all of laser mode number 1, all (or at least most) of laser mode 
number 2, or a combination of the two?  (Explain qualitatively).  This 
could be useful if the two modes are at slightly different wavelengths, but 
we will not consider wavelength differences of the two modes here.  

Problem 6.2 –Coupling to Altered Fibers  

We use a single lens to couple light from a semiconductor laser diode (SDL) at 
1.55 um wavelength into a single-mode fiber as shown below.  The SDL has a cir-
cular Gaussian mode with a 1.0 um mode radius, and the fiber has a mode radius 
of 5 μm at 1.55 μm wavelength.  The core index of the fiber is ncore=1.45, and we 
will use this index to calculate reflections from the fiber.   

 
ωLD ωF

f

SDL 
 

Coupling from a Semiconductor Laser Diode (SDL) to a single-mode fiber. 
 

a. In the case of perfect alignment and mode matching, what fraction of the 
laser power gets coupled into the fiber, and what fraction gets reflected 
back into the laser?  (Assume no reflections from the lens.) 

 
We have the same coupling set up as in a), only the fiber is angle polished as 
shown below.  The angle of the facet with respect to the optical axis is: α=5 de-
grees.  Except for the angled fiber facet, the alignment and mode matching is per-
fect (i.e. the alignment and mode matching would have been perfect if the fiber 
facet was perpendicular to the optical axis).   
 

b. Under these circumstances, what fraction of the laser power gets coupled 
into the fiber?  (Assume no reflections from the lens.) 
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ωLD ωF 

f

SDL 

α

 
Coupling to angle-polished single-mode fiber. 

 
c. Explain qualitatively how the coupling would change if the fiber core was 

protruding as shown below.  (This could happen if the fiber was etched in 
Hydrofluoric acid, which etches pure SiO2 faster than the Germanium-
doped SiO2 of the core).  

 
 

ωLD ωF

f

SDL  
Coupling to single-mode fiber with protruding core. 

 

Problem 6.3 – Coupling to Misaligned Fiber 

A lens system with a magnification M, is used to couple light from a laser with a 
circularly Gaussian mode of radius ωl=1μm to a single mode fiber with a mode ra-
dius ωf =5μm.  Assume that the effective index of the fiber mode is 1.5.   
 

 

Fiber Laser 

Lens system with 
magnification M 

 
 

Optical system for coupling a Gaussian beam from a laser into a fiber.   
 

a. What is the maximum coupling that can be achieved, and what is the corre-
sponding magnification? 
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b. What is the maximum coupling and corresponding magnification if the fi-
ber is offset by 1 um from the optical axis of the optical system?  (Assume 
that the laser is perfectly aligned with the optical system). 

 
The fiber is damaged such that its facet becomes stepped as shown below.  Except 
for the step, the facet is perfect (i.e. flat and perpendicular to the optical axis).  The 
step divides the fiber facet exactly in half (i.e. the step is at the optical axis), and 
the step is exactly one wavelength.   
 

c. Explain how this changes the coupling from the laser to the fiber.  (Assume 
that the optical system is perfectly aligned, i.e. all components are exactly 
on the optical axis.) 

 
 

Step 

Optical axis 

Fiber 

 
 

Damaged fiber facet. 

Problem 6.4 - Wavefront of Fiber Modes  

Consider the experiment shown in the figure below.  The light is reflected from a 
mirror at the position of the output fiber in the original experiment.  The amount 
of light that is coupled back into the fiber is measured using a 3-dB coupler and a 
power meter.  Assume that the glass plate is perpendicular to the optical axis.   
 
What is the position and minimum thickness of the glass slide that result in zero 
back coupled light?  (Express your answer in terms of x/ω, where ω is the size of 
the Gaussian beam radius at the waist where the glass slide is placed.) 
 

 Mirror 

Power 
meter 

3-Db 
coupler 

Single 
mode fiber 

Glass slide that can be moved 
normal to the optical axis to 
change the phase delay of the 
beam through the delay line 

Input 
light 

 
Modified experimental setup for studying the phase front of optical fiber modes.  
The optical beam is reflected back into the fiber, and the back coupled light is 
measured using a 3-dB coupler and a power meter. 
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Problem 6.5 – Cracked Fiber  

We have a single mode fiber with a mode profile as shown.  The fiber has a nar-
row crack that is filled with absorbing ink.  The crack covers exactly half the fiber 
cross section, and even though it is only a few wavelengths wide, all the light in 
this half of the fiber is absorbed.  At the end of the fiber, 100 m from the crack, the 
output power is approximately 25% of the input power. 

 
 

Single mode optical fiber with crack. 
 

a. Sketch the mode profile at the output of the fiber 100m from the crack.  
(Only the shape is important.  We know that the power is 25% of the input 
power)  

b. We rinse the fiber and replace the ink with water that does not absorb sig-
nificant amounts of light over the narrow width of the crack.  The rinsing is 
done carefully so that the physical dimensions of the crack do not change.  
Now we observe that optical output power is much less than before, i.e. 
much less than 25% of the input power.  Explain how this can happen.   

Problem 6.6 – Fiber-to-Fiber Coupling  

Two single mode fibers are connected through a lens system as shown below.  The 
light propagates from left to right.  The fibers are identical with modes that can be 
approximated as Gaussians with beam radii of 5um at 1.55um wavelength.  The 
focal lengths of the lenses are both 5mm.  Assume that the alignment of the system 
is perfect and that there are no reflections, so that 100 % of the light is coupled 
from the fiber on the left to the one on the right. 

f f

Single mode fiber Single mode fiber 

f f

 
Coupling between single-mode fibers. 

 

M
ode profile

100m

Crack with ink
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a. What is the Gaussian beam radius at the center point between the two 
lenses? 

 
A beam block is inserted into the lens system exactly half way between the lenses 
as shown below.  The block intercepts exactly half of the optical beam. 

f f

Single mode fiber Single mode fiber Beam 
block 

f f

 
Partially blocked coupling between single-mode fibers. 

 
b) Is the amount of light coupled between fibers more than 50%, about 50% or 

less than 50%? (Explain your answer) 
 

Problem 6.7 – Misaligned Fiber-to-Fiber Coupling  

Two single mode fibers are connected through a lens system as shown below.  We 
know nothing about the fibers except that they are single mode.  All we know 
about the lens system is that at an intermediate plane between the two fiber ends, 
both fiber outputs have a waist (focus) with the same Gaussian beam radius, ω.  
The two beams are both perpendicular to the intermediate plane, and their beam 
centers are separated by 0.1ω.   
 
What is the coupling loss from one fiber to the other?  Explain. 
 

f1 f2

Single mode fiber Single mode fiber 

Intermediate plane

 
Coupling between single-mode fibers. 

 

Problem 6.8 – Direct Fiber-to-Fiber Coupling   

Two identical step-index fibers are offset axially and laterally as shown below.  
The fiber on the right is terminated in a perfect reflector, i.e. light that is propagat-
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ing to the right on this fiber will be 100% reflected at the end.  The gap between 
the fibers is filled with index matching fluid, so there are no reflections or scatter-
ing from the gap.  Fiber parameters:  Core radius: a=4μm, core index: ncore=1.45, 
cladding index: nclad=1.446, wavelength: λ=1.55μm. 

 

10 um

1 um 

10 m

Perfect 
reflector 

Index matching 
fluid 

 
Identical fibers that are offset both axially and laterally. 

 
a. Are these fibers single-mode fibers? 
b. What is the transmission loss going from the leftmost to the rightmost fi-

ber? 
c. What is the total reflection for light that is traveling to the right on the 

leftmost fiber, i.e. how much of the light will couple from the left fiber to 
the one on the right, be reflected from the end, and then couple back into 
the left fiber again?   

d. How does the transmission loss from one fiber to the other change as the 
core radius, a, is decreased?  (Explain qualitatively) 

Problem 6.9 - Polarization of Fiber Modes  

What is the coupling from the fiber on the right to the fiber on the left in the set-up 
shown below?   
 
Assume that the light laving the fiber on the right is linearly polarized aligned to 
the λ/2 plate such that the polarization is orthogonal after passing though the plate.  
The plate covers exactly half the beam.   

 λ/2 plate 
Single 
mode fiber 

Single 
mode fiber 

 
Experimental setup for studying the polarization sensitivity of optical fibers. 

 

Problem 6.10 – Directional Coupler 

Consider the symmetric directional coupler shown schematically below.  At 1.55 
μm wavelength, we have that the coupling coefficient and the effective index in 
the coupling region are K=10 cm-1, and neff=1.5, respectively.   
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 Input 1 

L
Input 2 

Output 1 

Output 2  
Directional Coupler. 

 
The length, L, of the interaction region is chosen such that the directional coupler 
acts as a 10% power tap, (i.e. if there is non-zero input only on Input 1, then 10% 
of the power goes to Output 2 and 90% goes to Output 1), at 1.55 um wavelength.   
 

a. What is the shortest coupler length, L, required to make a 10% power tap 
at 1.55 μm wavelength? 

b. For the power tap described in a), what is the distribution of output powers 
if the only non-zero input is on Input 2 (1.55 um wavelength)?  

Problem 6.11 – Fiber Interferometer 

Consider the waveguide device consisting of two directional couplers shown in 
the figure below.  The lengths of the couplers (L) are the shortest length that 
evenly splits the power at 1.55 um wavelength, and they are much shorter than the 
length between the couplers (L1 for the straight waveguide, and L2 for the curved 
waveguide).  Assume that the directional couplers split a single input evenly be-
tween the outputs over the whole wavelength range of interest.   
 

a. Write an expression for the power transmission through the device as a 
function of wavelength.  

 
 

Input L Output L L1

L2 

 
Fiber interferometer. 

 
Consider what happens when this coupler is excited with two different wave-
lengths.  Input 1 has power, P, at exactly 1.55 um wavelength.  Input 2 has the 
same power, but the frequency is shifted up by 10 MHz compared to Input 1.   
 

b. Find an expression for the power on Output 1 as a function of time. 
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Problem 6.12 - Resolution of Confocal Microscopes 

a. Use the formulas on coupling of Gaussian Beams into single mode fiber to 
calculate the axial resolution of the confocal microscope shown in the fig-
ure below (calculate the amount of light that would be coupled back into 
the fiber from a mirror at a distance x from the focus of the beam, and de-
fine the axial resolution as the Full-Width-at-Half-maximum (FWHM) of 
the resulting function of x).  Express your answer in terms of the Gausain 
beam mode radius of the fiber and the wavelength. 

 
 f2=4mm

f1 + f2

Fiber

f1=12mm

x 

 
 

Fiber Optic Confocal Microscope. 
 

b. Rewrite your answer in terms of the NA of the objective lens (lens 2) and 

compare to the standard formula for the axial ( 290.0 NAdz λ=Δ ) resolu-

tion of a confocal microscope. (Don’t expect perfect correspondence.) 
c. Verify the standard formula for the transversal resolution 

( NAd yx λ37.0, =Δ ) of a single-axis confocal microscope. 

Problem 6.13 – Design for Packaging 

Packaging of fiber modulators and other waveguide devices usually includes at-
tachment of fiber pigtails, and this is often the most costly part of the manufactur-
ing process.  It therefore make sense to design waveguide devices and fibers such 
that the required accuracy of the pigtail attachment is minimized.  Assume that 
you have a packaging technology, in which the standard deviation of the lateral 
placement of the fibers is 1 μm, and the angular standard deviation is 4⋅10-3.   
 
What is the optimum fiber-mode size for telecommunication devices (1.55 um 
wavelength) that are packaged using this technology?  Assume spherically-
symmetric Gaussian modes for waveguides and fibers.  

Problem 6.14 – Evanescent Coupling 

A directional coupler is made by bringing the core of a single-mode fiber with a 
mode diameter of 100 um in proximity to a slab waveguide as shown below.  The 
effective index of the fiber mode (in the presence of the slab guide) is 1.4826.   
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Fiber 

Slab waveguide 

Mode diameter: 
100 um 

 
Cross-section of directional coupler consisting of a single-mode fiber and a slab 
waveguide. . 

 
The graphical solutions for the transverse wave vectors of the modes in the slab 
waveguide in the presence of the fiber are shown in the graphs below.  (Use this 
graph to find values for the transverse wave vectors to use in your calculations.)   
 

5000 10000 15000 20000

-10

-7.5
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7.5

10

 
 

Graphical solutions for the TE (left) and TM (right) guided waves.  The core index 
of the slab waveguide is nf=1.5. 

 
a. The fiber mode is exactly mode matched to one TE mode of the slab 

waveguide at 1.3 um wavelength.  Find which TE mode in the slab that is 
phasematched, and sketch (no detailed calculations) its field profile.  

 
A coupler of the type described in a) has a coupling coefficient K=100 cm-1 and a 
length L=5/K.  At the input to the coupler there is no power in the slab waveguide, 
and the fiber carries a power P.  Assume that the polarization of the field in the fi-
ber corresponds to the TE mode on the slab.   
 

b. What is the power in the fiber at the output?  (Hint:  Check to see if the ef-
fects of diffraction in the slab are significant.) 

c. Explain qualitatively how this will change if the coupling coefficient is re-
duced to 1.0 m-1, and the length is increased such that we still have L=5/K? 

κ [cm−1] 



242      Photonic Microsystems 

Problem 6.15 – Fiber Polarizer 

How can you combine what you have learned about directional couplers and sur-
face plasmons to design a fiber polarizer?   

Problem 6.16 – Eigenmodes of Bragg Filters 

Find the eigenmodes of the Bragg filter based on the coupled-mode equations we 
derived in chapter 6.6. 

Problem 6.17 - TE to TM Coupling 

We have a waveguide with the following parameters:  Thickness=5 um, nc=1.4, 
nf=1.5, ns=1.45, wavelength=1 um.  The characteristic equations for the TE (blue) 
and TM (red) modes are shown graphically in the figure in the preceding problem.   
 
What is the Bragg-grating period required to couple the TE3 and TM3 modes in 
this waveguide?  

Problem 6.18 – Fabry-Perot 

A loss less, dielectric slab with an index of 3.5 as shown below is used as a Fabry-
Perot interferometer.  
 

 L= 10cm 

n=3.5
 

 
a. Calculate the Free-Spectral-Range (axial mode spacing) and bandwidth of 

the interferometer?  
b. How does the Free-Spectral-Range (axial mode spacing) and bandwidth of 

the interferometer change if the surrounding medium is replaced by one of 
index n>1? (Explain) 

Problem 6.19 – Ring Filter 

(This is a design problem, so some parts might be under specified.  In those cases 
you should make reasonable assumptions.) 
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A Wavelength-Division-Multiplexed (WDM) fiber optical communication system 
uses 32 wavelength channels, centered at 1.55 um wavelength and separated by 
100 GHz.  Each channel has a signal bandwidth of 10 GHz.   
 

a. Design a resonant directional coupler like the one in the figure below.  The 
coupler should couple every othevery othevery othevery otherererer (i.e. either the even or odd channels) 
wavelength channel on port In to port Out 2.  The non-coupled channels 
should appaer on Out 1 and be suppressed by 40 dB on Out 2.  The design 
involves choosing the length of the ring and the coupling coefficient be-
tween the straight waveguides and the ring.   

 
Assume that the coupling sections are short (i.e. the power in either the ring or the 
waveguide does not change appreciably through coupling region), that the cou-
pling coefficient is wavelength independent, that the effective index of the 
waveguide and ring modes is 1.5, and that the ring has negligible bending loss.   
 

 Top view Side view

Bottom 
guide

Top guide 
Ring

In  
Out 1 

Out 2  
 

Resonant-ring cross point. 
 
Clearly you can switch all the wavelength channels between the two guides if you 
use a longer ring resonator.   
 

b. How long should the ring be and what should the coupling coefficient be?   
c. How much would you have to change the index of the ring to turn the 

cross-point from its ON state (all channels coupled to Out 2) to its OFF 
state (all channels coupled to Out 1)?   

d. Discuss the advantages and disadvantages of this switch design compared 
to the the champagne switch anf the MEMS switches of Chapter 8.  

e. Can you think of a better implementation of this type of switch than the 
one shown in the above figure?   



244      Photonic Microsystems 

Problem 6.20 – Fiber-Loop Mirror 

A directional coupler that splits power at wavelength λ0 on one input evenly be-
tween the two outputs is used in the configuration shown in below.  We define the 
reflectance of the structure as the ratio of the power out of Port 1 to the power into 
Port 1, with no power into, but possibly out of, Port 2.  Assume that the only sig-
nificant wavelength dependence of the coupling coefficient is the one that is ex-
plicit in the formula. 
 
Find an expression for the reflectance as a function of wavelength, coupling coef-
ficient at λ0, and loop length, D.   
 

 

Port 1 

Port 2 

Waveguide loop 
of length D

L 

 
Waveguide loop mirror. 

 

Problem 6.21 – Evanescent Coupling to Ring Resonator 

Consider the following question:  Is it possible to use a perfect ring (or ball) oscil-
lator to couple power out of a laser beam propagating in free space as shown in 
below? 
 

 

 
 

Will the power in the laser be coupled to the high-Q optical oscillator as shown, or 
is this a fallacy? 

 



6: Fiber and Waveguide Devices            245 

References: 

 
1  D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices”, The Bell Sys-

tem Technical Journal, vol. 56, no. 5, May-June 1977, pp. 703-718. 
2  B.E. Little S.T. Chu, H.A. Haus, J.-P. Laine, “Microring Resonator Channel 

Dropping Filters”, Journal of Lightwave Technology, vol. 15, no. 6, June 
1997, pp. 998-1005. 

3  E.A.J. Marcatili, “Bends in Optical Waveguides”, Bell Systems Technical 
Journal, vol. 48, September 1969, pp. 2103-2132. 



7: Optical MEMS Scanners 

7.1  Introduction to MEMS Scanners 

Using mirrors to deflect and position optical beams is a trick that is as old as it is 
important.  Light houses might have been the first “killer app” (or more appropri-
ately “savior app” for someone growing up on the treacherous coast of Norway).  
With the invention and development of laser, this age-old technology has become 
ubiquitous!  Optical scanners are the enabling components in systems covering an 
astonishing range of applications, including such important areas as imaging, mi-
croscopy, communications, printing, displays, retail, light shows, fiber switches, 
security, remote sensing, metrology, surveillance, laser machining, and laser sur-
gery.   
 
This variety of uses has of course led to a similarly large variety of implementa-
tions.  We will limit ourselves to systems using miniaturized scanners based on 
MEMS technology, but even with this restriction, the field is way too large for a 
comprehensive description of the different technologies that are in use.  Instead 
we will focus on the fundamental characteristics of optical scanners, and, since we 
are interested in miniaturized systems, on their scaling.   
 
One consequence of our focus on miniaturization is that we will exclusively con-
sider spatially coherent light, which allows the scanning optics to be significantly 
smaller than the systems needed to scan spatially incoherent light.  Spatial coher-
ence will often, but not always, mean light from single-spatial-mode lasers.  The 
important exception for Optical MEMS is large arrays of microscanner that can be 
illuminated by a collimated beam from a traditional light sources of small area 
such that the angular spread of the illumination is small compared to the diffrac-
tion angle from each microscanner in the array.  Each microscanner is then effec-
tively illuminated by spatially coherent light, even though the light source itself is 
spatially incoherenta.  This is the typical illumination scheme for TI’s DLP tech-

                                                           
a  In this case, spatial coherence is established by spatial filtering the light from 

the traditional light source.  In most cases this is an inefficient process involving 
sending the light through a pin hole, but the magnification of the beam, which 
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nology.  Our focus on spatially-coherent light simplifies our treatment, because it 
allows us to use the Gaussian beam theory developed in Chapter 4 to model the 
performance of scanners. 
 
In the first part of the chapter, we describe the resolution of optical scanners.  The 
resolution can be quantified as the number of pixels, or number of resolvable 
spots, that the scanner can support.  The number of resolvable spots is a funda-
mental property of a scanner [1].  The optical system can reduce the number of re-
solvable spot by introducing loss, but no linear, lossless optical system can in-
crease the number of resolvable spots established by the scanner.  This insight is 
very useful when designing scanning systems.  By casting the application re-
quirements in terms of a number of resolvable spots, the scanner can be specified, 
and then the optical system can be designed to fit the scanner.  Some iteration 
might be necessary, but nevertheless, starting with the number-of-resolvable-spots 
greatly simplifies the design process.   
 
In the second part of the Chapter, we consider effects that can limit or reduce 
scanner resolution.  These include mirror aperture, surface roughness, and static 
and dynamic mirror curvature.  MEMS mirrors are typically coated with a thin 
metal film to enhance reflectivity.  We use the formulae for Fresnel reflections, 
derived in Chapter 3, to clarify material choices and film thicknesses needed to 
achieve good mirror performance.   
 
The focus of this book is optical design, but mechanical design is so important for 
scanners that we devote a section to highlight the most significant issues.  The 
mechanical design is due to the high frequency operation, the low available forces, 
and the under-damped characteristics typically encountered in most MEMS de-
signs.  It is further complicated by the desire to keep fabrication simple and com-
patible with MEMS parallel processing.  We discuss these issues and how they in-
fluence the implementations of single-axis and dual-axes scanners.   
 
The last section of the Chapter is devoted to several examples of successful 
MEMS scanner designs.  The examples are chosen to illustrate a range of me-
chanical designs, including gimbals and universal joints used to implement high-
resolution, 2-axes scanners.  A wide variety of actuators have been used to imple-
ment MEMS scanners, but our focus is on electrostatic actuation due to its preva-
lence and its material compatibility and relative simplicity of integration with IC 
manufacturing processes.  An important adjunct to this Chapter is therefore Ap-
pendix B on Electrostatic actuators.  

                                                                                                                                     
reduces its angular content, combined with the small size of the microscanner, 
allows the spatial filtering to be efficient. 
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7.2  Scanner Resolution 

The energy-conservation arguments of Chapter 2 tell us that the overlap between 
two optical fields does not change as the fields propagate through lossless, linear, 
passive optical systems.  For scanners this means that the number of points that 
can be resolved is an inherent property of the scanner, and cannot be improved by 
clever system design.  This is illustrated in Fig. 7.1 that shows a schematic of a 
simple scanning system.  The lens systems that are used to relay the optical field 
from the laser to the scanning mirror and then to project the scanned optical beam 
onto the screen do not change the resolution that is established by the scanning 
mirror itself.  It is of course possible to reduce the resolution by introducing loss, 
but that is rarely a useful practice.  This insight simplifies the design process, be-
cause the system requirements on resolution or resolvable pixels translate directly 
into specifications for the scanning element.   
 

 

Microscanner 

Beam-forming 
lenses 

Projection 
lens 

Screen 

Semiconductor 
laser 

 
 

Figure 7.1. Schematic of microoptical scanning system showing the scanner in two 
positions (solid and dashed lines).  The overlap between the scanned 
beams created by the two settings of the scanner is constant. 

 
When using energy-conservation arguments we must keep in mind that the invari-
ant overlap integrals are taken over all dimensions of the optical field, while in 
scanning systems we are primarily concerned with spatial separation of intensity 
distributions.  As the two fields corresponding to the two different setting of the 
scanning mirror propagate through the optical projection system their overlap in-
tegrals will be constant, but their distinguishing features will vary, i.e. in some 
parts of the system the fields will overlap spatially, but be separated angularly, 
while in other parts it will be the other way around.  Almost all scanning systems 
are designed so that at the output, the fields are only distinguishable in one charac-
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teristic, typically spatial location, so that their difference in this dimension is 
maximized.   
 
The design of a scanning system can therefore be broken down into two parts: 
First the scanner itself is designed to meet the requirements of the application, and 
then the lens system is designed to project the scanned output with the correct 
separation and magnification.  The lens systems are as varied as the applications 
they are designed for.  Such systems are the subject of numerous text books, and 
several sophisticated computer programs for lens design and lens-system design 
are available.  Here we will concentrate on the resolution and implementation of 
the microscanners themselves.  

7.2.1 Resolution of an Ideal Scanner 

To design a scanner to a set of specifications, we need to understand the relation-
ship between the physical characteristics of the scanner and its resolution.  We 
will start by considering an optical beam reflecting from an ideal flat, infinite mir-
ror as shown in Fig. 7.2.  For simplicity we assume that the beam waist is on the 
scanning mirror, and that the screen is in the far field, i.e. the screen is sufficiently 
far away from the scanner that the beam radius increases linearly with distance.  In 
other word, we are sufficiently far away from the scanner that the beam has a 
well-defined diffraction angle.   

Ideal, flat, 
scanning mirror Incident 

optical beam 

Θtilt 

Screen 

 
 

Figure 7.2. The resolution of the scanning mirror is determined by the total range 
of scanning angle and by the diffraction of the beam coming off the mir-
ror. 
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The number of resolvable spots (pixels) that the mirror can form on the screen in a 
one-dimensional scan is then 

1+Δ=
diff

tiltN
θ
θ  (7.1) 

where Δθtilt is the maximum change in tilt angle that the scanning mirror can 
achieve and θdiff is the diffraction angle of the beam.  The tilt angle is an inherent 
property of the scanner, while the diffraction angle depend on the beam size on the 
scanner and the wavelength.  In Chapter 4 we gave the half-angle of a Gaussian 
beam as 
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where ω(z) is the beam radius, and ω0 is the beam radius at the waist.   
 
This particular definition is arbitrary in that we have simply chosen the 1/e radius 
(1/e2 for intensity) as a convenient measure for the beam size.  In any real scan-
ning system we should chose the beam size that is appropriate for that application.  
Let’s consider scanning displays as an example.  Viewer-perception studies of 
quality of Cathode-Ray-Tube (CRT) images have shown that the optimum pixel 
separation is the full-width-at-half-maximum (FWHM) of the scanned beam on 
the screen [2].  
 
This result is applicable to Gaussian beam scanning, because the electron beam in 
a CRT creates an approximately Gaussian light distribution on the screen.  Given 
this resolution criterion, the diffraction angle (FWHM) becomes 

⇒⋅≈=⇒=
−

ωωω 589.02ln5.0
2
12

2

2
FWHM

r

re
FWHM

 

( )
0

18.118.1lim2lim
ωπ

λωθ
⋅

=⋅
∞→

=
∞→

=
z

z
zz

r
z

FWHM
diff  

 

(7.3) 

For scanning display we can then express the number of resolvable spots as  
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If we assume that the scanning system can support angles up to 0.75 radians (lim-
ited either by the scanner itself, or by the supporting lens system), we find the fol-
lowing expression for the number of resolvable spots 
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10.2 0 +⋅≈
λ

ωN  (7.5) 

In the visible (λ=500nm), we see that a beam radius of 250 micron is sufficient for 
HDTV resolution!  A micromirror of a diameter of about 750 micron can support 
this size beam.  This demonstrates the basic property that makes scanning mi-
cromirrors so useful in so many applications; it doesn’t take a very large mirror to 
resolve a large number of spots. 
 
The simple equation above does not tell the whole story.  We used a specific reso-
lution criterion (pixels separated by their FWHM) and assumed a rather large scan 
angle of 0.75 radians.  For most systems we find that neither of these two assump-
tions is valid.  For general calculations of scanning Gaussian beams, we therefore 
us the expression:   
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where k is a constant that is set by the relevant resolution criterion for the applica-
tion in question.  For a scanning display we have k=1.18 as we have seen.  If we 
use the full diffraction angle out to the 1/e2 intensity of the Gaussian beam, then 
k=2.  Fiber-optic switches based on scanning mirrors require substantially larger 
separation to achieve acceptable cross talk, so typically we use k-values on the or-
der of 3 or more.   
 
In the next section we will see that the equation we have found for the number of 
resolvable spots is valid for a much wider range of situations than covered by Fig. 
7.2 where the scanned optical beam has its waist on the scanner. 

7.2.2 Optimum Resolution of a Scanned Gaussian Beam 

In the discussion of resolution criteria and resolvable pixels in Chapter 7.1, we as-
sumed that the beam waist was on the scanning mirror.  To get a better under-
standing of scanning systems in general, we relax that assumption, and consider 
the case shown in Fig. 7.3.  Here we have a converging Gaussian beam that is re-
flected from a scanning mirror onto a projection screen positioned a distance, d, 
away from the scanner.  The Gaussian beam converges to a waist somewhere after 
the scanning mirror, and then starts diverging towards the screen.  This is a gener-
alized description that incorporates the situation of having the beam waist on the 
scanner as a special case (z0=0).  The way we set up the problem also allow us to 
give z0 negative values, which means that beams that are diverging at the scanning 
mirror are also covered by the formalism.   
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Figure 7.3. Profile of a Gaussian beam that is converging on a scanning mirror 
and reflected onto a display screen. 

 
In the general case of Fig. 7.3, we rewrite the equation for resolvable spots in 
terms of the propagation distance from the scanner to the screen and the beam ra-
dius on the screen:  
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where the beam radius is given by 
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We now maximize the number of resolvable spots under variations of the scanner-
screen distance 
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Plugging this back into Eq. 7.8 yields the following expressions for the beam 
waist at the screen, the beam waist at the mirror, and finally the number of resolv-
able spots. 
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This last expression is the same as the one we found for the resolvable pixels of a 
scanner with the beam waist on the mirror!  The case of a beam focused on the 
scanner is recreated by setting z0=0, resulting in ω(z0)=ω0, ω(zs)→∞ (far field), 
and the same resolution expression.  We also notice that the equations work just as 
well for a diverging beam as they do for the converging beam shown in Fig. 7.3.  
For a diverging beam the scanner-waist distance, z0, is negative, which means that 
the distance, zs, to the optimum screen position is also negative, i.e. the best reso-
lution is obtained at virtual image plane to the left of the scanner in Fig. 7.3.  This 
virtual plane can be imaged by a lens after the scanner to create a real image plane 
with optimum resolution.   
 
The conclusion of our treatment is that the resolution of an optical scanning sys-
tem depends only on the scanner’s range of angles, the optical beam radius on the 
scanner, the wavelength, and the resolution criteria established by the application.  
Converging, diverging, and focused incident beams give the same resolution prov-
ing that the resolution of the scanning mirror does not depend on the incident 
field.  We simply have to adjust the projection system to obtain the maximum 
resolution.   

7.2.3 Scanner Aperture 

In Chapter 4 we discussed the effect of truncation on Gaussian beams.  We con-
sidered the energy loss associated with truncation, i.e. we calculated the amount of 
energy that was left in the Gaussian beam and showed how much was blocked by 
the aperture and how much was forward-scattered into higher-order Gaussian 
fields.  We also showed the effect of forward scattering on the beam shape in the 
far field.  Both the energy loss and particularly the changes in beam shape are very 
important in miniaturized scanning systems.  As we will see in later sections on 
MEMS implementations of optical scanners, it is difficult to fabricate and actuate 
large-area MEMS scanners.  This fact forces us to make the scanning mirrors as 
small as possible for a given application.  The expression we have derived for 
ideal, infinite mirrors shows that scanner resolution is directly proportional to the 
beam size on the scanning mirror.  Now we have to ask how small we can make 
the scanning mirror and how the resolution is affected by the truncation caused by 
a finite size scanning mirror.  Intuitively we understand that we cannot make the 
scanning mirror much smaller than the Gaussian beam size and expect to achieve 
the same resolution as for an infinite mirror.  To create miniaturized scanning sys-
tems, we need to quantify the loss of resolution to be able to make optimum de-
sign trade offs.   
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To see how forward-scattered light affect scanner resolution, we go back to our 
diffraction calculations for truncated Gaussian Beams.  Figure 7.4, which is the 
same as Fig. 4.19 repeated here for convenience, shows the far-field intensity pat-
tern of three Gaussian Beams that have been truncated to various degrees at their 
beam waist along one axis.   
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Figure 7.4 Far-field (angular) profiles of Gaussians truncated in one dimension.  
The solid lines shows the profile of a Gaussian without truncation, the 
dashed lines is the profile of a beam truncated at four times its beam 
radius (d=4ω0), and the dot-dashed line at twice the beam radius 
(d=2 ω0).  (Same as Fig. 4.19.  See Chapter 4.7.2 for detailed descrip-
tions) 

 
The solid line shows an unperturbed Gaussian without truncation, the dashed line 
shows one has passed through an aperture that equals four times the beam radius, 
and the dot-dashed line shows one truncated at twice its beam radius.  The far 
fields are calculated using the Fraunhofer Diffraction integral, which is separable 
in rectangular coordinates, so for rectangular apertures it is sufficient to consider 
truncation in one dimension.  The derivations leading to the graphs of Fig. 7.4 are 
described in detail in Chapter 4.7.2.    
 
The plots of Fig. 7.4 give us a first answer to the question of how large a scanning 
mirror should be.  A mirror that is four times larger than the beam radius is nearly 
indistinguishable from the non-truncated beam and has side lobes only on the level 
of 10-5.  A mirror that is only twice as wide as the beam radius on the other hand 
has a far-field beam shape that is 37% wider than the non-truncated beam and has 
side lobes at the 1% level.  Almost all practical miniaturized scanners have widths 
that are between these two values.   
 
The effect of truncation on the central lobe of the truncated Gaussian is illustrated 
in more detail in Fig. 7.5.  This figure shows the far-field of Gaussians of different 
beam radius after being truncated by the same mirror.  The graphs gives us an an-
swer to the question of what Gaussian beam size that gives the smallest far field 
for a given aperture size.  We see that the central lobe decreases as we increase the 
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Gaussian beam radius from one fourth to one half of the mirror width.  Increasing 
the beam radius to equal the mirror width further improves the far field, but the 
improvement is no longer as large and come at the cost of significant side lobes.  
Increasing the beam radius beyond that point yields only insignificant reduction of 
the central-lobe width, while the costs in terms of side lobes and on-axis attenua-
tion are severe.   
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Figure 7.5 Far-field (angular) profiles of Gaussians of different beam radius trun-

cated in one dimension by the same mirror.  The ratios of mirror width 
to beam radius are 4 (dot-dashed), 3 (dashed), 2 (dot-long-dashed), and 
1 (long-dashed).  The far-field pattern of a uniform distribution filling 
the mirror (dotted) and non-truncated Gaussian (solid) with a beam ra-
dius equal to half the mirror width are shown for comparison.  The 
graphs in (a) are normalized to the on-axis intensity, emphasizing cen-
tral-lobe width, while the graphs in (b) are normalized to the on-axis 
intensity of the non-truncated far-fields to emphasize energy loss.  

 
The conclusion we draw from Figs. 7.4 and 7.5 is that miniaturized scanners 
should be designed with apertures that are close to twice the beam radius.  Sys-
tems that have relatively low contrast requirements, and therefore can tolerate sig-
nificant side lobes in the far-field pattern, can use slightly smaller mirrors, but re-
ducing the mirror size to equal the beam radius can only be done in the most crude 
systems.  Systems that require high contrast of better than 20 dB need mirrors that 
are larger than twice the beam radius, but only in extreme cases is it necessary to 
employ mirrors that are larger than 3 times the beam radius.  When calculating the 
resolution of mirrors that are smaller than about 3 times the beam radius we must 
take into consideration the increased width of the central lobe of the far field.  For 
the case of a mirror that is twice the beam radius, this increase is 37%.   

7.2.4 Surface Roughness, Curvature, and Bending of Micro Mirrors 

Surface imperfections will typically not reduce the fundamental resolution of a 
scanning mirror.  Although phase variations caused by surface imperfections can 
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change the overlap integral, defined in Chapter 2 as ( ) SdHEHE
surface

⋅×+×∫ 1
*

22
*

1 , 

between two fields corresponding to two different settings of the scanner, these 
changes are negligible for typical surface imperfections seen in microscanners.  In 
principle it is therefore possible to create high-resolution scanning systems using 
reflectors that deviate severely from the ideal flat surface.  In practice, however, 
surface imperfections beyond a certain acceptable limit create insurmountable 
problems for the system design.   
 
The acceptable level of surface imperfections depends among other things on the 
nature of the imperfection.  Mirror imperfection can take many forms, but we will 
focus on three problems that are common to MEMS scanners; surface roughness, 
static curvature, and dynamic bending.   

Surface Roughness 

The effect of surface roughness can be understood by using a simple grating 
model to quantify reflection.  We assume that a mirror surface can be modeled as 
a shallow grating as shown in Fig. 7.6.  The reflected field from the surface can be 
modeled as the sum of two phasors with a relative phase given by the extra propa-
gation experienced by the fields that are reflected from the bottom parts of the sur-
face grating.  The reflected light can then be calculated using the same procedure 
we applied in our modeling of the Michelson Interferometer in Chapter 2.3.  (A 
more complete grating analysis will be presented in Chapter 10 on diffractive op-
tical MEMS).  
 

Rough reflective 
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δ

Incident 
Field 

 
 

Figure 7.6 Surface roughness modeled as a shallow phase grating. 
 
The part of the incident field that is reflected  from the bottom of the shallow sur-
face grating will in reflection have traveled a total distance of 2δ farther than the 
field that is reflected from the top.  The relative phase of the two is therefore 

λ
δπφ 22 ⋅= , where λ is the wavelength of the incident light.  Following the 

treatment of the Michelson Interferometer in Chapter 2.3, we may write the fol-
lowing expression for the reflected intensity from the surface   
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where Ir and Ii are the reflected and incident optical intensities.  We are analyzing 
optically flat surfaces with only shallow imperfections, so we expand the cosine 
function around δ=0.  The reflection from the surface then becomes  
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This formula shows that even very minor surface roughness can cause significant 
problems.  A standard surface-quality specification of λ/12 gives a reflection of 
only 73% as shown in the graph of Fig. 7.7.  The two-level grating model we have 
used here represent a worst-case scenario, but surface roughness on the order of 
λ/12 is nevertheless too much for most applications.  Many systems can tolerate 
λ/20, but the most critical systems require roughness better than λ/100.  At this 
level the roughness is of minor consequence as can be seen from Fig. 7.7.   
 
The good news is that surface roughness less than 25 nm Root-Mean-Square 
(RMS) is readily obtained for most substrates and thin films used in optical Mi-
crosystems.  With some effort this can be reduced to less than 10 nm RMS.  This 
corresponds to λ/60 and λ/150 for fiber-optic communications wavelengths (~1.5 
um), and λ/20 and λ/50 for visible wavelengths.  The conclusion is that surface 
roughness is an important problem to consider in the fabrication process, but it can 
be controlled and reduced to acceptable levels without undue difficulty and ex-
pense.     
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Figure 7.7 Reflection from a shallow grating as a function of grating amplitude 
normalized to wavelength.   
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Mirror Curvature 

We emphasized in the introduction to this section that curvature of a mirror does 
not fundamentally reduce its resolution.  The optical systems just have to be de-
signed to compensate for the curvature of the mirror.  The problem with curvature 
is therefore one of variability; if different mirrors have different curvature, then 
each mirror must be characterized and its optical systems must be tailored to its 
specifications.  This is tedious, time consuming and costly, so it is important to 
understand how much curvature variations that can be tolerated.  In the following 
discussion we will assume that the scanning mirror is nominally flat, and that any 
curvature is due to an imperfect fabrication process.  The treatment works equally 
well for the case of a mirror that is designed to have a certain radius of curvature, 
as long as we read “radius of curvature” as “deviation from the nominal radius of 
curvature”.b 
 
Consider the comparison of a flat and a curved mirror in Fig. 7.8.  The figure 
shows two overlaid beam profiles; one that is reflected off a curved mirror (beam 
profile shown as solid lines) and one that is reflected of a flat mirror(dashed lines).  
The beam coming off the flat mirror has its beam waist on the mirror, while the 
beam coming off the curved mirror is re-focused to a beam waist and then di-
verges to a larger far-field than the beam that reflects from a flat mirror.  If the 
curved mirror had the opposite curvature, then the beam would have a virtual 
waist in front of the mirror, and the decrease in resolution would be the same as 
for a focusing mirror with a radius of curvature of the same magnitude.   
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Figure 7.8. The incident beam on the curved mirror is focused to a waist and then 
diffracts to create a wider far-field pattern (solid lines) than a beam re-
flected off a flat mirror (dashed lines).   

                                                           
b  Note that the radius of curvature of a flat mirror is infinite, so if a nominally-

curved mirror meets its specifications on curvature, then its “deviation from the 
nominal radius of curvature” is also infinite. 
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The curved mirror acts as a lens with a focal length of f=R/2, where R is the radius 
of curvature of the mirror.  From the formulas for focusing of Gaussian Beams 
that we derived in Chapter 4.3 we know that the ratio of the beam radius at the 
waist created by the curved mirror to the beam waist on the flat mirror is given by  
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where ω1 is the beam radius of the waist on the mirror, ω2 is the re-focused beam 
radius, z1 is the Rayleigh length of the waist on the mirror, and λ is the wave-
length.  The angular far-field spread of a Gaussian beam is inversely proportional 
to the beam waist, so the ratio of the far-field diffraction angles, or equivalently 
the ratio of the beam radii on the projection screen, is the inverse of this expres-
sion  
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To facilitate comparison between the effects of mirror curvature and surface 
roughness it is convenient to re-write this expression in terms of the mirror bow 
and diameter as defined in Fig. 7.9.   
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Figure 7.9. Definition of mirror bow.   
 
The mirror bow can be written  
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where we have assumed that the radius of curvature is large compared to the mir-
ror diameter.  This is a very good approximation for all practical mirrors, particu-
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larly because we are really considering deviation from a nominal R value, not the 
value itself.  If we further assume that the mirror diameter is equal to 3 times the 

beam radius, then we have 
h

R
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9 2
1ω≈ and the expression for the far field diffraction 

angle ratio becomes  
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The two expressions we have derived for the ratio of the far field diffraction an-
gles are plotted in Fig. 7.10.  The plot in Fig. 7.10a demonstrates that a radius of 
curvature (or more correctly an error in the radius of curvature) equal or smaller 
than the Rayleigh length leads to a severe increase of the far-field beam radius and 
a corresponding reduction of the number of resolvable pixels of the scanner.  
When the radius of curvature is larger than twice the Rayleigh length, the resolu-
tion penalty for curvature is acceptably small for most applications.   
 
The optical beams used with microscanners typically have beam radii of less than 
a few hundred micrometer.  If we use ω1=400um as an upper limit, we find that 
the Rayleigh lengths are equal to or less than 1m and 33cm for visible and tele-
communication wavelengths, respectively.  Creating mirrors with radii of curva-
ture that are substantially larger than these values present a challenge in many op-
tical MEMS technologies.  This is particularly true for surface micromachining 
where stress gradients lead to curvature of free-standing thin films.  Optical 
MEMS based on Silicon-on-Insulator materials, on the other hand, use mirror sub-
strates that typically are tens of microns in thickness, so in these technologies mir-
ror curvature is generally not a problem.    
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Figure 7.10. Ratio of the far field diffraction angle for a curved mirror to that of a 
flat mirror.  The graphs in (a) shows the ratio plotted vs. the mirror ra-
dius of curvature normalized to the Rayleigh length, z1, while (b) shows 
the ratio vs. mirror bow normalized to the wavelength.    

 
Figure 7.10b contains the same information as 7.10a, but plotted against mirror 
bow instead of radius of curvature.  Comparing this graph to the one of Fig. 7.7, it 
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seems that for a given deviation from a flat mirror, high spatial frequency imper-
fections like surface roughness have larger negative effect on system performance 
than low spatial frequency imperfections like curvature.  We should be careful not 
to infer too much from this comparison because the two graphs are describing dif-
ferent physical effects, but it is generally true that low spatial frequency errors de-
grade performance less and are easier to compensate.  This is fortuitous for Opti-
cal MEMS that tend to use interfaces that are polished as a part of the fabrication 
process, while it is a problem in integrated optics where etched sidewalls of 
waveguides may be rough and lead to excessive waveguide loss. 

Dynamic bending  

The two previous sections cover the most common forms of static imperfections 
in micromirrors; surface roughness caused by inadequate polishing and mirror 
curvature caused by stress and stress gradients.  In addition to these static imper-
fections, microscanners also experience dynamic bending as a consequence of ac-
tuation forces and inertial forces acting on the mirror during operation.  In princi-
ple we can avoid detrimental effects of static mirror curvature by correcting the 
radius of curvature of the field coming off the mirror in the beam forming (pre-
compensation) or projecting (port-compensation) optics.  Such compensation 
would be practically impossible for dynamic mirror bending, because the shape of 
the phase irregularities are more complex, and, most importantly, the compensa-
tion would have to dynamically change throughout the scanning oscillation cycle 
to adapt to the changing mirror imperfectionsc.  Dynamic mirror bending is there-
fore an effect that must be understood so that its detrimental effects can be kept to 
an acceptable level. 
 
Consider a scanning mirror that is driven into harmonic, oscillatory motion around 
a fixed axis of rotation as illustrated in Fig. 7.11.  The mirror will experience ac-
tuation forces and inertial forces that bend the mirror to varying degrees through-
out the oscillation cycle.  At the extreme end of the cycle the mirror surface will 
have an s-shaped form as shown.   
 
Assuming that the actuation forces are applied to the mirror as a moment at a fixed 
rotation axis and that the scanner has a rectangular mirror of constant cross sec-
tion, it will experience an acceleration force that varies harmonically throughout 
the oscillation cycle and increases linearly with distance from the axis of rotation.  
The curvature of the mirror will then increase as the cube, and the deviation from 
flatness will increase as the fifth power of the distance from the axis (plus lower 
order terms to meet the boundary conditions) [3].   
 

                                                           
c  Such dynamic compensation is theoretically conceivable by applying a dynamic 

phase corrector like a tunable lens or adaptive-optics mirror, but the author is 
unaware of any practical systems that use this strategy. 
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Figure 7.11. A scanning mirror that undergoes harmonic angular oscillations 

around a fixed axis of rotation will experience actuation forces and in-
ertial forces that bend the mirror.   

 
The assumption that the microactuator that drives the scanner applies a moment at 
the rotation axis of the mirror is not correct for most microscanners.  The more 
typical situation is that the actuation forces are distributed over the mirror, either 
as electrostatic forces (as we will see in several examples at the end of this Chap-
ter) or through linkages to the mirror away from the rotation axis.  These distrib-
uted forces will in general complicate the shape of the mirror, but will not dra-
matically change the magnitude of the maximum deviation from flatness, shown 
as δ in Fig. 7.11.  This is due to the fact that, in operation, the momentum created 
by the actuation forces will by definition equal the momentum of the acceleration 
forces.  If the actuation forces are applied to the end of the mirror (worst case) we 
get roughly a doubling of the bending.  In the interest of obtaining general results, 
we will simply ignore such “minor” effects.  We will also ignore any elastic en-
ergy storage in the mirror itself.  In other words, we assume that the mirror is 
driven well below the resonance frequency of its first-order mechanical resonance.  
This is a valid assumption for nearly all practical mirrors; the scanner might be 
driven at the resonance frequency of the overall actuator-mirror system, but for a 
well-designed scanner that frequency should be substantially lower than the fun-
damental resonance frequency of the mirror itself.   
 
With these assumptions we need only consider the acceleration forces when calcu-
lating the bending of the mirror.  The acceleration in the y-direction at a distance x 
from the rotation axis is  

( )txy ωωθ cos2
max ⋅−=  (7.19) 

where ω is the natural frequency and θmax the angular amplitude of the oscilla-
tions.  The acceleration load per unit length in the x-direction of the mirror is then 

( ) ρωωθ ⋅⋅⋅⋅−= hbtxw cos2
max  (7.20) 

where b is the width of the mirror perpendicular to the x-direction, h the thickness, 
and ρ the density of the mirror.  The standard reference work by Roark gives the 
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following formula for the end-point defection for a cantilever with a load per unit 
length that increases linearly from zero at the base to a maximum value of w at the 
endd [4] 
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where L is the length of the mirror in the x-direction, E is Young’s modulus for 
the mirror material, and I is the mirror’s moment of inertia, given by  

12

3bhI =  (7.22) 

 
Putting it all together we find the following formula for the maximum deviation 
from flatness 
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The material constants (ρ and E) are determined by the fabrication technology, 
and the maximum angle (θmax), the scanning frequency (ω), and the mirror size (L) 
are set by the optical system specifications, so the only parameter that we are free 
to chose is the mirror thickness (h).  To determine acceptable values for the thick-
ness we need to know how much defection is acceptable.   
 
A mirror bent into an s-shape by actuation and acceleration forces will clearly dif-
fract light differently than a flat mirror or a mirror of constant curvature.  The ex-
act diffraction pattern in the near and far field can be calculated using the Huy-
gens-Fresnel diffraction integral.  The result is a graph similar to Fig. 7.10b that 
shows that the maximum deviation from flatness must be a small fraction of a 
wavelength.  The exact increase in diffraction angle will depend on the details of 
the mirror shape, but it is a safe assumption that if we keep the maximum deflec-
tion below 1/20 of a wavelength, then the increase will be acceptable.  Using this 
criterion, we find that the mirror thickness must fulfill the inequality  
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d  At first glance this formula seems inconsistent with our previous conclusion that 

the maximum deviation should go as the fifth power of the mirror length.  No-
tice, however, that we here express the deflection in terms of the maximum load 
w.  If we instead used the slope of the load, w/L, we would regain the fifth-
power dependence.  
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This minimum mirror thickness is plotted vs. total mirror length in Fig. 7.12 for 
four different oscillation frequencies of 1.0 KHz, 3.0 KH, 10.0 KHz, and 30.0 
KHz.  The plots are for a poly-silicon mirror with a density of ρ=2331 kg/m3 and a 
Young’s modulus of E=160 GPa [5].  The angular oscillation amplitude is as-
sumed to be 0.12 radians=6.9 degrees.  This means that the mirror scans through 
a total range of 13.8 degrees, and the angle range of an optical beam reflected 
from the mirror is 27.6 degrees, which is a typical scan range for high-quality mi-
croscanners.  The wavelength is set to 1.5 um, so for operation in the visible, the 
mirror thickness must be increased by 3 .  
 
The figure on the left (a) shows the required thickness for relatively short mirrors 
up to 400 um.  We see that typical surface micromachining thicknesses on the or-
der of 1 to 2 um cannot support large scanning mirrors.  For example, a 2 um thick 
mirror operated at a modest 3.0 KHz must be less than about 370 um in length to 
avoid excessive dynamic bending, and if it is operated at 30 KHz, then it must be 
less than 150 um.  A fabrication technology that allows thicker mirrors is required 
to create larger mirrors that can operate at high frequencies.  Silicon-on-Insulator 
(SOI) MEMS will readily support fabrication of mirrors with thicknesses of a 
hundred microns or moree.  Figure 7.12b shows that such thick SOI mirrors can 
measure up to one mm and still be operated at high scanning frequencies.   
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Figure 7.12. Minimum mirror thickness [um] required to keep deviation from flat-
ness to less than λ/20 at λ=1.5 um for a rectangular mirror of uniform 
thickness rotated around a fixed axis at frequencies of 1.0 KHz (solid 
line), 3.0 KHz (dotted line), 10 KHz (dashed line), and 30 KHz (dot-
dashed line) as a function of totals mirror length [um] perpendicular to 
the axis of rotation.  Figures (a) and (b) show the same data in two dif-
ferent ranges of mirror size.  

 
The conclusion is that mirror flatness is a serious challenge in the design of micro-
scanners.  Mirrors fabricated using surface micromachining can only support 
modest sizes and frequencies.  SOI mirrors do better, but the large thicknesses re-

                                                           
e  Strictly speaking we should use a direction-dependent Young’s modulus when 

calculating bending of crystalline silicon, but for rough calculations the Young’s 
modulus for polysilicon is a good approximation.   



7: Optical MEMS Scanners            265 

quired for large, fast scanners lead to bulky mirrors that require high-force actua-
tors.  Figure 7.11 and the associated discussion show that we can mitigate this 
problem by using mirrors that, instead of being of uniform thickness, have increas-
ing thickness, and therefore the stiffness, towards the ends of the mirror.  (This 
might seem counter-intuitive because increasing the thickness will also increase 
the acceleration forces and therefore the bending moments towards the mirror 
ends.  However, the mass and therefore the bending moment increases linearly 
with thickness, while the stiffness goes as the third power of the thickness, so the 
net effect is to reduce bending.)  A compelling implementation of this stiffer-
towards-the-end strategy is to create a “microdrum” as shown schematically in 
Fig. 7.13.   
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Figure 7.13. A thin film, stiffened by tensile stress and supported by a rigid frame, 
enables light-weight mirrors than can be operated at high frequencies 
without deforming to unacceptable levels.   

 
Here the reflective surface is made of a thin film coated with a metal film to en-
hance reflectivity.  The thin film is supported by a stiff frame made in SOI MEMS 
or some other type of bulk micromaching technology.  The frame can be made 
rigid by increasing its thickness, while the thin film is kept flat by tensile stress.  
This type of structure is obviously more complicated to manufacture than a sim-
ple, uniformly thick mirror, but it has been demonstrated that high-quality mirrors 
and scanners can be fabricated this way [6,7].  

7.3 Reflectivity of Metal Coated Micromirrors 

In Chapter 7.2 we studied the influence of mirror shape on the reflected optical 
field.  It is clear from our considerations that it is important to precisely control 
both surface roughness and mirror curvature to achieve the full resolution poten-
tial of microscanners.  This makes it difficult to apply multilayer-stack reflectors 
in Optical MEMS, because of curvature variations caused by thermally induced 
stress in the multilayers.  It has been shown that this challenge can be met by care-
ful stress engineering and thermal control [8,9], but that still leaves the problem of 
material and process compatibility of multilayer stacks with IC and MEMS tech-
nology.  Another method for making high-reflectivity surfaces is to use Photonic-
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Crystal reflectors as described in Chapter 14, but that technology is still in its in-
fancy.  Consequently, most optical microsystems use simple metal coatings to en-
hance reflectivity.  Choosing the materials and thicknesses of metal reflectors is 
therefore an important part of microscanner design. 
 
Reflection of metal films on micromirror substrates can be calculated using the 
Fresnel-reflection formulae extended to multilayer structures, as we derived in 
Chapter 3.  The combination of an Aluminum reflective film on a silicon or 
polysilicon mirror substrate is very common in Optical MEMS.  Figure 7.14 
shows the reflectivity of that type of layered structure as a function of Aluminum-
film thickness and incident angle at visible and telecommunication wavelengthsf.  
Other wavelengths and other combinations of reflective-film materials and sub-
strates can straight-forwardly be modeled using the same formulae developed in 
Chapter 3.  
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Figure 7.14. Reflectivity of Al on silicon as a function of Al thickness at 0.5 um (a) 
and 1.55 um (b) wavelength.  The solid lines show the reflectivity at 
normal incidence, while the dashed (TM) and dot-dashed (TE) lines are 
for 45 degrees incident angle.  

 
The index of refraction values (n is the real part, while k is the imaginary part that 
leads to absorption) the that are used to calculate the reflectivities are given in Ta-
ble 7.1 together with the reflectivity values of pure of Aluminum and gold at the 
technologically important wavelengths of 500 nm (visible) and 1.550 nm (long-
haul fiber optics).   
 
The data of Fig. 7.14 and table 7.1 show that Aluminum is a very good reflector 
both at visible wavelengths and in the conventional band (c-band) around 1550 nm 
wavelength used for long-haul fiber-optical communication.  For both wavelength 
ranges we see that the film thicknesses required to achieve close to bulk reflectiv-
ity are only on the order of 30 to 40 nm.  Gold has slightly higher reflectivity in c-
                                                           
f  The reflectivity data of Fig. 7.14 are for light incident in air on an Aluminum 

film on a silicon substrate.  The reflectivity is lower for light incident from the 
silicon side of the same film.  This is not in violation of the reciprocity we dem-
onstrated for loss-less mirrors in Chapter 2, because the Aluminum films absorb 
optical radiation at these wavelengths.     
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band as can be seen in Table 7.1, but it is much worse in the visible (~50%).  Gold 
also represents an unacceptable contaminant in Si foundries, so it is much less 
used.   
 

Incident Angle n k 0° 45°-TM 45°-TE 
Aluminum at 500 nm 0.769 6.080 0.923 0.894 0.946 
Aluminum at 1550 nm 1.440 16.00 0.978 0.969 0.984 
Gold at 1550nm 0.550 11.4912 0.984 0.977 0.988 

 
Table 7.1. Index of refraction [10] and reflectivity of Al and Au at selected wave-

length wavelengths.  The calculated reflection coefficients are valid for 
idealized, perfect surfaces.  In practice, the reflectivity will be reduced 
by material imperfections and surface imperfections as discussed in 
preceding sections.   

 
The plots of reflectivity for TE and TM polarized light at 45 degrees incident an-
gle also shows that Aluminum mirrors have reasonable polarization characteris-
tics, particularly at 1550nm wavelength.  The TE and TM reflections are not iden-
tical as, but the differences are sufficiently small that they rarely represent the 
dominant polarization effects in practical systems. 
 
The fact that only 30 to 40 nm is sufficient for high reflectivity simplifies the use 
of Aluminum in delicate mechanical structures.  The small required reflector 
thicknesses and low Young’s modulus relative to that of Silicon [6], make Alumi-
num reflectors very compliant and therefore unable to impart significant bending 
moments on their underlying substrates.  In contrast to dielectric Bragg mirrors, 
Aluminum films therefore do not contribute to curvature of the mirror surface, in 
spite of the fact that their thermal expansion coefficient is vastly different from 
Silicon and most dielectrics used in MEMS technology.   
 
The combination of high reflectivity over a broad range of wavelengths, compati-
bility with commercial IC process technology, and unproblematic incorporation 
into fragile MEMS structures, are the reasons that Aluminum is the material of 
choice for most Optical MEMS reflectors.  The problems with high-reflectivity 
metals are power handling and temperature stability.  Metals have significant loss 
at optical frequencies, which means that the light that is not reflected is absorbedg.  
That leads to heating of the reflectors and catastrophic failure is the incident 
power is too high.  The exact power handling capacity depends strongly on the re-
flector’s thermal resistance, which again depends on the mechanical design and 
the atmosphere [11,12].  Thermal management is therefore an important part of 
the design of optical MEMS. 
 

                                                           
g  The exception is very thin films (e.g. <30nm of Aluminum) that are designed for 

partial transmission.  Such films also have reduced reflectivity compared to 
thicker mirrors. 
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The cause of the low power handling capacity can be partly found in the fact that 
Aluminum and other high-reflectivity metals have low melting temperatures.  
Aluminum melts at 500°C and can therefore not tolerate operation or processing 
temperatures much beyond 480°C.  This puts constraints on the post processing of 
Aluminum reflectors and therefore complicates their fabrication and limits their 
use.  These shortcomings have lead to the development of MEMS-compatible 
Bragg reflectors and Photonic-Crystal reflectors as mentioned above.    

7.4 Lens Scanners 

Rotating mirrors are by far the most common implementation of MEMS scanners, 
but there are other architectures that have advantages for certain applications.  The 
linearly-translating lens scanner, shown schematically in Fig. 7.15, is advanta-
geous for many systems in that it operates in transmission, which allows a 
straight-forwards in-line systems design and simplifies the optical design.  The 
lens scanner also uses a linear actuator, as opposed to the rotation actuators needed 
in scanning-mirror architectures.    
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Figure 7.15. Schematic of microoptical scanning system showing the scanner in two 
positions (solid and dashed lines).  The overlap between the scanned 
beams created by two settings of the scanner is constant. 

 
In the prototypical lens scanner of Fig. 7.15 we assume that the incoming Gaus-
sian beam is “collimated”, i.e. its beam waist is on the lens or it is separated from 
the lens plane by an amount that is a small fraction of its Rayleigh length.  Using 
the formulae we derived in Chapter 4, we can then express the beam radius at the 
waist on the screen (ωimage) in the focal plane of the lens as   
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ωπ
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⋅
=  (7.25) 
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where ωlens is the beam radius of the Gaussian beam on the lens.  In our simple 
system, the total range of motion of the image on the screen (Δ) equals the total 
motion of the scanning lens.   
 
If we use the Full-Width-at-Half-Maximum (FWHM) resolution criterion we dis-
cussed in section 7.2.1, we find the following expression for the number of resolv-
able spots on the screen  
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Based on the discussion of scanner apertures in section 7.2.3 we set the lens di-
ameter minus the total motion equal to three times the beam radius   
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We have derived a simple rule of thumb that says that the number of resolvable 
points of a lens scanner is roughly equal to the total motion of the lens, measured 
in wavelengths, divided by the f-number of the lens.   
 
We can now compare this to the resolving power of a scanning mirror by rewriting 
the expression we found earlier to emphasize the similarities:  
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Here ωθ 5.1⋅Δ tilt  represent the maximum motion of the edge of a scanning mirror 
that rotates around its center.  It can be considered equal to the maximum motion, 
Δ, of the scanning lens, although we should keep in mind that in the mirror case, 
only the edge of the mirror moves the maximum distance, while in the case of the 
lens, the whole component moves the same.  Clearly the factors in front of the mo-
tion-to-wavelength ratio also favor the mirror scanner, except for when lenses of 
extremely small f-numbers are used.  Lastly, we note that lenses, and fast (low f-
number) lenses in particular, typically are thicker and more massive than mirrors.   
 
We conclude that lens scanners are less efficient that mirror scanners in terms of 
the amount of mass that must be moved to achieve a certain number of resolvable 
spots.  For a given actuator technology with a given maximum force, this means 
that lens scanners have less speed, less resolution (due to less motion), or both.  In 
optical microsystems speed and resolution are always important features, so lens 
scanners are only used in applications where the advantages of their in-line ge-
ometry are particularly significant.  
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7.5 Mechanical Scanner Design – One Dimensional 
Scanners 

We have seen that the specifications on flatness and size for high-resolution opti-
cal scanning can be met by micromirrors fabricated in standard MEMS technol-
ogy.  Now we turn our attention to the mechanical structures that support the 
scanning mirrors.  The mechanics is strongly dependent on the type of actuator 
that is used to drive the scanner into angular oscillations, so we need to consider 
the role of the actuator as we study mechanical scanner design.  Microactuator 
principles and design are central to the development of all MEMS, and this topic 
is treated in numerous texts [13,14,15].    

7.5.1 Transformation from Linear Motion to Rotation 

One of the biggest differences between macroscopic and microscopic mechanical 
design is that there are no good linear-motion bearings or rotary bearings of any 
type in MEMS technologyh.  The fundamental reason for this is that surface 
forces, including friction that depends on randomly distributed surface roughness, 
are much larger relative to volume forces (mechanical stress, acceleration forces, 
electrostatic forces) in microscopic systems than in macroscopic systems.  There 
are strong economical incentives for further miniaturization, so the trend is for mi-
crosystems to shrink further so that the ratio of surface to volume forces becomes 
yet larger.  It is therefore unlikely that sliding bearings will play an important role 
in optical microsystems in the foreseeable future.  More complicated bearing 
types, like roller bearings, jewel bearings, magnetic bearings, and fluid bearings 
can in principle be made in MEMS technology, but these solutions are getting 
more expensive as the structures are getting smaller.   
 
Microhinges [16,17] have played an important role in the development of many 
types of MEMS applications, including optical packaging [18] and fiber switches 
[19,20].  The accuracy and repeatability of microhinges are sufficient for some 
applications, but not for all.  More importantly, the long-term reliability of sliding 
micro-hinges has not been proven.  The primary use of micro-hinges in practical 
system is therefore for one-time configuration, not continuous operation.    
 
The lack of reliable, high-quality, sliding bearings makes it difficult to transform 
linear motion into rotation.  Just like in the macroscopic domain, most actuators in 
the microscopic domain produce inherently linear motion.  For example, in mac-
roscopic combustion motors we use a series of axles with rotary bearings to trans-

                                                           
h  The Texas Instrument’s Digital Light Processing technology relies on making 

and breaking small-area contacts between moving mirrors and an underlying 
substrate, but this is different from the precision sliding that must take place in a 
high-quality linear or rotary bearing. 
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form the linear motion of the pistons into rotation of the wheels of the vehicle.  In 
microsystems we deploy a variety of linear actuators (parallel-plate electrostatic 
actuators, combdrives, piezoelectric actuators, thermal actuators) and use a set of 
flexural and torsional springs to convert linear motion into rotation.   
 
Some common microsystem approaches to linear-motion-to-rotation transforma-
tion are shown in Fig. 7.16.  Each of these methods have their own challenges and 
drawbacks.  The scanning-cantilever mirror of 7.16a illustrates how the linear mo-
tion of piezoelectric or thermal actuators creates rotation.  This is a very simple 
solution, but it has several problems.  First, the elongation of the actuator both 
elongates and curves the cantilever.  The elongation of the cantilever does not con-
tribute to rotation, so the energy that goes into elongation is wasted.  Second, the 
rotation is around an axis far from the center of the mirror, creating unwanted 
translation in addition to rotation.  The net effect of these two difficulties is that 
the rotation of the scanning-cantilever mirror is less than what can be achieved 
with other means given the same actuator force and range. 
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Figure 7.16. Compliant springs allow transformation from linear motion to rotation 
without the use of sliding joints.  The scanning cantilever (a) is simple, 
but combines large translation with rotation.  The rotational mirror (b) 
minimizes translation by using a suspending spring that is compliant in 
torsion and stiff under bending. The more complicated structure in (c) 
allows a pure torque to be applied to the mirror, so translation can be 
suppressed altogether.   

 
Figure 7.16b shows a scanning mirror that is suspended by torsion bars that are 
designed to be compliant to twisting, but stiff in bending.  When the mirror is sub-
ject to a combined torque and linear translation force from the electrostatic fields 
between the mirror and one of the bottom electrodes, then the resulting motion is 
predominantly rotation with only negligible bending.  As we will see in the next 
section, it is not always possible in microtechnology to create a spring that is stiff 
in bending and compliant in rotation.  The more complicated scanning mirror of 
Fig. 7.16c is therefore often the preferred solution.  The existence of both upper 
and lower electrodes enables generation of a pure torque around the axis of rota-
tion, so that translation of the mirror can be avoided altogether.  Such pure-torque 
actuators can conveniently be implemented using vertical combdrives as described 
in Chapter 7.7. 
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7.5.2 Torsional Spring Design 

In macroscopic machinery we can use complicated mechanical designs to create 
spring that are compliant in torsion and stiff in bending.  In microsystems the limi-
tations of the fabrication technology dictates that only simple structures be used, 
so we must consider the rotation and bending of simple beams of rectangular cross 
sections.  Consider a uniform, fixed-end cantilever of length L, width b, and height 
h as shown in Fig. 7.17.     

F 

T h 
L 

b  
Figure 7.17. A cantilever with a simple rectangular cross section has a ratio of 

bending to torsional spring constants that is inversely proportional to 
the square of the length of the cantilever.  

 
With a point load, F, applied to its end, the bending of the cantilever is given by 
[21] 

F
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=⋅= 3

33 4
3

 (7.29) 

where E is the Young’s modulus, and 
12

3bhI =  is the moment of inertia of the 

cantilever.  A torque, T, applied to the end of the cantilever yields a rotation [22] 
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and maximum stress of  

2
1

max bhc
T
⋅

=τ  (7.31) 

 
In these equations G is the Shear modulus, which can be expressed in terms of 

Young’s modulus (E) and the Poison ratio (ν) as ( )ν+
=

12
EG , and the constants 

c1 and c2 depend on the cross-section of the cantilever as given in Table 7.2. 
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The ratio is inversely proportional to length squared, so we achieve increased 
bending stiffness over torsional stiffness by simply shortening the cantilever.   
 
 

h/b c1 c2 
1.0 0.208 0.14068 
1.2 0.219 0.1661 
1.5 0.231 0.1958 
2.0 0.246 0.229 
2.5 0.258 0.249 
3.0 0.267 0.263 
4.0 0.282 0.281 
5.0 0.291 0.291 

10.0 0.312 0.312 
∞ 0.333 0.333 

 

 
 
 
 
 

Table 7.2. Coefficient for use in 
formulas for maxi-
mum stress and an-
gular deflection of 
torsion bars with 
rectangular cross 
sections [19]. 

 

 
When applying this approach, we must take care not to let the maximum stress be-
come too large.  Consider for simplicity a torsion bar with a square cross section 
(h=b).  The torsional stiffness is then proportional to the fourth power of the 
cross-sectional side divided by the bar length.  

L
hT 4

∝
φ

 (7.33) 

 
This means that to maintain a constant stiffness as we scale the spring to smaller 
dimensions, we must reduce the thickness of the torsion bar as the fourth root of 
the length.  From the above formulas we also find that the maximum stress is pro-
portional to the angular rotation multiplied by the ratio of height to length 

L
h⋅∝ φτ max  (7.34) 

which means that if we scale the torsion bar linearly ( Lh ∝ ), then the maximum 
stress in the bar is given by the rotation.  If on the other hand, we keep the torsion-
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bar stiffness constant, then the maximum stress is proportional to the length to the 
power of negative three fourths 

4
3

max 4

−

∝ ⋅∝ LhL φτ  (7.35) 

 
We see from these three proportionalities that torsional bars scale reasonably well 
to small sizes.  As we scale torsion bars to shorter lengths, we maintain the tor-
sional stiffness by scaling the side-dimension as the fourth root of the length, but 
we can only do that until we have reached the maximum allowed stress.  As we 
scale beyond that point, the side dimension must be reduced linearly with the 
length, with the consequence that the torsional stiffness goes down as the third 
power of the length.  Under the same conditions the bending stiffness goes down 
linearly in the length.   
 
This scaling characteristic presents two problems to the MEMS designer.  It is al-
ways possible to achieve a desired ration of bending stiffness to torsional stiffness, 
but in some cases it means reducing the torsional stiffness to avoid increasing the 
maximum stress beyond acceptable levels.  The second problem is more a practi-
cal one; it is often difficult in a given MEMS technology to define torsion bars 
with sufficiently small cross sections and sufficiently short lengths to achieve the 
desired bending to rotation ratio.  This is a bigger problem when the actuation 
forces are small so that very compliant structures are required.   
 
These problems of scaling of torsional springs to obtain a favorable ratio of bend-
ing stiffness to torsional stiffness have lead many MEMS designers to the concept 
of a supported flexural bearing.  A typical example is shown in Fig. 7.17.  Here a 
scanning mirror suspended by torsion bars and actuated by parallel-plate electro-
static actuators is supported by a ridge that is in frictional contact with the mirror 
and prevents the mirror from being linearly translated towards the substrate elec-
trodes.   
 
This type of supported flexural bearing was first demonstrated for micro-optical 
scanners by Petersen [23], and has later been used in a large number of MEMS 
and microoptics applications.  The accuracy, repeatability, and reliability of this 
type of structures are, however, still unproven, so, as for the microhinges dis-
cussed above, the use of supported flexural bearings have been confined to labora-
tory demonstrations, and they have not had significant commercial impact.   
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Substrate Electrode 

Torsion bar 

Ridge to support rotation 

Scanning mirror 

 

Substrate Electrode 

Torsion bar 

Ridge to support rotation  
Figure 7.17. Perspective drawing (top) and cross section (bottom) of scanning mir-

ror suspended by torsion-bar flexural bearings with ridge support to 
avoid translational motion of the mirror towards the electrodes.  

7.5.3 Mechanical Resonances 

The lack of good sliding joints means that most MEMS actuator systems use some 
type of mechanical spring, e.g. a torsion bar or bending beam, to suspend the mass 
to be moved and to provide a restoring force for the actuator.  The three scanners 
of Fig. 7.16 are all of this construction, but the principle is applied to a much 
wider class of MEMS than just translation-to-rotation transformers.  Such spring-
mass systems can to first order be described as damped harmonic oscillators like 
the one shown in Fig. 7.18.   
 

 

b k 

m z 

 
 

Figure 7.18. Simple harmonic oscillator model of a MEMS actuator with an actu-
ated mass suspended by a mechanical spring.  The dashpot represents 
all losses in the system.   

 
The force-balance equation for this spring-mass system is  
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( )tFzk
dt
dzb

dt
zdm =⋅++2

2
 (7.36) 

where m is the mass, b is the damping coefficient, k is the spring constant, and F is 
an actuation force that is acting on the mass.  We now assume that the actuation 
force has an harmonic time dependence, F=F0·cos(ωt), i.e. we use the phasor no-
tation introduced in Chapter 2.  The equation then takes the form 

( ) ( ) 0
22 Fzkzjbzjm =⋅+⋅+⋅ ωω  (7.37) 

with the solution 
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In the last expression we have used the standard definitions of resonance fre-

quency, 
m
k=0ω , and Quality factor, 

b
mQ 0ω= .  The logarithm of the ampli-

tude and the phase of the normalized response, 
kF

z
0

, is plotted in Fig. 7.19 for 

Q-values ranging from 0.2 to 10. 
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Figure 7.19. Normalized amplitude (a) and phase (b) response of a harmonic oscil-
lator as a function of normalized frequency for Q-values ranging from 
Q=0.2 (lower dotted line in a, flatter dotted line in b) to Q=10 (upper, 
solid line in a, steeper, solid line in b).   

 
The plots show that the damping, described by the Quality factor, has a profound 
effect on the mechanical response of the spring-mass system.  Systems with Q-
factors below 0.5 are said to be over-damped, and they exhibit substantially lower 
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bandwidth than one would expect from their resonance frequencies.  For example, 
the system with Q=0.2 has a -3dB frequency of 0.36·ω0.  Reduced bandwidth is 
rarely a desired characteristic, so in practical MEMS design we try to avoid over-
damping.   
 
Quality factors above 0.5 lead to under-damping.  We see from the graphs that un-
der-damped systems have bandwidth well in excess of the resonance frequency 
and that the excess bandwidth grows increases with increasing Q-factors.  The 
system with Q=10 for example has a -3dB frequency of 1.73·ω0.  This extra 
bandwidth comes, however, at the cost of a very non-uniform frequency response.  
The response is strongly resonantly enhanced around the resonance frequency, 
which will lead to signal distortion, overshoot in the transient response, and in 
some cases even self oscillations.  Under damping is therefore desired in systems 
that are designed for single frequency operation and that require large motion.  A 
good example is microcantilevers for tapping-mode Atomic Force Microscopy 
(AFM).  AFM cantilevers vibrate at a near constant frequency and require rela-
tively large motion, so the resonant enhancement of an under-damped system is 
ideal for this application.     
 
When the Q-factor is exactly 0.5 the system is critically damped, meaning it that 
has the minimum damping that is required to avoid overshoot in the response to a 
step-function in the applied force.  Overshoot, or “ringing”, leads to increased set-
tling times after a change in input, so critically damped systems are for many prac-
tical purposes fasteri than any other system with the same resonance frequency, 
but different damping.  Critical damping is therefore a goal in the design of many 
mechanical systems.      
 
Unfortunately, it is difficult to control mechanical damping in microsystems.  Just 
as in macroscopic machinery, the MEMS designer tries to avoid losses due to fric-
tion and material damping, because it leads to positioning errors, wear, and prob-
lems with repeatability and reliability.  We are then left with fluid flow as the dis-
sipation mechanism that we can attempt to control to achieve the desired damping 
characteristics in our devices.  Fluid flow in optical MEMS typically means gas 
flow because the combination of high speeds required and the relatively small 
forces provided by microactuators makes it impossible to operate Optical MEMS 
in liquidsj.   
 
Control of damping in Optical MEMS in general, and microscanners in particular, 
therefore comes down to controlling dissipation in the gas flow around the scan-
                                                           
i  Exactly what we consider a faster response will of course depend on the applica-
tion.  For example, if we have an application in which ringing in response to a in-
put variation is of no consequence, then an under-damped system will be consid-
ered faster than a critically damped one.  
j  The obvious exception is biological applications that require Optical scanners 
operating in aqueous environments.  
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ning mirrors and other mechanical parts that are being moved by the microactua-
tors.  In certain cases it is indeed possible to create systems with the desired damp-
ing characteristics by correct design of the aerodynamics of the moving parts, by 
carefully selecting the ambient gas species and pressure, and by adding gas-flow 
channels and pressure chambers.  However, this is a complex engineering task that 
adds complexity and cost to the system implementation.  An additional technical 
difficulty is that damping depends on the mode profile (see the following section, 
7.5.4), making it difficult to design air-flow systems that will achieve the desired a 
damping of all the resonant mechanical modes.   
 
In practical MEMS implementations we therefore most often have to accept the 
fact that the damping cannot be engineered to have the optimum value, and focus 
our efforts on designing systems that can tolerate undesirable damping characteris-
tics without unacceptable consequences.  For systems that are dominated by 
squeezed-film damping [24] that typically means having to live with the lower 
bandwidth of an over-damped response.  High-resolution microscanners, on the 
other hand, are typically not affected by squeezed-film damping, because rotation 
is less efficient than linear translation in trapping and squeezing a thin film of gas.  
Instead the dissipation is dominated by air flow around the rotating mirrors; a 
much weaker damping effect.  Almost all reported high-resolution microscanners 
are therefore significantly under-damped.  The high resonant gain of under-
damped systems leads to a number of operational difficulties, including undesired 
motion at the resonance frequency due to non-linearities in the actuators, and cou-
pling to higher-order resonant modes.  Examples of such undesired effects and 
ways of avoiding or mitigating them are described in Section 7.7.   

7.5.4  Higher-Order Mechanical Resonances 

The ideal harmonic oscillator described in Section 7.5.3 serves as a simple, yet 
useful, first-order model of many MEMS structures.  Its mass-less spring and 
point mass, that is confined to linear translation in one dimension, allow only one 
form of potential energy storage (stretching of the spring) and one form of kinetic 
energy storage (motion of the mass), and therefore a single mechanical resonance.  
Real mechanical systems have massive springs and distributed masses that can 
move with all six degrees of freedom of 3-dimensional space.  The distributed 
springs and masses give real machinery a large number of distinct ways to store 
potential and kinetic energy and a correspondingly large number of mechanical 
resonancesk.   
 
An example of a scanning mirror with multiple resonances is shown in Fig. 7.20.  
This mirror has dimensions that are typical for high-resolution scanners made in 
Silicon-on-insulator (SOI) materials using Deep-Reactive-Ion-Etching (DRIE).  
The mirror is 500 by 500 um, the torsion bars are 300 um long and 4 um wide, and 

                                                           
k  In a continuum model, the number of resonances is infinite. 
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both the mirror and the springs are 21 um thick.  (The geometrical dimensions, as 
well as the material parameters, of the scanner in Fig. 7.20 are listed in Table 7.3 
in the next section).   
 

500um 
500um 

300um 

 
Figure 7.20. 1-dimensional scanning mirror suspended by torsion bars designed to 

allow the mirror to rotate around the rotation axis.  The distributed 
springs and masses lead to multiple higher-order resonances that must 
be considered in the design and operation of the scanner. 

 
The distributed mass and the fact that the torsional springs are compliant in all di-
rections (although significantly stiffer axially than in transversal bending) give this 
scanner multiple resonant modes.  The five modes of lowest order (i.e. lowest 
resonance frequency) are shown in Fig. 7.21 and the characteristics of the reso-
nances are summarized in Table 7.3.  The lowest-order resonant mode is rotation 
around the torsion bars, followed in order by (2) in-plane, linear translation with 
the springs bent in the horizontal direction, (3) in-plane rotation, (4) out-of-plane 
linear, translation, and (5) rotation around an axis perpendicular to the torsion 
bars.   
 
The scanner is well designed in that its lowest resonance frequency belongs to the 
mode that has the desired motion: rotation around the torsional springs.  The ratio 
of the resonant frequency of the second lowest mode, in-plane translation, to that 
of the fundamental mode is also sufficient to avoid strong coupling between the 
modes.  This ratio can be extended further by making the cross section of the tor-
sion bars closer to rectangular.  This would lower the resonance frequency of the 
4th mode, but a reduction of its resonance will not have consequences until it is 
lower than the resonance frequency of the 2nd order mode.   
 
The modes described in Fig. 7.21 and Table 7.3 illustrate an important point of 
microscanner design; mechanical systems have complicated responses with multi-
ple resonances.  In macroscopic machinery, unwanted motion is damped by insert-
ing dissipative shock absorbers that attenuates undesired modes of operation.  In 
microscanner this is not a practical solution, because it is prohibitively difficult to 
create damping structures of the correct construction.  The saving grace for micro-
scanners is that they are relatively simple so that it is possible to design the overall 
structure to avoid coupling of energy to unwanted modes of operation.  (Imagine 
what the spectrum of resonances for a complicated piece of machinery like a car 
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looks like, and how it would behave if all resonances were under-damped!).  The 
conclusion is that microscanners, like all under-damped mechanical structures, 
must be kept as simple as possible so that they can be designed so that the desired 
motion is the fundamental resonance and that all higher-order resonance frequen-
cies are substantially higher than the fundamental.   
 

 
a    b 

 
c    d 

 

  
e 

 
Figure 7.21. Modal analysis of 1-D scanner.   

 
Mode 

# 
Motion Resonance 

Frequency 
1 Rotation around the torsion bars (7.21a)  4.12 kHz 
2 In-plane, side-to-side linear translation (7.21b) 5.73 kHz 
3 In-plane rotation around the center of the mirror (7.21c) 11.44 kHz 
4 Out-of-plane, up-and-down linear translation (7.21d) 28.05 kHz 
5 Rotation around an axis perpendicular to the length direc-

tion of the torsion bars (7.21e) 
79.74 kHz 

 
Table 7.3. Mode descriptions and resonance frequencies of the scanner shown in 

Figs. 7.20 and 7.21. 
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7.6 Two Dimensional Scanners 

In our discussion of the mechanics of microscanners, we have so far concentrated 
on one-axis, or one-dimensional, scanners.  Now we extend the discussion to two-
axis, or two dimensional, scanning that is required by many applications.  There 
are two quite different ways to rotate a scanning mirror around two orthogonal 
axes; we can use a gimbal or a universal joint.  The gimbal consists of two frames 
that are connected with bearings so that they can rotate around orthogonal axes as 
shown in Fig. 7.22.  In MEMS gimbals the bearings are flexural and the two 
frames are typically in the same plane when no actuation force is applied.   
 

Inner 
axis 

Outer axis Outer 
frame 

Inner 
frame 

  
 

Figure 7.22. Illustration of the gimbal principle.  When implemented with sliding, 
rotary bearings, the gimbal allows full rotation of both frames around 
their respective rotation axes.  MEMS gimbals are typically imple-
mented with flexure bearing, so that oscillatory rotation, but not con-
tinuous one-directional rotation, is allowed.   

 
In precision macroscopic machinery we use universal joints that, just like gimbals, 
are based on rotary bearings.  A common architecture is a block with axels in or-
thogonal directions joining two shafts than can rotate so that the angle between 
them can take almost any value.  This construction is straightforward in the mac-
roscopic domain, but would be prohibitively difficult to create with MEMS tech-
nology.  Fortunately, the universal joint is particularly simple to implement with 
flexure bearings; a simple spring that is compliant in two dimensions is in princi-
ple all that is needed.  In practical MEMS we typically use more than one spring 
to establish the required two degrees of freedom of rotation.  An example of a 
flexure-bearing universal joint with multiple springs is shown in section 7.7.   
 
Clearly the mechanical structures of MEMS gimbals and universal joints are much 
more complex than the simple scanning mirror we analyzed in section 7.5.4.  Con-
sequently we have to pay close attention to the different resonant modes of the 
overall structure.  As for the 1-axis scanner, the preferred rotations should have 
the lowest resonance frequencies to avoid parasitic motion in other modes.   
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As an example of a relatively simple design that fulfills this criterion, consider the 
gimbal shown in Fig. 7.23.  This structure is made from to layers of silicon, each 
21 um thick.  These two layers are connected mechanically, but isolated electri-
cally, by a silicon dioxide layer that is 0.5 um thick.  The outer frame is almost in 
it entirety constructed of both silicon layers.  Only in the area around the bases of 
the inner springs are there gaps in the lower Si layer so that the two bottom halves 
of the outer frame can be held at different electrostatic potentials.  The inner frame 
and the inner springs are made of the upper Si layer only.   The dimensions and 
material parameters of the gimbal are given in Table 7.4.   
 

   
 
Figure 7.23. Gimbal layout seen from below.  The outer frame is constructed from 

two layers of silicon except in the areas around the bases of the inner 
springs where the lower layer is removed.  The mirror and the inner 
springs are constructed from only the upper Si layer.      

 

 Scanner Dimensions 

  Length Width Thickness 
 Mirror  500 um 500 um 21 um 
 Inner spring 300 um 4 um  21 um 
 Outer spring 250 um 4 um 42.5 um 
 Silicon Dioxide   0.5 um 

 Silicon Material Parameters 

 Density 2500 kg/m3 
 Young’s Modulus 169 GPa 
 Shear Modulus 65 GPa 
 Poison Ratio 0.3 

 
Table 7.4. Geometrical and materials parameters of the scanner shown in Fig. 

7.23. 

1,300um 

10
50

um
 500 by 500um 

100um 

100um 



7: Optical MEMS Scanners            283 

 
The lowest order resonant modes of this structure are shown in Fig. 7.24 and Ta-
ble 7.5.  We see that the fundamental mode is the desired rotation around the outer 
torsion bars.  This is not surprising given the large mass loading of this mode.  The 
second mode is the desired rotation around the inner torsion bars.  The next three 
modes are all due to sideways bending of the torsion bars.  The resonance fre-
quencies of these three modes are close to that of the inner-axis rotation mode.  
Care must be taken to ensure that fabrication variations, e.g. over-etching that 
makes the springs thinner, don’t allow these to become one of the dominant modes 

 
a    b 

 
c    d 

 
e 

 
 
Figure 7.24. Modal analysis of 2-D gimbaled scanner.   

 
Whether the differences between the resonance frequencies of modes 3 through 5 
and that of mode 2 are sufficient in this example will depend on the application.  If 
the rotations of the mirror are driven over wide ranges of frequencies up to their 
resonances, then they will occasionally be excited at sub-harmonics of the higher 
order modes.  The actuators will have non-linearities, so these sub-harmonics will 
couple to, and set-up motion of, the higher-order modes.  Such parasitic motion in 
the higher orders will lead to high-frequency dither of the scanning beam.  These 
types of effects must be avoided in high-precision scanning applications.  If, on 
the other hand, the rotations of the mirror are at fixed frequencies, as they would 
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be to set up a fixed raster scanning of Lissajou pattern, then coupling to higher-
order modes can be suppressed by correct choices of the driving frequencies.   
 
Mode 

# 
Motion Resonance 

Frequency 
1 Rotation around the outer torsion bars (7.25a) 1.10 kHz 
2 Rotation around the inner torsion bars (7.25b) 4.12 kHz 
3 In-plane, side-to-side linear translation due to bending of 

the outer torsion bars (7.25c) 
5.18 kHz 

4 In-plane, side-to-side linear translation due to bending of 
the inner torsion bars (7.25d) 

5.73 kHz 

5 In-plane rotation around the center of the mirror due to 
bending of the outer torsion bars (7.25e) 

6.05 kHz 

Table 7.5. Mode descriptions and resonance frequencies of the 2-axis, gimbaled 
scanner shown in Figs. 7.23 and 7.24. 

 
The bottom line is that mechanical resonances must be carefully considered in un-
der-damped optical scanners.  In principle we would like to design the system to 
only have the desired modes of operation, but that is in practice impossible, so the 
best we can do is to make sure that we are not coupling energy into unwanted me-
chanical modes.  That can be achieved through a combination of clever mechani-
cal design and careful operation.    

7.7 High Resolution 2-D Scanners – Design Examples 

In this section we give three design examples of 2-D scanners.  These examples 
give different design solutions to the related problems of mechanical stability and 
efficient actuation.  They are chosen are chosen to give the reader an appreciation 
of the vast the design space for MEMS scanners.  The examples do by no means 
span this space; there are numerous other scanner designs, each with their own ad-
vantages and drawbacks, reported in the literature.  Nor do the examples represent 
“best” solutions.  What’s best depend on the application, and it is a moving target 
with new improvements being introduced at a rapid pace.   

7.7.1 Gimbaled Scanner 

A simple, but functional, architecture implemented in two SOI layers on a silicon 
substrate is shown in Fig. 7.25 [25].  The gimbal is driven by electrostatic comb-
drive actuators on its two orthogonal axes of rotation.  For clarity only a few 
combs are shown in the schematic.  In a practical design, we seek to maximize the 
number of combs to maximize the force.  The upper SOI layer is grounded as 
shown.  An applied voltage to the left electrode (V1) appears across the inner, left 
combdrive and rotates the mirror counter-clock wise around the inner springs, 
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while a voltage applied to the right electrode (V2) rotates the mirror clockwise 
around the inner springs.  Likewise, voltages applied to the upper electrode (V3) 
and the lower electrode (V4) rotates the mirror around the outer springs.   
 
 

V3 

V2 

V1 

V4 
GND 

GND 
Inner 

spring 

Outer spring 

Substrate 

Scanning mirror 

Frame

 
Figure 7.25. Schematic of 2-D gimbaled microscanner implemented in two SOI lay-

ers on a Si substrate.  The scanning mirror rotates with respect to the 
frame around the inner springs, while the frame rotates with respect to 
the substrate around an orthogonal axis defined by the outer springs. 

 
For clarity, the schematic of Fig. 7.25 is shown with only a few comb teeth in each 
drive.  In a practical layout, like the one shown in Fig. 7.26, the emphasis is on 
maximizing the number of comb teeth to minimize the voltage needed to obtain 
the required total force.   
 

 
 

Figure 7.26.  Scanning Electron Micrograph of a two-axis gimbaled micromirror.  
The mirror is driven into rotation around the inner springs by the elec-
trostatic forces of the inner combdrives.  The outer springs are made of 
two insulated silicon layers so that the driving voltages can be deliv-
ered to the inner comb actuators.   
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The relatively complex mechanical structure of the gimbaled microscanner can be 
fabricated using only five masks as shown in Fig. 7.27.  The key processing steps 
are the double-masking (Masks 2 and 3) of LTO mask layer (steps c and d), and 
the self-aligned patterning of the lower and upper teeth of the vertical combdrives 
(step f).  The double masking avoids the difficulty of performing lithography on 
wafers with large vertical height differences.  It is a standard MEMS-fabrication 
trick that is used in numerous devices.  Equally important is the process that al-
lows the upper and lower combteeth to be defined by the same mask (self align-
ment), because it ensured that the combdrives are aligned and therefore can toler-
ate the largest possible applied voltages to create the maximum force and torque.  
(see Appendix B) 
 

 

(a) DRIE of coarsly-patterned 
lower-combs  (Mask 1) 

(b) Thermal oxidation, fusion 
bonding, grinding, and polishing 

(c) Self-alignment mask patterning 
(Mask 2) following LTO deposition 

(d) Partial etching of LTO (Mask 3)  

(e) DRIE of the upper device layer 
followed by directional oxide etch  

(f) DRIE of the lower (Mask 2) and 
upper device layers (Mask 3) 

Single Crystalline Silicon (SCS)  

Thermal oxide  

Low Temperature Oxide (LTO)  
(g) Back DRIE followed by oxide 
etch from back and front (Mask 5)  

Figure 7.27 Fabrication process for two-axis gimbaled micromirrors (not to scale).  
The process requires two SOI layers (Silicon-on-insulator).  The lower 
comb teeth are initially coarsely patterned by the first mask before the 
second SOI layer is bonded to the wafer.  These teeth are later trimmed 
(step f) to be self-aligned to the upper comb teeth. 

 
High-performance optical scanners have been demonstrated using the design and 
fabrication technology depicted in Figs. 7.26 and 7.27.  Micromirrors measuring 
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500×500 μm achieved scan ranges of better than ±7.5° (optical) on both axes using 
drive voltages of 133V (inner axis) and 200V (outer axis).  These results are for 
quasi-static operation.  If the mirrors are driven at their resonance frequencies (3.5 
KHz on the inner axis and 908 Hz on the outer axis), then the angular range can be 
extended, while the required voltages can be reduced by a factor of 5 or more.   

7.7.2 Universal Joint Microscanner with “Terraced-Plate” Actuators 

Figure 7.28 shows a universal-joint implementation of a 2-D microscanner.  The 
universal joint is created by two connected, orthogonal torsion bars that together 
allow the mirror to tilt in any direction.  The scanning mirror is electrostatically 
actuated by four substrate electrodes; one in each quadrant of the scanning mirror.  
The substrate electrodes, together with the mirror itself that acts as the counter 
electrode, sets up torques to tilt the mirror around the universal joint.  The sub-
strate electrodes are tapered or “terraced” to minimize the separation between the 
substrate and the mirror that acts as the counter electrode.   
 
A very useful feature of this design is that the actuators and the universal joint are 
all placed underneath the scanning mirror.  This saves real estate on the chip and 
allows high-fill-factor arrays to be implemented.  The microscanner of Fig. 7.28 is 
therefore well suited for fiber switches, described in Chapter 8, and adaptive op-
tics and other array applications described in Chapter 9. 
 

 
 
 

Figure 7.28 Schematic drawing of a two-dimensional, universal joint microscanner.  
The universal joint is created by two connected torsion bars in or-
thogonal directions.  The bottom electrodes are terraced to increase the 
actuation forces.  Reprinted from [26] with permission. 

 
The universal-joint microscanner of Fig. 7.28 is fabricated in the SUMMiT-VTM 
surface-micromachining process [27] established by Sandia National Laboratories 
in Albuquerque, New Mexico.  The scanner is constructed from five layers of 
polysilicon that are sequentially deposited and patterned, allowing complicated 
mechanical designs to be realized.  Due to the relatively thin poly-silicon layers 

Terraced Electrodes 
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that are used (the top layer that defines the mirror is only 2.25 um thick), the de-
sign of Fig. 7.28 is not practical for mirror sizes beyond a few hundred microns on 
a side.  Scanners measuring 100 by 100 um achieved ± 4.4° optical scan angles 
with a resonance frequency of 20.7 KHz.  Increasing the mirror size to 200 by 200 
um, reduced the resonance frequency to 1.4 KHz. 

7.7.3 Universal Joint Microscanner with Combdrive Actuators 

The universal joint of Fig. 7.28 is particularly simple and well suited to the ter-
raced electrostatic actuators that are employed.  The design does not scale well to 
larger mirrors, however, because as the mirror size is increased, the separation be-
tween the mirror electrode and the terraced electrodes must also increase to allow 
the mirror to move through the required angular range.  This means that there is 
less force available to move a bigger and bulkier mirror, which in turn means that 
the spring constants have to be reduced and/or the voltages increased.  In practice 
this means that for scanning mirrors measuring 500 by 500 um or more, we have 
to look for alternative actuation technologies.  The simplest from a fabrication and 
materials-compatibility point of view is to stick to electrostatic actuation, but to 
use combdrives instead of parallel-plate or terraced actuators.  (See Appendix B 
for an in-depth comparison of parallel-plate and comb-drive electrostatic actua-
tors)   
 
Figure 7.29 shows an example of a universal-joint design using vertical comb-
drives.  The combdrives are arranged into three “pure” rotators that each actuates 
one beam linage that is connected to the mirror.  Each rotator can lift or lower its 
bending beam to impart an upward or downward force on the mirror so that it can 
be tilted around any axis in the plane of the mirror.   
 

 
 

Fig. 7.29.  Scanning Electron Micrograph of a universal-joint microscanner fabri-
cated on SOI wafers by DRIE.  The three rotators shown is the mini-
mum needed for two-axis scanning.  Larger numbers of rotators can of 
course be used, four being the most typical.  Reprinted from [28] with 
permission.   
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The beam linkages have a built-in compliant structure that allows the linkage to 
bend sharply at a point (or more correctly, over a short distance), and thereby take 
up the angular difference created when the linkage forces the mirror to rotate.  The 
compliant structure also reduces the torque that is transmitted back from the mir-
ror to the combdrives.  Together the rotators, the linkages, and the compliant 
structures create a universal joint that allows the mirror to rotate in two dimen-
sions.   
 
The scanner of Fig. 7.29 is created by DRIE of SOI wafers in a process that has 
much in common with the process shown in Fig. 7.27.  Only a single SOI layer is 
needed, however, so the process is somewhat simpler than for the gimbaled scan-
ner.  The universal-joint design also has the advantage that there is no inner frame 
that has to be moved.  This reduced the inertia on one axis of scanning and gives 
the universal-joint scanner a performance that is more symmetric on the two axes.  
Typical performance of the scanner shown in Fig. 7.29 is ± 10° optical scan angles 
with drive voltages of less than 150 V and a lowest resonance frequency of 1.9 
KHz.   
 
The simple fabrication and excellent optical performance of the universal-joint 
scanner come at a price.  There are two issues, both stemming from the compli-
cated mechanical structure.  First, the mode with the lowest resonance frequency 
in structures driven by linkages as shown is piston motion, i.e. linear translation in 
and out of the plane of the chip.  If this motion is wanted, this is not a problem, but 
if pure scanning is the objective, then the piston motion will represent an un-
wanted operation that must be suppressed by careful control of the actuation volt-
ages and external influences.    
 
The second problem with the linkage-driven scanner is that to get large angular ro-
tation, it is important that the points of attachment to the mirror of the three link-
ages are not too far apart.  This reduces the unobstructed area of the mirror as can 
be seen in Fig. 7.29.  This can be solved in practice by attaching a separate, larger 
mirror on a pedestal to the central mirror platform, but this complicates the fabri-
cation process and adds inertia to the scanner. 

7.8 Summary of MEMS scanners 

Design of optical scanning systems is a complex problem that seems to defy gen-
eralization due to the large number of widely different application requirements.  
The design process can be simplified by realizing that the most pertinent specifica-
tion on any scanning system is the number of spots that the scanner must be able 
to resolve.  This specification, the number of resolvable spots, is an inherent char-
acteristic of the scanner and cannot be increased by clever optical design.  This 
chapter therefore starts with an in-depth discussion of scanner resolution.  We find 
that the number of resolvable spots of an ideal scanner is given by: 
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where ΔΘtilt is the optical angular range of the scanner, ω0 is the Gaussian beam 
radius on the scanner, and k is a constant that is set by the relevant resolution crite-
rion for the application in question.  For a scanning display we have k=1.18, while 
other applications, e.g. fiber-optic switches, require substantially less cross talk 
and therefore k-values on the order of 3 or more.  This is the most important result 
of this chapter! 
 
Next we consider the effects of practical limitations on scanner resolution.  By 
modeling the propagation of truncated Gaussians, we find that miniaturized scan-
ners should be designed with apertures that are close to twice the beam radius.  
Systems with low contrast requirements can use slightly smaller mirrors, while 
systems that require high contrast need mirrors that are larger than twice the beam 
radius, but rarely larger than three times the beam radius.  We also establish crite-
ria for acceptable surface roughness and static curvature of scanning micromirrors, 
and found that these criteria are straight-forward to meet in practice.  Dynamic 
mirror bending, on the other hand, is a serious problem that must be solved by 
proper mechanical design.  The discussion of the optics of microscanners is 
rounded out by a description of the reflectivity of metal coatings used in MEMS 
technology and by a brief explanation of the characteristics of lens scanners. 
 
The last part of the chapter (sections 7.5, 7.6, 7.7) is dedicated to the mechanical 
design of microscanners.  Due to the enormous variety of mechanical designs that 
have been proven useful in scanning systems, this treatment is necessarily much 
less general and relies more on examples.  One general statement that can be made 
about microscanners is that they are underdamped.  This means that care has to be 
taken not to excite unwanted modes of operation, because once excited, these 
modes will persists for long periods due to the lack of damping.  As a rule, the 
wanted modes of operation should have the lowest resonance frequencies, while 
unwanted modes should be designed to have significantly higher resonance fre-
quencies.  Through numerical simulations, we showed that it is straight-forward to 
design one-axis scanners such that the preferred motion has the lowest resonance, 
but this presents a much bigger challenge for two-axes scanners.  The chapter was 
completed by a description of three different examples that illustrate the trade-offs 
in mechanical design of two axes scanning systems. 
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Exercises 

Problem 7.1 – Laser display 

Consider a laser display consisting of a circular raster scanning mirror, and a 
semiconductor laser producing a Gaussian beam at 600 nm wavelength.  The mir-
ror scans 480 lines, each with 640 resolvable spots.  The resolution criterion is that 
resolvable spots should be separated by their FWHM.  The distance from the lens 
to the screen is 10 m.  Assume that to avoid unwanted diffraction effects, you have 
to make the diameter of the mirror three times larger than the Gaussian beam ra-
dius on the mirror.  There are no lenses or other optics between the mirror and the 
screen. 

a. What is the minimum mirror size? 
b. What is the radius of curvature of the Gaussian beam at the mirror you 

found in a)? 
c. Could the same set-up be used to make a green-on-black display with the 

same resolution? 
d. How fast would the mirror have to scan? How would the displayed 

picture look?   

Problem 7.2 – Scanning Microscope 

We want to build a scanning microscope that produces a focused laser spot with a 
Gaussian beam radius of 1 um at a wave length of 500 nm, and we want to scan 
this spot over a field of view of 400 by 400 um.   
 

a. If we use a 500 by 500 um mirror, then how large must the range of scan 
angles be to cover the field of view? 

b. If we use a mirror with mechanical scan angles of ±5º on both axes, then 
how large must the mirror be to cover the field of view? 

Problem 7.3 – Corner-Cube Modulator 

a. Prove that two reflecting planes that form a 90º corner will retroreflect 
(i.e. send back in the direction is came from) an optical beam that is in a 
plane perpendicular to their intersecting line. 

b. Extend the proof to a corner cube, which is a 3-D corner formed by three 
reflecting planes intersecting at 90º. 

 
Consider a corner-cube modulator as shown in the figure below.  One mirror is 
fixed and one is rotating under the control of a MEMS actuator.  The optical beam 
from the fiber is collimated to a beam radius of 100 um on the corner cube.   
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 Fixed mirror 

Rotating mirror 

Single-mode fiber 

Axis of 
rotation 

 
Corner-cube modulator. 

 
c. Why do we not have to worry about the third dimension (perpendicular to 

the plane of the drawing) in this set up? 
d. Express the back coupled light on the fiber in terms of the rotation angle 

of the mirror. 
e. Extend the analysis to a 3-D corner cube with arbitrary angle of inci-

dence. 

Problem 7.4 – Al-Air Bragg Mirror 

a. Design a Bragg mirror of alternating Al and air layers and optimize its re-
flectivity.  Is it possible to get higher reflectivity than from bulk Al?  

b. How can a mirror like this be implemented? 

Problem 7.5 – Al-Si Mirror 

It is common knowledge that mirrors are reciprocal, i.e. their reflections and 
transmissions are the same (except for phase) independent of which direction 
(back-to-font or front-to-back) the light is incident on the mirrors.   
 

a. Test this myth by calculating the reflectance and transmittance of an 
Aluminum film on silicon in air as a function of aluminum thickness.  In 
other words, calculate the reflectance and transmittance of the Aluminum 
film on silicon coming from the air side and from the silicon side.   

b. Is it possible to use an Al film on silicon as an Anti-Reflection (AR) 
coating? 

Problem 7.6 – Adjusting Resonance Frequencies 

Consider the simple mechanical resonator in the figure below.   
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M

M

Piston mode 

Rotation mode 

 
Vibration modes of a mechanical resonator. 

 
a. Which one of the two resonant modes (piston and rotation) has the lowest 

resonance frequency?  (Hint:  Consider both energy storage in the springs 
and effective mass loading.) 

b. How can you change the spring design to increase the resonance 
frequency of the piston mode relative to the rotation mode? 
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8: Optical MEMS Fiber Switches 

8.1  Introduction to MEMS Fiber Switches 

MEMS technology is close to ideal for implementation of optical fiber switches.  
The most significant reason for this is that MEMS can be scaled to sizes smaller 
than the typical length scales of the standard Single Mode Fiber (SMF) with a 
physical diameter of 125 um, a mode diameter of about 10 um, and a collimated 
mode size that can be orders of magnitude larger in highly functional switches.  So 
MEMS offer the opportunity to create miniaturized systems where the overall size 
is limited by fundamental principles, e.g. diffraction, rather than by the bulk of the 
mechanical components.  This miniaturization in turn leads to compact systems 
that are stable, robust, and inexpensive to package, install, and operate.   
 
The parallel-processing fabrication paradigm that MEMS share with ICs is impor-
tant for fiber switches in two ways; First, fiber optics is ubiquitous and standard-
ized, so there is the potential for large scale production of simple, low-cost com-
ponents.  Second, large multifunctional fiber switches require well-matched and 
well-aligned optics and switching elements arranged in large arrays that cannot be 
cost-effectively fabricated and packaged using serial processing.  From a funda-
mental point of view, such large scale switches are enabled by the ability of scan-
ning micromirrors to spatially separate large numbers of channels, as we have 
seen in the previous chapter. 
 
In this chapter, we will study a hierarchy of four MEMS fiber switches, the 2 by 
Matrix Switch, the N by N Matrix Switch, the Planar Beam Steering Switch, and 
finally the 3-D Beam Steering Switch.  Miniaturization is important, so for each of 
these we will ask the questions:  How small can we make the switching mirrors?  
and How small can we make the overall system?  To answer these questions we 
use Gaussian beams theory to model the optical propagation through the switches 
and thereby find the scaling laws for the different kinds of fiber switches.  We will 
find that the MEMS fiber switches that we are considering offer increasing fiber-
port counts, but also increasing complexity, as we progress through the hierarchy. 
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8.2 Fiber Optical Switches and Cross Connects 

Optical fibers are excellent carriers of information over long distances due to their 
low loss, immunity to disturbances, and fidelity of transfer.  These properties are 
consequences of the confinement of the optical mode to the core of the fiber, i.e. 
the optical field is buried deep within a protective tube of glass.  These same prop-
erties make it hard to manipulate guided optical signals while they are still in the 
waveguide or fiber.  Fiber networks therefore consist of a combination of 
waveguide and free-space optical devices as shown in Fig. 8.1. 
 

Protection 
switch 
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equalizer 

SIGNAL PROCESSOR 
Dispersion compensator 
PMD compensator 
WDM OXC 
Add/drop filter 
IP Router 

WDM 
multiplexer 
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Reveiver 
WDM 

demultiplexer  

Figure 8.1. In a typical fiber-optic network, the signals are converted from the 
electrical to the optical domain by direct modulation of a Semicon-
ductor Diode Laser (SDL) or by an external modulator.  The opti-
cal signal is then multiplexed with other wavelengths, and transmit-
ted to its destination where it is converted to the electrical domain 
by a photodetector in a receiver circuit.  The transmission typically 
involves long lengths of optical fibers, several gain stages, disper-
sion compensators, and switches of various types.  We make a dis-
tinction between switches, in which the signal stays in the optical 
domain throughout (transparent switches) and those that involve 
opto-electronic conversion. 

 
The traditional way to configure an optical communication network is to use opti-
cal waveguides for point-to-point signal transfer, and convert to the electrical do-
main for switching and signal processing.  Figure 8.1 shows a typical signal path 
through a fiber-optical network.  The signal is converted from electronic to optical 
form in a semiconductor laser or external modulatora.  Several wavelength chan-

                                                           
a  A directly modulated SDL introduces extra phase modulation, or chirp, due to 

the charge-density induced changes in refractive index in the cavity.  This extra 
bandwidth leads to extra dispersion so direct modulation is typically used in 
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nels are then multiplexed together on one fiber, and transported over long fiber 
links, which include Erbium Doped Fiber Amplifiers.  Dispersion in the fibers and 
free-space components necessitates the use of dispersion compensators.   
 
The signal typically goes through several switches before it reaches its destination 
and is converted back into an electronic signal.  There are many types of fiber-
switch technologies, but we can generally classify them as either all-optical 
switches, in which the signal is not converted to electronic form, or electronic 
switches, in which all switching operations are done on electronic signals.  The 
advantages of electronic switching is that the signal can be fully regenerated so 
that it is identical to the original signal that was sent (provided that no errors were 
made in the binary decision circuitry), or changed in some prescribed manner.  In 
the electronic domain the signal can be re-leveled through amplification, re-timed 
through buffering, re-shaped by signal processing, spatially re-positioned by 
switching, and spectrally re-positioned by using a laser at a different wavelength 
in the electro-optic conversion.  In other words, the functions indicated in the sig-
nal-processing block (dispersion compensation, polarization-mode-dispersion 
compensation, Wavelength Division Multiplexed cross connection, add/drop fil-
tering, signal routing) can all be done in the electronic domain.   
 
Conversion from the optical domain to the electrical and back again requires a 
photo receiver and a laser the associated modulator and driving circuitry.  The ex-
pense of such electro-optic conversion provides powerful motivation for all-
optical solutions.  Optical re-leveling with Erbium-Doped Fiber Amplifiers revo-
lutionized optical communications by making Wavelength-Division-Multiplexing 
practical.  Similarly all-optical switching allows more flexible and cost effective 
systems.   
 
The usefulness of all-optical switching has lead to the development of a large 
number of technologies, all with their own strengths and weaknesses.  As we will 
see in this chapter, Optical MEMS has several unique characteristics, including 
low-insertion loss, low polarization dependence, high wavelength range, low cross 
talk, low power consumption, low cost, small size, and superior scaling to high 
port counts.   
 
The main disadvantage of optical MEMS fiber switches is their speed.  MEMS 
switches are fast enough for provisioning and restoration of optical communica-
tion networks, but they are not fast enough for optical packet switching, which re-
quire switching speed on the order of nanoseconds to tens of nanoseconds.  To op-
erate at these speeds typically electrooptic waveguide switches are needed.  This 
type of switch is expensive and difficult to scale to large port numbers.  MEMS 
switches are therefore the leading candidates for protection switching and circuit 

                                                                                                                                     
lower capacity systems, while external modulation is used when it is important 
to optimize the bit rate.   
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switching where switching transitions on the order of tens of microseconds is suf-
ficient. 

8.3 MEMS Switch Architectures 

Bulk mechanical fiber switches have been around since the 1960’s when fiber op-
tic communications first became practical.  In these types of devices, the input fi-
ber is moved mechanically into alignment with the correct output fiber.  A typical 
design uses a turntable to accurately move the input fiber as shown in Fig. 8.2.  
These devices are little more than automated patch-panels, and they are too slow, 
too fragile and too expensive for application that require the integration of large 
numbers of switches.  These switches are used mostly in fiber management. 
 

 

Turn table 

Single-mode fibers 
with GRIN lenses

 

Figure 8.2. 1 by 8 bulk fiber optic switch.  The turntable, which is carrying the 
input fiber, is moved by stepper motors such that the correct output 
fiber can be selected. 

 
MEMS technology is the obvious choice for miniaturizing mechanical optical 
switches, but the turn table of Fig. 8.2 does not lend itself to MEMS implementa-
tions.  Instead, two types of switch architectures based on micromirrors have 
emerged; the Matrix Switch and the Beam-Steering Switch.  The Matrix Switch is 
also called the 2-dimensional switch because the input fibers and output fibers are 
typically (but not necessarily) confined to a plane.  Likewise, the Beam Steering 
Switch is called the 3-dimensional switch because the fibers typically (but not 
necessarily) fill a volume as opposed to being confined to a plane.   
 
The Matrix Switch is illustrated in Fig. 8.3.  In its simplest implementation, it is a 
2 by 2 Switch that requires only a single MEMS mirror as shown in Fig. 8.3a.  
When the mirror is in the quiescent position (shown solid), the light of Input Fiber 
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1 is coupled to Output Fiber 1, while Input Fiber 2 is coupled to Output Fiber 2.  
With the mirror in the actuated position, the light of Input Fiber 1 is coupled to 
Output Fiber 2, and Input Fiber 2 is coupled to Output Fiber 1.  This type of 2 by 2 
cross-coupling functionality can be implemented in a large number of different 
technologies (see for example the champagne switch described in Chapter 3).   
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Figure 8.3.  Matrix Switches works by moving mirrors in and out of the optical 
beams.  The 2 by 2 Switch is very compact using only a single mir-
ror, while the N by N switch requires N2 mirrors and a large foot-
print due to diffraction. 
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Figure 8.4.  A generic layout for cascading 2 by 2 Switches into larger cross 
connects.  High numbers of 2 by 2 Switch points are needed for 
large switch matrices. 
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Many switch technologies requires that larger scale switches be constructed by 
cascading 2 by 2 Switches as shown in Fig. 8.4, while the simplicity and low loss 
of the MEMS implementations allow scaling to N by N ports by using a total of N2 
mirror as shown in Fig. 8.3b.  Here the input beams are collimated and they 
propagate down a row of turning mirrors, of which only one is activated.  Like-
wise, the output fibers are receiving collimated beams from a column of mirrors, 
of which only one is activated.  The net effect is that each input fiber can be con-
nected to any output fiber, with the only restrictions on connectivity being that two 
input fibers cannot be coupled to the same output, and that two outputs cannot re-
ceive light from the same input.   
 
Except for the 2 by 2 Switch, which has only a single mirror, an N by N Matrix 
Switch has N2 mirrors.  The reason for the exception is that the 2 by 2 MEMS fiber 
switch uses both surfaces of the turning mirror to deflect the incoming beams.  A 
similar arrangement using both sides of the mirror can be used for switches with 
larger port counts (N>2) as described in section 8.5, but for port counts higher 
than 2 by 2, it doesn’t achieve full connectivity.   
 
The N2 mirrors of a N by N Matrix Switch has a total of 2N2 mirror states that 
combine to 

2
2N  switch configurations.  Only N! are required to make all possible 

one-to-one connections between N inputs and N outputs, so the vast majority of 
the switch configurations are superfluous.  The useful configurations are the ones 
that have N activated mirrors such that each row and column have only one active 
mirror.   
 
The distances between the input and output fibers increase with the ports count in 
the N by N switch.  This means that the beam diameter in the switch matrix also 
must grow with N.  Each of the N2 mirrors of the N by N Matrix Switch must have 
two states; one passive state where the mirror is not intersecting any of the input 
beams, and one active state where the mirror is positioned at the intersection of the 
optical axes of one input fiber and one output fiber.  The requirement that the 
switching mirrors must be completely removed from the optical beams in their 
passive states is a complication, because it means that the mirrors have to be dis-
placed by a distance comparable to the beam diameter.  
 
As we will see in the detail analysis below, the N by N Matrix Switch requires 
very large foot prints as N increases, and it is also a problem that the required 
number of mirrors increases as the square of the fiber-port number.  The Beam 
Steering Switch shown in Fig. 8.5 does not suffer from these shortcomings.  It re-
quires less space and only 2N mirrors to support N by N switching.  Each input fi-
ber is connected to a specific output fiber through two mirrors.  The first mirror di-
rects the input light to the correct out put mirror, which in turn is position to 
accept the light from the chosen input and direct it to the output fiber.   
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The beam-steering switch only requires 2N mirrors for a N by N switch, but each 
mirror must have N resolvable positions, for a total of 2N2 possible mirror states.  
These states combine to 

2
2N  switch configurations, of which only N! are useful, 

just as for the N by N Matrix Switch.  The useful configurations are those in which 
each input mirror points to a unique output mirror (i.e. no two input mirrors point 
to the same output mirror), and each output mirror points to a unique input mirror. 
 

 

lkNs ω2⋅=

Input  
fiber 
array 

Output
fiber 
array 

 
 

Figure 8.5. Beam steering optical switch.  Each input channel is incident on a 
mirror of the input array.  The input mirrors direct the optical 
beams to the correct mirror in output array.  2N mirrors are re-
quired for N by N switches. 

 
Figure 8.5 shows all fibers in a single plane, but clearly the input and output fibers 
can be arranged in 3-dimensional volumes, and each input can still be coupled to 
each output, provided that each of the steering mirrors can rotate around two axes.  
One of the advantages of the Beam Steering Switch over the Matrix Switch is that 
each mirror always stays in the beam path.  The required motion is a simple rota-
tion, as opposed to the translation required in the Matrix Switch.  Equally impor-
tant is the fact that the Beam Steering Switch scales better, because it requires 
fewer mirrors and less distance between the input and output fibers.  This trans-
lates into a smaller switch footprint as we will see in the analysis below.    
 
Micromirrors that can rotate around two axes are significantly more complex than 
single axis mirrors as we saw in Chapter 7.  A particularly attractive switch archi-
tecture is therefore the WDM optical cross connect (WDM OXC) shown in Fig. 
8.6.  The WDM OXC has N inputs, each with M WDM channels.  (To keep the 
drawing simple, both N and M are 3 in Fig. 8.6.)  The WDM channels are demul-
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tiplexed to create a total of NxM spatially separate cannels.  Each of the N sets of 
M WDM channels at the same center wavelength is then spatially switched into N 
outputs in M separate Beam Steering Switches; one for each wavelength.  Finally, 
the M WDM channels on output 1 of each beam-steering switch are multiplexed 
onto Output Fiber 1.  Likewise the M WDM channels on output 2 of each beam-
steering switch are multiplexed onto Output Fiber 2 and so on.   
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(b) 

 

Figure 8.6. Schematic of WDM Switch Architecture (a).  Optical multiplexers 
(MUX/DEMUX) spatially separate the input optical beams by 
wavelength.  Each wavelength channel is routed to an independent 
NxN cross-connect (shown are three switches with N = 3) or opti-
cal add-drop multiplexer.  Figure (b) shows a possible implementa-
tion using gratings as free-space optical multiplexers. 
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The result is that each input WDM channel can be switched to any output fiber.  
This is the desired functionality for WDM OXCs, and it is realized by a set of M 
simple N by N Beam Steering Switches that only require single-axis rotation.  The 
sets of NxM input mirrors can be implemented as a mirror array on a silicon chip.  
The same is true for the output mirrors, so the MEMS mirrors require only two 
chips.  The only switching that is not supported by this compact WDM OXC is 
conversion of an input wavelength channel to another wavelength on the output.  
This function requires a wavelength shift, which in practice means electro-optic 
conversion. 

8.4 2 by 2 Matrix Switch 

8.4.1 Fiber Separation in 2 by 2 MEMS Switches 

The MEMS implementation of the 2 by 2 Matrix Switch has several unique advan-
tages, starting with the fact that both sides of the micromirror can be simultane-
ously used to switch two input beams.  The geometry of the switch allows for a 
very compact layout with few components and simple alignment.  MEMS actua-
tors also enable binary operation with no quiescent, only transient, power con-
sumption.   
 

 

Input 1 

Input 2 

Output 2 

Output 1 

Switching 
mirror 

 

Figure 8.7.  In their simplest implementation, Matrix Switches consist of no op-
tical components other than the fibers and the switching mirror.  
Provided that the propagation distance is kept sufficiently short, 
lenses or other collimating optics are not needed. 

 
This simplicity is most compelling feature of the 2 by 2 MEMS switch.  In its 
most basic form, the switch is constructed from only the input and output fibers 
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plus the switching mirror.  The question is if this simple geometry is viable, or if 
lenses must be used to make the diffraction losses between the fibers acceptable.   
 
To answer this question and find the acceptable fiber-to-fiber separation in the 2 
by 2 MEMS fiber switch, we use the formula we derived for fiber-to-fiber trans-
mission in Chapter 6.  Simplified for the case of transmission between perfectly-
aligned, identical fibers separated by a distance D, the expression for the power 
coupling is  

2

422

2

2

2

2

4
1

4

D

fiber

D

fiber

D

fiber

R
k

T
ω

ω
ω

ω
ω

+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

=  (8.1) 

where the beam radius and the radius of curvature are given by  
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The solid line in Fig. 4.8 shows the optical power transmission as a function of 
separation for fibers with mode radii of 4.8 um at 1.55 um wavelength (Standard 
Single Mode Fiber).  The dashed line shows the power transmission that would re-

sult if we set 01 =
DR

 in the above formula so that the transmission can be ex-

pressed 

( )222

224

fiberD

DfiberT
ωω

ωω

+
=  (8.4) 

We recognize this as the formula for coupling between two Gaussian beams that 
are perfectly aligned and have flat wave fronts, but different mode radii.  In other 
words, the dashed line shows the transmission we would get if the coupling into 
the fiber depended only on the size mismatch of the modes, but not the phase cur-
vature.   
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Figure 8.8 Fiber-to-fiber transmission without collimation optics.  The fibers 
are perfectly aligned Single Mode Fibers (Mode radius: 4.77 um, 
wavelength:  1.55 um, Rayleigh length: 46.7 um).  The solid line 
shows the total loss, while the dashed line shows the loss contribu-
tion due to size mismatch.  As the fiber separation increases, the 
size-mismatch contribution dominates over the phase-curvature 
contribution, and the two graphs asymptotically approach each 
other.  

 
As a practical matter the fibers have to be separated by more than their diameters 
in the 2 by 2 Switch geometry.  The diameter of SMF is 125 um, so we see from 
Fig. 8.8 that the diffraction losses between the fibers in the 2 by 2 Switch will 
limit the transmission to less than 0.35.  Comparing the solid and dashed lines of 
Fig. 8.8, we also see that size mismatch is dominant at these fiber separations and 
that the phase front curvature contributes only a minor part of the transmission 
lossesb.  We will use this fact to simplify our treatment of the transmission losses 
caused by the finite thickness of the switching mirror.   

8.4.2 Mirror Thickness in 2 by 2 Matrix Switches 

The diffraction loss due to the separation of the fibers is the only fundamental 
losses of the 2 by 2 MEMS fiber switch when the mirror is in its quiescent state 
(i.e. the mirror is not in the paths of the optical beams, and input 1 is coupled to 
output 1 and input 2 is coupled to output 2).  When the mirror is actuated (i.e. the 
mirror is moved into the paths of the optical beams, and input 1 is coupled to out-
put 2 and input 2 is coupled to output 1), then the finite thickness of the mirror 
will create an offset of the transmitted beams on either output 1 or output 2 or 
                                                           
b  Note that the biggest difference between the solid and dashed lines of Fig. 8.8 is 

at the Rayleigh length of 47 um.  That is expected, because that is where the ra-
dius of curvature has its smallest value. 
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both.  If we want to minimize loss in both connections, then we place mirror such 
that its center plane is at the point of intersection between the two optical axes.  
Each output beam is then offset laterally by 2d , where d is the mirror thick-
ness.    
 
This lateral offset between the axis of fiber and the axis Gaussian output beam re-
duces the transmission through the switch in the actuated state.  In Chapter 6 we 
found that the coupling between laterally offset Gaussian beams is given by:  

( )
22

22

222

224
fiberD

d

fiberD

Dfiber eT ωω

ωω

ωω +
−

+
=  (8.5) 

where ωfiber is the fiber mode radius, ωD is the Gaussian beam radius at the output 
fiber, and d is the lateral offset.  This formula is, strictly speaking, only valid for 
the situation where the output beam is focused on the output fiber, i.e. the output 
beam has no curvature at the output fiber ( )01 =DR .  However, we know from 
our treatment of the propagation losses in the 2 by 2 Switch that the wave front 
curvature plays a minor role in the transmission losses in practical 2 by 2 MEMS 
switches, so we can ignore the finite radius of curvature in rough calculations.   
 
The above formula is used to plot the transmission as a function of mirror thick-
ness for three different cases.  The results are shown in Fig. 8.9.  Again the input 
and output fibers are standard single mode fibers with a mode radius 4.8 um at 
1.55 um wavelength.  The solid line shows the dependence on offset for an output 
beam with a mode radius that matches that of the fiber.  That match would require 
collimation and focusing lenses, which would change the dependence on the lat-
eral offset, so the solid line is shown as a reference, not as a model for a practical 
2 by 2 Switch design.   
 
The short-dashed curve shows the transmission for an output mode radius of 10 
um.  That corresponds to a fiber separation of just under 100 um.  To make this fi-
ber separation practical would require thinning down the fiber diameter to be able 
to position the fibers closer.   
 
The long-dashed curve shows the transmission for a fiber separation of 140 um.  
This is a practical separation that leaves enough room for the actuation mechanism 
of the switching mirror without having to modify the fibers.  The problem with 
this design is of course that the mode-mismatch loss is large.  Even with no lateral 
offset, the transmission is less than 0.35.  The good news is that the sensitivity to 
mirror thickness is less than for the smaller beam radii.  We see that mirror thick-
nesses of less than 5 um have little effect on the transmission, and that thicknesses 
in the 5 to 10 um range probably would be acceptable for many applications.   
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Figure 8.9 Fiber-to-fiber optical power transmission as a function of mirror 

thickness (that causes a lateral offset that is 21  of the mirror 
thickness) in the actuated state of 2 by 2 MEMS fiber switches.  The 
solid line is for an output mode radius of 4.8 um, corresponding to 
an impractical fiber separation of zero length.  The short-dashed 
line is for an output mode radius of 10 um, corresponding to a fiber 
separation of just under 100 um, and the long-dashed line is for an 
output mode radius of 15.2 um, corresponding to a practical fiber 
separation of 140 um.   

 
Figure 8.9 makes it clear that the mirror in a 2 by 2 fiber switch must be very thin.  
High-reflectivity mirrors that are less than 5 um are difficult to fabricate with tra-
ditional manufacturing techniques.  In MEMS technology such mirrors can be 
made by surface micromachining, by Deep Reactive Ion Etching, or by anisot-
ropic etching of silicon.  One of the first commercial uses of MEMS technology in 
fiber switches was indeed to create very thin mirrors defined by <111> crystalline 
planes in Silicon by anisotropic etching. 

8.4.3 Low-loss 2 by 2 Matrix Switches 

A power transmission of 0.35, or equivalently, a loss of 4.6 dB, is acceptable in 
many applications, so the simple 2 by 2 MEMS fiber switch without collimating 
optics is indeed practical and used in many systems.  The losses are large enough, 
however, that there is strong motivation for improved designs.  The obvious thing 
to do is to use a lens for each fiber so that the beams are collimated and diffraction 
losses can be reduced to insignificant levels.  The beam size at the mirror will then 
also be larger so that thicker mirror can be used without undue increase of the 
transmission lossc.  The problem with this straightforward solution is of course the 
                                                           
c  Note that according to the principles derived in Chapter 2, the calculation of 

transmission loss due to lateral offset should be done using the larger mode ra-
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extra complexity, chip area, and expense of adding the collimating lenses to the 
design.   
 
More cost effective solutions include thinning down the fiber cladding, as sug-
gested above, to be able to position the fiber facets closer, and expanding the 
mode size of the fibers.  It is possible to use thermally-expanded-core fiber or in-
line GRIN lenses to increase the mode size at the output of optical fibers.  A rela-
tively modest mode increase of a factor of three, well within the capability of TEC 
fibers and GRIN lenses, has a dramatic effect on transmission.  This is shown in 
Fig. 8.10, where we plot the transmission as a function of fiber separation for a 
mode radius of 15 um.  We see that for transmission distances below 200 um, the 
transmission is better than 0.95.  In practice this level of loss is negligible due to 
the inescapable and much larger alignment losses.   
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Figure 8.10 Fiber-to-fiber transmission with an expanded mode radius of 15 um 
at 1.55 um wavelength (Rayleigh length: 456 um).  As in Fig. 8.8, 
the fibers are perfectly aligned Single Mode Fiber at 1.55 um wave-
length without collimation optics.  The solid line shows the total 
loss, while the dashed line shows the loss contribution due to size 
mismatch.   

8.4.4 MEMS Implementation of 2 by 2 Fiber Switch 

There have been many published reports on MEMS 2 by 2 fiber switches.  The 
implementations are based on a variety of bulk and surface micromachining fabri-
cation techniques.  One technology that is both simple and take full advantage of 
all the attributes of MEMS is Deep Reactive Ion Etching (DRIE) of Silicon-on-

                                                                                                                                     
dius at the mirror, not the smaller one at the fiber.  At the fiber lateral offset is 
reduced by the collimating lens. 
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insulator wafers.  Two examples of DRIE-of-SOI switches are shown in Fig. 8.11.  
In both cases these switches are fabricated by a single DRIE process that defines 
the fiber channels, the switching mirror, and the electrostatic combdrives.  The 
flexibility of DRIE makes it possible to create all these functions in a single mask.   
 
Figure 8.11a shows a close up of the switching mirror at the cross-point of the fi-
ber channels [1].  Note that the fiber channels have clamps to hold the fibers in 
place once they are positioned.  The fiber channels are tapered towards the switch-
ing plane so that fibers with tapered claddings can be aligned both transversally 
and axially.    The purpose of tapering the fiber ends is to reduce diffraction loss 
by reducing the separation between the input and output fibers.    
 

Input 
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Fiber 
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Figure 8.11 2 by 2 MEMS switches shown without the fibers to highlight the 
MEMS design.  The close-up in (a) shows the switching mirror in 
the fiber channels at the fiber-axes cross point [1], while (b) shows 
the design of the electrostatic comb drive that moves the mirror be-
tween the two switch states [2].  The mechanically non-linear 
springs gives the switch in (b) bi-stable operation.  Both switches 
are realized by Deep Reactive Ion Etch of Silicon-on-Insulator wa-
fers.  Reprinted with permission.  

 
The switch shown in Fig. 8.11b has many of the same attributes as the one in (a).  
The switching mirror, the fiber channels and the fiber clamps are very similar.  In 
addition, the switch in (b) has a unique bi-stable, electrostatic actuator [2].  The 
principle behind the bi-stability is that the springs supporting the moving parts of 
the actuators are designed so than when the mirror is moved, the springs are ini-
tially compressed in addition to being bent.  As the mirror is moved further, the 
compression of the springs is reduced, and the spring becomes less stiff, leading to 
a second potential energy minimum (the first potential minimum is the relaxed 
state of the springs).  There is therefore no need to apply a voltage to the actuators 
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to keep the switch in either of its two operational states.  Voltage is only required 
when switching from one state to the other. 
 
The biggest fabrication difficulty of the DRIE-of-SOI, 2-by-2 Switch is to create a 
good mirror.  The mirror is made of silicon and must be metalized to provide good 
reflectivity.  The bigger problem is to control the DRIE such that the etched sur-
faces are sufficiently smooth.  In Chapter 7.2.4 we argue that scanning micromir-
rors should have an RMS surface roughness of better than λ/20 or 75 nm for fiber-
optic communication wavelengths.  It is a challenge to produce mirrors of this 
quality on surfaces defined by DRIE. 

8.5 N by N Matrix Switches 

The 2 by 2 Switch is readily extended to larger port counts.  The basic layout of a 
6 by 6 switch is shown in Fig. 8.12.  In principle, this design can be extended to 
any number of input and output fibers.  Once the switch is extended beyond 2 by2, 
we must in practice use lenses or other collimating optics to avoid excessive dif-
fraction losses.  This complicates the switch fabrication, but has the advantage that 
losses can be kept small even for large numbers of input and output fibers.    
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Figure 8.12.  The basic N by N Matrix Switch works by moving mirrors in and 
out of the optical beams.  There are N2 mirrors, but only N of them 
are activated at any given time.  With collimating optics to avoid 
diffraction losses, this design can in principle be extended to large 
numbers of fibers.   

 
One of the problems with the switch of Fig. 8.12 is that the path length through the 
switch from a given input fiber to an output fiber will depend on which output fi-
ber that is chosen.  This can be avoided by offsetting the input and output fibers as 
shown in Fig. 8.13.  In this switch, which we will call the constant-coupling archi-
tecture, the path lengths are always the same for all connections, irrespective of 
which switching mirrors that are activated.   
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Figure 8.13.  The constant-coupling, Matrix Switch have offset input and output 
fiber arrays so that any connection though the switch has the same 
path length.  That means that all paths can be set up to have mini-
mum diffraction losses.     

 
 

Input 1 

Input N 

O
utput 1 

O
utput N

 

Output (N+1) 

Output 2N 

Input 2N
 

Input (N
+1) 

 

Figure 8.14.  Matrix Switch with N2 mirror that support switching of 2N input fi-
bers into 2N output fibers.  Two connections are shown as solid 
and dashed lines.  Between N and 2N mirrors are activated for 
each state of the switch.  The added functionality is achieved by us-
ing both sides of each switching mirror, just as in the case of a 2 by 
2 Switch, but unlike the 2 by 2, the N by N does not have full con-
nectivity.   

 
The lower losses due to the constant path lengths for all connections is a practical 
advantage of the constant coupling architecture, but there is a price to pay in that 
the area of the switch increases by a factor of 2 (if we count only the area that is 
actually taken up by the components of the switch) or 4 (if we count the whole 
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square that the switch occupies).  Area is often the limitation on matrix-switch de-
sign, so the constant coupling architecture is not commonly because the uniform 
insertion loss in not enough of an advantage to justify the extra area.  
 
As for the 2 by 2 Switch, it is possible also in larger Matrix Switches to use both 
sides of the switching mirrors.  The switch can then be configured to have a total 
of 2N inputs by 2N outputs as shown in Fig. 8.14.  Any input fiber can be con-
nected to any output fibers, but there are some combinations of connections that 
are impossible.   

8.5.1 Scaling of N by N Matrix Switch 

To understand the scaling of the Matrix Switch consider Fig. 8.15.  We want to 
find the most compact design for a N by N switch, i.e. we want to minimize the 
length, s, of the side of the switch matrix.  The optical beam from each input fiber 
is captured by a lens and focused (collimated) to a soft focus at a distance s from 
the lens.  The beam then diverges again over a distance s till it is captured by an-
other lens and coupled into an output fiber.   
 

s=N·kb ωl Input 
array 

Output 
array 

 

Figure 8.15.  Scaling of the N by N Matrix Switch.  The objective is to find the 
optimum beam configuration, i.e. the optimum beam size at the lens 
and the optimum focusing of the beam, to minimize the size of the 
mirrors and the size of the overall switch matrix that are required 
to support a given number of fiber ports.     

 
If we assume that the beam radius is ωl at the lens and ω0 at the soft focus, then 
the length of the side of the matrix can be expressed   
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where N is the number of input and output fibers, and km is a constant that depend 
on how far we must separate the Gaussian beams from neighboring fibers.   
 
The numerical value of km strongly affects scaling, so it must be carefully consid-
ered.  There are two issues of importance; the lenses must be large enough to cap-
ture the beams and the cross talk between beams must be kept at acceptable levels.  
In Chapter 4 we showed that an aperture must be on the order of three times the 
Gaussian Beam radius to not create significant side lobes.  In practice there also 
has to be some extra distance between the lenses, so it is reasonable to assume that 
the center-to-center lens spacing must be about 5ω0.  This lens spacing is also suf-
ficient to ensure that the incoherent cross talk between fibers do not exceed ac-
ceptable levels, which typically is -40 dB or less for applications in telecommuni-
cations [3].   
 
In contrast, the Gaussian approximation to the fiber mode leads to the prediction 
that km=3 is sufficient to ensure -40 dB cross-talk, demonstrating that the Gaussian 
approximation is not sufficiently accurate for cross-talk calculations, as we 
pointed out in Chapter 6.  The reason that we cannot use the Gaussian beam ap-
proximation for cross-talk calculations is that the Gaussian beam approximation 
underestimates the optical power in the wings of the distribution, so that the cross 
talk is also underestimated.  Measurements on single-mode fiber show that a sepa-
ration of five times the mode radius [4,5] is required to get a cross talk of less than 
-40dB between channels.  The conclusion is that the minimum fiber separation, as 
determined by the minimum acceptable lens aperture, matches the fiber separation 
determined by the cross-talk requirement, and that km≈5 is a reasonable value to 
use in our calculations.   
 
To find the switch design that supports the largest number of fiber channels, we 
solve Eq. 8.5 for N  
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and optimize over variations in ω0.   
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Not surprisingly, we find that we get the largest number of mirrors when the total 
propagation length through the switch (2s) equals twice the Rayleigh length, 
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which is called the confocal parameter, of the Gaussian beam propagating through 
the switch.  It follows that the beam radius at the lens is 02 ωω ⋅=l .   
 

Substituting the relationship 
λ

πω2
0=s  into the expression for N, we find the 

maximum number of mirrors: 
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This expression shows that the Matrix Switch does not scale well to large channels 
numbers.  As the size of the switch increases, the channel number grows only as 
the square root of the linear size, s, or in other words, the size grows as the square 
of the channel number.   
 
At the fiber-optic communication wavelengths the relationships between size and 
channel number and beam radius and channel number can be expressed as   
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We see that a 10 by 10 switch would have a mirror matrix that measure 2.5 by 2.5 
mm, a very small chip.  The mirrors have to be 2.432 ≈⋅  times larger than the 
beam radiusd, so a 10 by 10 switch needs mirrors measuring about 150 um on a 
side, which is a manageable mirror size.   
 
A 100 by 100 switch, on the other hand, would have to be 25 cm on a side and the 
beam radius is about 350 um, necessitating mirrors with diameters on the order of 
1.5 mm.  These values are borderline impractical for most MEMS fabrication 
technologies, so, although there are no hard limits, we conclude that in practice  
the MEMS Matrix Switch is limited to less than 100 input and output fibers.   

                                                           
d  Strictly speaking it is only the mirrors close to the collimating lenses that need 

to be this large.  Close to the beam waist, the mirrors can be smaller by a factor 
of 2 , but this level of improvement on some mirrors will in practice typically 
not be worth the extra complexity of having different mirror designs in the same 
switch matrix.  
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8.5.2 MEMS Implementations of N by N Matrix Switch 

Implementation of a N by N Matrix Switch requires integration of several differ-
ent functions; mechanical structures for positioning of input fibers, output fibers, 
and lenses must be created on the same substrate where the switching mirrors are 
realized, and all these mechanical devices must be aligned, typically with sub-
micron precision, to ensure proper operation of the switch.  MEMS technology 
provides mechanical alignment with excellent precision and stability.  The switch-
ing mirror itself, on the other hand, is a challenge because of the relatively large 
distance it has to be moved to bring it completely in and out of the beam path.   
 
Anistropically etched v-grooves have emerged as a robust and cost effective tech-
nology for positioning and alignment of fibers and lenses with sub-micron preci-
sion.  U-grooves formed by DRIE have similar performance and offer more flexi-
bility in the geometrical layout and additional features, e.g. the the fiber clamps 
shown in Fig. 8.11.  Traditional bulk micromachining and DRIE of silicon wafers 
therefore provide all the alignment features required for the N by N Matrix 
Switch.  
 
The switching mirrors used in the N by N Matrix Switch are challenging for sev-
eral reasons.  First the mirrors have to be large, and they have to move over long 
distances to be able to capture the whole beam in the active position and leave the 
beam completely unobstructed in the passive position.  We found that a 10 by 10 
switch requires mirrors measuring 150 um on a side and that the size grows line-
arly with the fiber count.  Even modest sized switches therefore require motion of 
hundreds of micron, which is difficult to achieve with electrostatic actuators (see 
Appendix B).  The actuator design is further complicated by the fact that the N by 
N switch with N>2 require dense packing of the mirrors AND actuators.  In the 2 
by 2 Switch, the actuator is outside the area where the optical beams propagate, 
but that is not possible in larger arrays, so the actuators have to be tucked away in 
the third dimension, i.e. placed under or over the mirrors, and the actuators cannot 
take more space than the mirror separation allows.   
 
The most difficult part of the design of large N by N Matrix Switches is therefore 
the actuator that has to provide long-distance travel and a very precise active posi-
tion, while occupying a restricted area.  Several different types of electrostatic 
MEMS inch-worm motors have been demonstrated, e.g. the scratch drive [6,7] 
and the vibromotor [8], but these all have problems meeting the requirements on 
precision, repeatability, and switching speed.   
 
Magnetic fields are set up by currents or permanent magnets, so they do suffer 
from the electrode-spacing dependence that limits the forces available from elec-
trostatic actuators.  Magnetic actuators therefore represent an attractive alternative 
to electrostatics for driving the large mirrors of N by N Matrix Switches.  Both 
purely magnetic drives and combinations of magnetic and electrostatic actuation 
have been demonstrated.  In practice, this means that the fabrication process has to 
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incorporate magnetic materials and that the switch system has provide magnetic 
fields that are external to the MEMS chip.  These represent cost-driving complica-
tions in fabrication and packaging, so magnetic drives are difficult to commercial-
ize.   
 
The difficulty in creating large, long-throw micromirrors have led to a search for 
other types of switching mechanisms, e.g. the Champagne switch (described in 
Chapter 3), that can be implemented in waveguides.  Guided-wave architectures 
do not suffer the size restrictions caused by diffraction in free-space MEMS 
switches, but they still need a total of N2 switches to create a N by N matrix.  
Unlike MEMS switches that do not contribute loss when they are in the inactive 
mode, most binary waveguide switches have insertion loss on the order of a dB in 
both states.  This means that at most a few tens of switches can be arranged in se-
ries, thus limiting the port count in waveguide Matrix Switches to roughly the 
same port count as in MEMS implementations.  
 
We conclude that the large mirror size and the associated large required motion 
are serious challenges to practical and reliable implementations of N by N Matrix 
Switch.  So even though the scaling laws allow switches with several tens of fiber 
ports, and MEMS technology provides integration and alignment accuracy, there 
are serious technological obstacles that must be overcome before large N by N 
Matrix Switches can be successfully commercialized.   

8.6 N by N Beam Steering Switches  

Like all beloved children, the by Beam Steering Switch has many names.  It is 
known as the Spanke Architecture, the 3-Dimensional MEMS Switch, the Confo-
cal Switch, the Beam Steering Switch, and many others.  We will use the name 
Beam Steering Switch, and we will consider two variations, the planar Beam 
Steering Switch and the 3-D Beam Steering Switch.  We choose this name be-
cause beam-steering describes the basic operation of the active elements.   
 
The Beam Steering Switch is essentially an application of the scanners we de-
scribed in Chapter 7.  As can be seen from Fig. 8.5, the optical field from each in-
put fiber is collimated onto a dedicated input mirror that steers (or scans) the beam 
onto another beam-steering mirror that is dedicated to the desired output fiber.  
The chosen output mirror must be positioned to steer the optical beam into the 
output fiber.  Each beam path is therefore set up by two beam-steering mirrors, or 
scanners. 
 
It is clear from Fig. 8.5 and the explanation of the switch operation that any input 
fiber can be coupled to any output fiber, and that all combinations of one-to-one 
connections are possible.  Just like the Matrix Switch, the Beam Steering Switch 
does not support one-to-many connections (broad casting) and many-to-one con-
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nections (multiplexing).  It is conceivable to extend the functionality of the Beam-
Steering switch to include broadcast and multiplexing, but only at the cost of sig-
nificant losse., so we will not consider such extensions.    

8.6.1 Scaling of the Beam Steering Switch  

Planar Beam Steering Switch 

The individual beam-steering mirrors are the workhorses of the Beam Steering 
Switch, and their resolving powers (number of spots they can resolve) determine 
the maximum number of input and output fibers that can be supported.  To see 
how the scanning mirrors limit the channel number, consider the Beam-Steering 
switch of Fig. 8.16 [9].  In this layout, the input and output beams are parallel.  It 
can be shown that relaxing this requirement, i.e. allowing the input and output 
beam to be non-parallel, does not increase the fiber-port count.   
 
In the switch of Fig. 8.16, as in all Beam Steering Switches, the input mirror array 
directs each input optical beam to the desired output port, and the output mirror ar-
ray aligns the optical beams for coupling into the output fibers.  We assume that 
the mirror rotational axes lie in the center of each mirror, and the mirror centers 
are collinear in both arrays.  Mirror size is proportional to the optical beam radius 
at the mirror, and spacing between adjacent mirrors is proportional to the size of 
the optical beam waist.  The optical beam waist is centrally located between the 
mirror arrays to create a symmetric switch that minimizes mirror size and switch-
ing time. 
 
To maximize the port count, we wish to have a large separation between the mir-
ror arrays, while at the same time minimize optical beam divergence.  From Fig. 
8.16 

β
βα

sin)1(
cos)1(tan

−+
−

=
Ndp

Nd  (8.12) 

where α is the optical scan angle, p is the separation between mirror arrays, d is 
the distance between mirror centers, and β is the angle between a line perpendicu-
lar to the mirror at zero deflection (α = 0) and the input optical beam.  In Fig. 8.16 
we also introduce the parameters s=d·N, which is the array size, and m, which is 
the mirror size. 
 

                                                           
e  That broadcasting and multiplexing require loss follows directly from what we 

found in Chapter 2, namely that optical modes cannot be combined in loss-less, 
linear optical systems.   
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Figure 8.16. Gaussian beam propagation through a planar beam-steering 
switch.  In the small-angle approximation, the optimum separation 
between the mirror arrays is the Rayleigh length ZR.  The product 
kbω0 is the separation between optical beams inside the switch ma-
trix. 

 
As for all optical scanners and beam-steering mirrors, the value of the optical an-
gle is twice that of the mechanical angle.  In other words, to achieve an optical de-
flection angle of α, the beam-steering mirror must rotate trough an angle α/2.  
Note that to span the whole output array, the input mirror at the extreme ends of 
the input array must have an optical angular range of α in one direction, while the 
mirror in the middle of the array need to scan α/2 in either direction.  If the mir-
rors are identical and their reflective surfaces are in the same plane when not actu-
ated, then each must be able to rotate through an optical angle of α in either direc-
tion.  Clearly there are some improvements that can be made by having different 
mirror designs and/or having the mirrors oriented in slightly different directions in 
their quiescent state.   
 
Solving the above equation for N, we find 

( )
β

αααββ
cos

1tantansincos)1(
d

pNpNd +≈⇒=−−  (8.13)

where we have used a small-angle approximation to set αα tan≈  and 
βαββ costansincos ≈− .  This approximation significantly simplifies the 

analysis and is valid for most, if not all, practical implementations.   



320      Photonic Microsystems 

 
Now we assume that the Gaussian beam waist is positioned exactly at the mid-
point between the two mirror arrays so we can make the following substitution 
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where ω0 is the Gaussian beam radius at the mirrors, and kb is the separation be-
tween adjacent optical ports measured in beam-waist radii.  It is a constant deter-
mined by the required cross-talk between channels or by the allowable truncation 
of the Gaussians at the mirrors.  It follows that N can be expressed 
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We now optimize N with respect to variations in ω0 
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The corresponding optimum mirror separation and channel number are 

2cos 0ωωβ ⋅=⋅= bb kkd  (8.17) 
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We note that using the small-angle assumption and the Gaussian optical beam 
model, we find the optimum value of p to be the Rayleigh length of the optical 
beam.  This is what we would expect from our earlier treatment of the Matrix 
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Switch and our fundamental considerations of Gaussian Beam propagation in 
Chapter 4. 
 
The port count expressed in terms of the mirror size, m=f⋅d, becomes  

2
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where f is the one-dimensional mirror fill-factor.  It is also useful sometimes to 
express the maximum port count as a function of t, the product of the mirror radius 
and its maximum mechanical scan angle: 

22
α⋅= mt  (8.20) 

where m/2 is the mirror radius (or half of the length of a side length if the mirror is 
square).   
 
The parameter t, called the space-bandwidth product of the mirror, tells us how 
much the edge of the mirror have to move to achieve a mechanical scan angle a.  
This important parameter is typically determined by the actuation technology used 
to drive the steering mirrors.  With this expression for t, we find: 
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We see that for a given wavelength, we want the space-bandwidth product (t) as 
large as possible, and the incident angle (β), the fill factor (f), and the beam sepa-
ration (kb) at the mirrors to be as small as possible.   
 
Just as for the Matrix Switch, the factor kb in the above expressions is determined 
by the amount of power loss and distortion we can tolerate in the beam after re-
flection from the beam steering mirrors.  However, we also have to make sure that 
the beams are separated by a sufficiently large distance so that the cross talk be-
tween adjacent channels does not become excessive.  We calculate the cross talk 
between adjacent channels at the position of the beam waist.  (Remember that the 
cross talk doesn’t change by passing through loss-less, linear optical devices).  To 
ensure sufficiently low cross talk we require a minimum beam separation at the 
beam waists.  We can express this as  

00cos ωβ ⋅=⋅ kd  (8.22) 

 
As stated in the discussion of cross talk in the Matrix Switch, measurements on 
SMF show that a port separation corresponding to k0≅5 is required to achieve -40 
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dB cross-talk.  With k0 ≅ 5, we have 5.3
2

5 ≈=bk , which is a slightly high, but 

reasonable, value for the mirror-to-mirror spacing in stringent applications like fi-
ber switches.  In Chapter 4 we found that the open aperture perpendicular to the 
optical axis should be 3 times the beam radius, so we can set the fill factor 
f=3/3.5=0.86.  The conclusion is that the mirror separation is limited at very 
closely the same level when we consider cross talk and aperture effects.  This is of 
course the same as what we found for the Matrix Switch.  In our calculations we 
will use the parameter value 5.3=bk  to ensure acceptable loss, distortion, and 
cross talk.    
 
With the value for kb established, we can evaluate the scaling performance of the 
planar Matrix Switch.  In terms of the length (s=Nd) of the linear array, the maxi-
mum fiber-port count is 
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Solving for the length of the linear switching array we find 
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We conclude that the planar Beam Steering Switch scales almost exactly like the 

Matrix Switch.  (For the Matrix Switch we found: mNkNs m μ
π

λ 252 2
22

⋅≈⋅= ).  

This is not a complete coincidence, because both switches are fundamentally lim-
ited by the same effect, namely diffraction.  Just as the Matrix Switch, the planar 
Beam Steering Switch will in practice be limited to substantially less than 100 by 
100 ports.  
 
Figure 8.16 shows that there are significant differences in the path length through 
the Beam Steering Switch for different connections.  These optical path-length dif-
ferences cause insertion loss due to the optical-mode mismatch at the output fi-
bers.  Using the formulas we have found for the number of fiber ports 
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The variation in path length is only a small fraction of the optimum array separa-
tion, which is equal to the Rayleigh length of the beam.  Differences of less than a 
quarter of the Rayleigh length lead to transmission larger than 0.98 (see Fig. 8.8 
and 8.10).  In practice, the insertion loss will be much larger and dominated by 
alignment errors, so the path-length differences through the planar Beam Steering 
Switch are of no practical consequence.  

3-D Beam Steering Switch 

The planar Beam Steering Switch we have analyzed (Fig. 8.16) has a linear array 
of input mirrors and a matching array of output mirrors.  The arrays are configured 
so that every beam-steering mirror directs the beams within one plane and, conse-
quently, the mirror-rotation axes are perpendicular to that plane.  Non-planar con-
figurations leads to higher port counts if the value of the incident angle β can be 
reduced or even set to zero as shown in the out-of-plane switching geometry of 
Fig 8.17.  
 

Rotation Axis 
Incident 
Optical Beam 

 

Figure 8.17.  Schematic of Beam Steering Switch with out-of-plane switching.  
This architecture is more efficient than the planar one of Fig. 8.16, 
because the tilt of the mirror is not in the direction of switching, so 
the mirrors can be smaller and closer together in the switching di-
mension.  Consequently, more fiber channels can be supported.   
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The optimum solution from the point of view of maximizing the number of fiber-
ports is clearly to combine the in-plane and out-of-plane designs of Figs. 8.16 and 
8.17.  That requires the mirrors to tilt around two axes.  Two-axes rotation com-
plicates the MEMS implementation, but the extra complexity comes with a very 
important advantage; the maximum possible fiber port count increases dramati-
cally!  With 2-axes beam steering the maximum number of ports can be expressed 
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or in terms of the space-bandwidth product 
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where it is assumed that the incident angle is zero in one dimension and β in the 
other.  Solving the first of these equations for the mirror size d, we find the follow-
ing expressions for mirror size 
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We see that reasonably small mirror arrays (~ 20 mm) can support very large 
switches with a thousand fiber ports or more.  By pushing the chip size further it is 
possible to extend the port count beyond 5,000.  The path-length differences be-
tween the shortest and longest paths through the switch are somewhat longer than 
then for the planar Beam Steering Switch, but the losses caused by path-length dif-
ferences are still insignificant compared to losses caused by alignment errors. 
 
The enormous port count supported by the 3-D Beam Steering Switch is due to the 
exceptional resolution of the beam-steering mirrors.  The ability of scanning mi-
cromirrors to (de)multiplex thousands of channels is unmatched by other optical 
(de)multiplexing technologies, irrespective of the (de)multiplexing dimension 
(wavelength, frequency, time, polarization).  

                                                           
f  We are interested in the big picture here, so we won’t worry about the fact that, 

due to the tilt, the array is rectangular, not square.  
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8.6.2 MEMS Implementations of the N by N Beam Steering Switch 

The implementation of the planar Beam Steering Switch is similar to that of the 
Matrix Switch, and therefore has many of the same advantages and challenges.  
On the plus side we have that the planar geometry makes it possible to use litho-
graphically defined structures to position and align the fibers, the lenses, and the 
beam-steering mirrors in a single plane.  That allows single-chip solutions that are 
compact, well aligned, and mechanically robust.   
 
Just as is the case for the Matrix Switch, however, the switching mirrors of the 
Beam Steering Switch represent an implementation challenge.  The mirrors have 
to be oriented and rotated around an axis that is perpendicular to the chip surface.  
The difficulty of designing and fabricating such mirrors, particularly for the mm 
sizes required for large port-count switches, is so formidable that at present very 
few demonstrations and no commercialization of the planar Beam Steering Switch 
have been reported.  The exception is the WDM optical cross connect (WDM 
OXC) shown in Fig. 8.6.  This switch is constructed from a set of planar Beam 
Steering Switches, one for each wavelength.  However, the favored implementa-
tion of the WDM OXC is to arrange all the input mirrors on one substrate and all 
the output mirrors on another.  In this configuration, the implementation of the 
WDM OXC is very close to that of the 3-D Beam Steering Switch that is dis-
cussed in the next paragraph.    
 
The very nature of the 3-D Beam Steering Switch makes it impossible to imple-
ment it in a planar geometry.  In fact, this switch is very much a three-dimensional 
structure that consists of a set of two-dimensional arrays as shown in Fig. 8.18.  
Each of the arrays presents a challenge to the switch manufacturer.  One-
dimensional fiber arrays are common, but two-dimensional arrays are not yet of-
fered commercially, so each switch designer has to develop their own solution.  
The situation is a little better for the micro-lens arrays.  Commercial products are 
available, but the degrees of freedom in the design of microlenses and microlens 
arrays are vast, so typically each switch requires a custom design.  The good news 
is that there is an increasing number of vendors that offer custom microlens design 
and fabrication, so the manufacturers of 3-D Beam Steering Switches do not need 
to develop that expertise in house.   
 
The mirror arrays shown in Fig. 8.18 are the heart of the 3-D Beam Steering 
Switch.  These mirrors are significantly easier to design, fabricate, and operate 
than the Mirrors of the Matrix Switch, because the Beam-Steering mirrors do not 
have to move complete out to the beam path.  On the contrary, each input beam is 
always directed to the same input mirror, and each output beam is coming off the 
same output mirror.  This means that mirrors do not need to be linearly translated, 
just rotated.  The mirrors are in essence scanners and subject to the same imple-
mentation consideration that we discussed in Chapter 7.  As pointed out in there, it 
is relatively speaking easy to design and fabricated single-axes mirrors that can be 
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used to build the WDM OXC, but significantly harder to create the two-axes scan-
ning mirrors required to implement the full-blown 3-D Beam Steering Switch.    
 

Input microlens 
array 

Input mirror 
array 

Output mirror 
array 

Output microlens 
array 

Output fiber 
array 

Input fiber 
array  

Figure 8.18.  Schematic of the 3-D Beam Steering Switch. Two different paths 
through the switch are shown as solid and dotted lines.  The pack-
aging of this system is difficult because the two mirror arrays, the 
two lens arrays, and the two fiber arrays must all be well aligned 
and robustly held to ensure correct and stable operation.    

 
In addition to the challenges of creating the fiber, lens, and mirror arrays required 
by the 3-D Beam Steering Switch, it is also very difficult to find cost effective 
ways to position and stabilize the arrays.  The individual components of the arrays 
must be aligned to sub-micron precision and be stable over long lifetimes under 
adverse conditions, including large temperature variations.  For a complex me-
chanical structure as the one shown in Fig. 8.18, this means that the package has to 
be large, sturdy, and precise; not a combination that comes cheap.  The large 
number of channels supported by the Beam-Steering Switch also complicates and 
drives the cost of the electronic control.  Package design and electronic integration 
are therefore very important, maybe the most important, parts of the Beam Steer-
ing Switch implementation.   
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8.7 Summary of MEMS Fiber Switches 

This chapter is focused on the fundamental limits of scaling with the goal of un-
derstanding how different MEMS switch architectures compare.  We consider four 
switches, starting with the 2 by 2 Matrix Switch, continuing with the N by N Ma-
trix Switch and the Planar Beam Steering Switch, and finally ending with the 3-D 
Beam Steering Switch.  Going through this hierarchy we find that the switches be-
come more complex, but also more powerful in terms of the number of fiber ports 
that they can accommodate.   
 
The 2 by 2 Matrix Switch, as the name suggests, has only two input fibers and two 
output fibers.  In its simplest form the 2 by 2 consists of only the fibers and one 
switching mirror in addition to the mechanical alignment structures.  In this con-
figuration, the switch suffers a diffraction loss that limits the transmission to about 
35%, but that loss can be reduced by adding collimating lenses to the design.   
 
There are two compelling reasons to use MEMS technology to implement the 2 by 
2 Matrix Switch.  First the switching mirror can be made with thicknesses in the 5 
to 10 um range which is what is required to not add significant state-dependent 
loss.  Just as important is the fact that MEMS fiber grooves and other positioning 
structures enable simple and stable alignment of the switch.   
 
The scaling of the N by N Matrix Switch can be expressed in the formula 
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N
m

⋅=  (8.30) 

where s is the length of the side of the switch matrix, λ is the wavelength, and kb is 
a constant that for typical switch conditions and requirements takes a numerical 
value approximately equal to 5.  At a wavelength of λ=1.55um, the relationship 
between N and s evaluates to s=N2·25um, showing that N=100 requires a switch 
matrix measuring about 25 cm on a side.  This is an impractical MEMS device, so 
scaling properties limits the port count of the N by N matrix Switch to well less 
than 100 by 100.   
 
As for the 2 by 2, the N by N benefits from the precise and stable alignment struc-
tures that can be created by MEMS fabrication technology.  The MEMS imple-
mentation is, however, complicated by the fact that the mirrors must be moved all 
the way in and out of the beam paths in the Matrix Switch.  This means that large 
switches require large mirrors that must be able to move over long distances, cre-
ating a challenging MEMS design problem.    
 
As is the case for the Matrix Switch, the scaling of the Planar Beam Steering 
Switch is determined by diffraction of the optical beams propagating through the 
switch.  The total number of fiber ports supported by the switch can be expressed 
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where α is the optical scan angle, s is the linear array size, and β is the angle be-
tween a line perpendicular to the mirror at zero deflection (α = 0) and the input 
optical beam.  The constant kb is again given the numerical value of 5.  Assuming 
a wavelength of λ=1.55um, an incident angle cosβ=0.8, and an angle range 
α=0.4, the relationship between N and s evaluates to s=N2·19 um, showing that the 
Planar Beam Steering Switch scales very similarly to the N by N Matrix Switch 
and is therefore limited to similar port counts and mirror sizes.  Like the Matrix 
Switch, the Planar Beam Steering Switch makes good use of the precise and stable 
alignment structures that can be fabricated in MEMS, but the mirror design repre-
sents a challenge. 
 
By extending the Beam Steering Switch to 3 dimensions, its scaling is substan-
tially improved, and can be expressed 
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where the symbols have the same meanings as above.  The radical difference from 
the Matrix Switch and the Planar Beam Steering Switch is that the port count N 
here depends linearly, rather than as the square-root, on the array size s.  With the 
same vales as above, the relationship between N and s evaluates to mNs μ17⋅≈ .  
This demonstrates that the 3-D Beam Steering Switch can be scaled to port counts 
in the thousands! 
 
The MEMS implementation of the 3-D Beam Steering Switch is quite different 
from that of the Matrix and Planar Beam Steering Switches.  The essential differ-
ence is that the three dimensional structure of the switch cannot be aligned using 
the same MEMS alignment structures that works so well for planar geometries.  
Instead, bulky mechanics must be used to position the fiber arrays, lens arrays, and 
mirror arrays in a stable configuration.   
 
The beam-steering mirrors themselves are relatively straight-forward to imple-
ment.  Each beam steering mirror is a 2-axis scanner like the ones described in 
Chapter 7.  They can be made and operated in the plane of the substrate or chip, 
and they only need rotational motion, not translation, because they do not need to 
translate out of the path of the optical beams.   
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Exercises 

Problem 8.1 - Spherical-Mirror Modulator 

Consider the 1 by 1 switch (modulator) in the figure below.  The input is the for-
ward-propagating light on the fiber, and the output is the backward propagating 
light.  The beam from the fiber is focused on the spherical mirror, which has a ra-
dius of curvature that matches that of the beam.  So with the mirror in the quies-
cent position, all the light is coupled back on the fiber, while rotation of the mirror 
leads to reduction of the back coupling.    
 

 

Rotating, 
spherical mirror 

Single-mode fiber

Axis of 
rotation 

 

Spherical-mirror modulator. 
 

a. Express the back-coupled optical power relative to the input power.  Give 
your answer in terms of the wavelength, the fiber-mirror distance, and the 
angle of rotation of the mirror. 

b. Is there a mirror size that minimizes the required maximum motion (i.e. the 
motion of the mirror ends that must move the longest distance under rota-
tion)? 

c. How would you choose the mirror size in a practical implementation?  
What is the smallest volume that the complete switch (not counting the fi-
ber) must occupy? 

 
Now consider a variation of the spherical-mirror modulator, in which the mirror 
isn’t rotated, but rather its radius of curvature is changed by a MEMS actuator. 

 
d. Express the relative back-coupled optical power as a function of the radius 

of curvature of the mirror.  Give your answer in terms of the wavelength, 
and the fiber-mirror distance. 

e. Compare the two modulator principles.  Which one is better from an opera-
tional point of view and which one is simpler to implement? 
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Problem 8.2 - Optimized Corner-Cube Modulator 

Optimize the corner-cube modulator of problem 7.3.  What is the smallest volume 
that the complete corner-cube switch (not counting the fiber) must occupy? 

Problem 8.3 - Fourier Lens 

One alternative implementation of the beam-steering switch is to place a Fourier 
lens between the mirror arrays in Fig. 8.18, such that the lens is one focal length 
away from either array.   
 

a. How does such a Fourier lens change the scaling of the Beam-Steering 
Switch? 

b. Is there a specific type of mirror array (array size, mirror size, and mirror 
rotation angle) that favors the use of Fourier lenses? 

Problem 8.4 - Beam-Steering Switch with Normal Incidence 

a. How can you use polarizing beam splitters and λ/4 plates to avoid the 
difficulty of non-normal incidence on the mirror arrays in the Beam-
Steering Switch? 

b. How does this implementation change the scaling of the Beam-Steering 
Switch? 

c. How can this implementation be combined with a Fourier lens? 

Problem 8.5 - “Immersion” Switches 

a. How is the scaling of the Matrix Switch changed by immersing the whole 
switch in an oil of index 1.5? 

b. How is the scaling of the Beam-Steering Switch changed by immersing the 
whole switch in an oil of index 1.5? 

c. How is the scaling of the Matrix Switch changed by filling the volumes be-
tween the mirrors with silicon of index 3.5?  Here we have to leave room 
for the mirrors to move, so the beams must cross two air-silicon interfaces 
at each mirrors.  Assume that these are Anti-Reflection coated so we can 
ignore reflections from these interfaces.   

d. How is the scaling of the Beam-Steering Switch changed by filling the 
volumes between the mirror arrays with silicon of index 3.5?  Again we 
must leave room for the mirrors to move, and we assume that we can ig-
nore reflections from the air-Si interfaces.   

Problem 8.6 - Non-planar Beam-Steering Switches 

The Beam-Steering-Switch implementation of Fig. 8.18 has planar mirrors, planar 
array substrates, and the mirrors are parallel to the substrates in their quiescent po-
sitions.   
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a. Can we improve the scaling of the switch by relaxing any one or any com-
bination of these three conditions? 

b. Can we improve any practical aspect of the switch implementation by re-
laxing any one or any combination of these three conditions? 

Problem 8.7 - Hybrid Switch 

a. Design a hybrid switch, i.e. one that uses the operational principles of both 
the Matrix Switch and the Beam-Steering Switch. 

b. What advantages does such a hybrid design have? 
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9:  Micromirror Arrays – Amplitude and Phase 
Modulation 

9.1  Introduction to Micromirror Arrays 

The success of ICs and MEMS alike is based on the photolithographic fabrication 
process and is its ability to create large arrays of devices.  Projection displays 
based on micromirrors [1] like the Digital Light Processing (DLP)® technology 
[2,3,4], is a good example from the MEMS world.  Large DLP chips contain ar-
rays of more than one million micromirrors that each can be mechanically tilted to 
direct incoming light in a prescribed direction.  Each micromirror is a relatively 
complex, three-dimensional, electro-mechanical structure of very small dimen-
sions.  Given the size, complexity, and required precision, it would be a formida-
ble challenge to make even small numbers of these micromirrors using traditional 
mechanical fabrication technologies.  Fabricating millions of micromirrors on a 
single substrate is therefore a unique capability of MEMS technology and a practi-
cal impossibility without the parallel-processing power of optical lithography.   
 
In this chapter we will describe the optical properties of large arrays.  We start by 
taking a closer look at the DLP® technology, particularly the implementation and 
integration challenges that the DLP® presents.  In a typical application of the 
DLP®, each mirror acts as an amplitude modulator.  It is, however, also possible to 
make arrays of micromirrors that act as phase modulators.  In fact, one of the 
compelling possibilities of large mirror arrays is that they can be used to perturb 
the phase of an incident wave front over an extended area to enable flexible and 
precise manipulation of the optical field.   
 
One of the main purposes of this chapter is to describe phase-modulating mirror 
arrays and compare their properties to those of amplitude-modulating arrays.  We 
will find that in some well-defined ways, phase modulators perform better than 
amplitude modulators.  This is an observation that is repeated in many areas of op-
tics, and it follows from the fundamental fact that light is radiating electro-
magnetic fields.  A phase modulator controls the optical field by setting up inter-
fering fields that can add or subtract according to the state of the phase modulator.  
This is more efficient than simply attenuating the optical intensity, which is what 
an amplitude modulator does.  Phase modulation is therefore a very powerful tool 
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that is used in a wide range of Optical Microsystems.  The basic concepts are de-
scribed in this Chapter together with several examples of their use with micromir-
ror arrays, and the principles of phase modulation will be used again and again 
throughout the book to describe diffractive Optical MEMS, MEMS filters, and in-
teractions in Photonic Crystals.    

9.2  Amplitude Modulating Mirror Arrays 

Amplitude-modulating micromirror arrays are used in many image-forming appli-
cations, including projection displays, mask less lithography, spectroscopy, and 
confocal microscopy.  The Texas Instrument’s DLP® technology is the most suc-
cessful of these technologies.  The schematic drawing shown in Fig. 9.1 illustrates 
how complex the DLP® mirrors are, and solidifies the point made in the introduc-
tion that a chip with millions of such structures cannot be made in a serial process.    
 

 
 

Figure 9.1 Schematic drawing showing two pixels in TI’s DLP® technology.  DLP® 
chips contain as many as one million of these complex micromirrors.  
Each mirror can be in one of three states; With no applied voltage the 
mirror is parallel to the substrate surface.  With an actuation voltage 
applied between the mirror and the left-most substrate electrode, the 
mirror tilts to the left, shown as -10º, and when the an actuation voltage 
is applied between the mirror and the right-most substrate electrode, 
the mirror tilts to the right, shown as +10º.  Reprinted with permission. 

 
The DLP® mirror has three states.  With no applied voltage, there is no force to 
make the mirror rotate around the rotation hinges, so the mirror is in its quiescent 
state with the mirror surface parallel to the chip surface.  With a voltage applied to 
one of the substrate electrodes, the mirror rotates around the hinge in the direction 
of the voltage.  Once the landing tips contacts the substrate, the rotation stops and 
the mirror is in either the +10º rotation state or the -10º rotation state, depending 
on whether the applied voltage is on the right or left.   
 

Mirror +10º 

Landing tip 

Yoke 

Hinge 

Mirror -10º 

Substrate 
electrode 

CMOS 
substrate 
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Figure 9.1 shows that the points where the lading tips contacts the substrate are 
electrically connected to mirrors, so there is no potential difference between the 
contacting bodies.  Note further that the mirror itself never contacts the substrate 
electrodes.  The landing tips stops the rotation before that can happen, so there is 
no electrical shorting of the mirror to the substrate electrode.  Both these points 
are important for reliable operation and long-term stability of the mirror.    

9.2.1 Projection Display 

The micromirror arrays can be used for many different types of applications, in-
cluding mask-less lithography [5], spectroscopy [6] and confocal microscopy, in 
which the mirror array is used as a programmable spatial mask [7].  The most 
common application, and the one the DLP® was designed for, is projection dis-
plays.  A schematic version of a projection display is shown in Fig. 9.2.   
 

Micromirror 
array 

Projection lens 
w/aperture stop 

Condensing 
lens 

Color filter 

Projection 
screen 

Light 
source 

Off-state 

On-state 

 
 

Figure 9.2 Projection system used to form a monochromatic image.  Three aligned 
such systems are needed to create a full color display.  Mirrors that are 
in the on state (tilted towards the incident light) are imaged as bright 
on the screen, while mirrors in the off state (tilted away) appear dark 
on the screen. 

 
In this system, the light from a traditional sourcea is collimated onto a micromirror 
chip, typically through a color filter that transmits blue, red, or green.  A full color 
display would then need three aligned systems, together forming aligned blue, 
green, and red images that combine to form a color image.  Each mirror in the mi-
cromirror array is either tilted towards the light source (+10º) or away from it (-
10º).  If the mirror is tilted toward the incoming light, then the light hitting it is di-
rected through the projection lens and focused on the projection screen, so that the 
image of that mirror on the screen appears bright.  If the mirror is tilted away from 

                                                           
a  Lasers can be used, but one of the strengths of the micromirror array is that it 

works with traditional light sources, so that it the typical choice. 
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the incoming light, then the incoming light is directed outside the projection lens, 
and the image of the particular mirror appears dark on the screen.   
 
In the introduction we point out that MEMS is the only practical option for mak-
ing 2-D arrays of large numbers of switching mirrors as required by the projection 
display of Fig. 9.2.  In addition, the MEMS implementation has several structural 
and functional advantages.  First and foremost MEMS enable direct integration of 
electronics and optics.  Under each mirror in the DLP® array is a switching and 
memory circuit that holds the state of the mirror until the next desired state is sent.  
The direct integration is made possible by the fact that the MEMS is fabricated on 
a silicon substrate.  The procedure is to first create the switching circuitry in the 
silicon substrate, and then fabricate the MEMS on top.  This means that the post 
processing must be done at low temperaturesb, which puts restrictions on the 
MEMS technology that can be used.  The DLP® is therefore built using Alumi-
numc structural layers and polymer sacrificial layers that can be removed by stan-
dard dry-etch techniques.   
 
An important functional advantage of the MEMS implementation is that the small 
size and mass of the DLP® mirrors gives them high switching speeds.  The switch-
ing time for the individual mirrors of the array is in the tens of microseconds, 
which is more than fast enough for gray scale to be created by pulse-length modu-
lation.  This means that the mirror can be operated in the binary fashion described 
above, and that the complications of analog control of the tilting angles to create 
grayscale can be avoided.     
 
Finally, the small size of the MEMS array leads to a compact system design.  This 
makes the overall system inexpensive to fabricate, distribute, and operate, and 
makes is practical to combine multiple arrays in one system, e.g. using three DLP 
arrays to create a full color display.    
 
The reflective, as opposed to transmissive, operation of mirror arrays is both an 
advantage and a challenge.  Aluminum-coated mirrors have reflectivity around 
92% at visible wavelengths (see Table 7.1), and the mirror fill factor (the ratio of 
the mirror area to the total area of the array) is around 90% for a total light 
throughput of 83%.  Compared to Liquid Crystals and other transmissive Spatial 
Light Modulators, this is a very high light efficiency.  Reflective optics is also 

                                                           
b  Exactly what low temperatures means will depend on the IC technology that is 

used.  If the circuits have been metalized, then temperatures have to be restricted 
to well below 500º C, while slightly higher temperatures can be used if the IC 
process is designed for MEMS post fabrication. 

c  Not just any Aluminum, however.  The exact alloy is optimized for long-term 
mechanical stability. 



336      Photonic Microsystems 

much less dispersive (wavelength dependent) than even the best chromatically-
compensated transmissive opticsd. 
 
The reflective operation of mirror array creates problems in the system design, 
however.  Optical systems based on reflective components tend to be bulkier and 
more difficult to align than those based on transmissive optics.  This is because re-
flective devices require folded geometries and off-axis operation, as can be appre-
ciated by considering the system shown schematically in Fig. 9.2.  Creating good 
folded-optics solution is one of the main challenges for the Optical MEMS de-
signer. 

Projection Display Resolution 

Compactness is important for the functionality and the cost of micromirror arrays, 
so we need to determine how small each mirror in the array can be and still per-
form its function.  Rotating mirrors like the DLP mirror are examples of the 1-axis 
scanners that are described in Chapter 7, and we can use the tools developed there 
to determine how big each mirror has to be.    
 
We model an individual mirror in an array as shown in Fig. 9.3.  The micromirror 
rotates, without translation, around a fixed axis of rotation.  The illumination of 
the individual micromirrors in an array will typically be uniform across the mirror, 
but we will use the Gaussian Beam theory we developed in Chapters 4 and 7 to 
calculate the diffraction angle from the mirrors.  The results will not be exact due 
to the discrepancy in the illumination profile, but the errors are relatively small 
and do not change the overall conclusions we draw from the modeling.   
 

t

Substrate 

Micromirror 

Rotation 
Axis  

3ω0 

 
 

Figure 9.3 Simple micromirror model showing the definitions of the parameters 
used to calculate the required size and angular deflection. 

 
In Chapter 7 we found that an ideal mirror illuminated by a Gaussian profile on 
gives a number of resolvable spots that can be written 

                                                           
d  This is the reason that reflective microscope objectives are popular for some ap-

plications, in spite of their extra complexity and cost. 
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The exact definition of the diffraction angle depends on the specified contrast, 
Cspec, which is the required ratio of the highest to lowest intensity in the projected 
image of the micromirror.  The beam radius where the intensity is reduced to meet 
the contrast specification is  
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In projection displays the contrast requirements are between -20 and -30 dB, so 
using the models we developed in Section 7.2.1, we conservatively set   
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The corresponding diffraction angle is 
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Assuming a mirror size d=3ω0, we find 
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It follows from the operation of amplitude-modulating micromirrors in projection 
displays that the number of resolvable spots of the mirror must be 2, correspond-
ing to the two states (dark and bright) that the mirror must have.  If we assume a 
wavelength in the middle of the visible region, i.e. λ=500nm, and a scan angle 
Δθ=0.7, the minimum mirror size is given by 
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This is the result of a rough calculation based on an incorrect assumption of Gaus-
sian Beam Illumination.  It is certainly possible to push this limit lower, but not 
much.  The choice Δθ=0.7 was made to match the DLP mirror that has a mechani-
cal scan angle of ±10º and therefore a total optical angle range of 
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4·10º·(π/180°)=0.7.  Increasing the scan angle beyond this value quickly becomes 
impractical.   
 
The point is that even conservative assumptions lead to the realization that mi-
cromirrors for displays can be made as small as five times the wavelength.  An ar-
ray with a million mirrors only has to be about 2.5mm on a side.  This limit set by 
diffraction is so small that in most practical situations, the mirror size is deter-
mined by considerations such as the size of the switching circuitry and the MEMS 
actuators, rather than by the fundamental limit set by diffraction. 
 
It is instructive to express the mirror requirement in terms of t, the minimum de-
flection of the end point of the mirror as defined in Fig. 9.3.  The scan angle can 
be expressed  
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Combining this with the equation for the number of resolvable spots gives 
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From this expression it seems that the number of resolvable spots is to first order 
not dependent on the mirror size!  This is of course a fallacy, because the number 
of resolvable spots does depend on t, which again sets a lower limit on the mirror 
size.  Assuming N=2 and λ=500nm and solving for t we find    
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The necessary maximum deflection is less than two wavelengths.  Again this is 
not a hard limit, but rather a practical consideration that is based on quite conser-
vative assumptions.  By relaxing the specified contrast, which we set to 30 dB, the 
required deflection will be reduced, and for many applications, a maximum de-
flection on the order of a wavelength is sufficient.   

9.3 Projection of Micromirror Arrays  

In Section 9.2.1 we analyzed the resolution of micromirror arrays in isolation 
without explicit consideration of the optical system.  Implicitly we made the as-
sumption that the optical system was able to capture the full diffraction angle from 
each micromirror as shown in Fig. 9.2.  Now we must take a closer look at this as-
sumption and learn what kind of optical system that is required for projection of 
micromirror arrays.   
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We will start by considering amplitude modulation as in the preceding section, but 
our investigation will show that phase modulation allows smaller projected image 
features, so phase modulation is preferable if image resolution is the highest prior-
ity.  We will also find, however, that there is a price to pay for the improved reso-
lution; phase-modulated arrays are more complicated to operate than amplitude-
modulated arrays.    

9.3.1 The Point Spread Function 

Consider the imaging system of Fig. 9.4.  The system projects an image of the mi-
cromirror array onto the screen.  It is shown here as having only a single lens.  In 
practice a combination of several lenses will be used to optimize different aspects 
of the performance of the system.       
 
The appearance of an individual mirror on the screen depends on the illumination, 
the state of the mirror, and the magnification of the projection system.  In addition 
it also depends on the Point Spread Function (PSF) of the lens system.  The PSF is 
defined as the impulse response of an optical system, i.e. the image of a perfect 
point source.  No optical system is able to create an impulse in the image plane, so 
the PSF is always a pattern of finite size.  The finite PSF of real optical systems 
therefore blurs the projected images.  If the PSF is large compared to the projected 
size of a micromirror, then the image of that micromirror is dominated by the 
characteristics of the optical system rather than by the micromirror itself.  Under 
those conditions, the image of the micromirror bears little resemblance of the ob-
ject.  It is blurred by the finite PSF of the lens system, and we say that the mi-
cromirror cannot be resolved by the optical system. 
 

Micromirror 
array 

Projection lens 
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Figure 9.4 Detail of a micromirror-array projection system.  The mirror array, 

which defines the object plane, is imaged onto the screen, which defines 
the image plane.  The Point Spread Function (PSF) of the projection 
system blurs the images of the micromirrors on the screen, so that ob-
jects with images that are smaller than the PSF cannot be resolved on 
the screen.    
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The PSF of a simple projection system is the famous Airy disc [8] with the follow-
ing mathematical definition  
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where I0 is the field at the center of the disc, J1 is the Bessel function of the first 

kind and order one, 
λ
π2=k  is the propagation constant or wave number, λ is the 

wavelength, a is the radius of the lens aperture, r is the radial distance from the 
disc center and Z the lens-screen distance.  Most often the Airy-disc formula is 
given for the specific case of imaging from infinity, i.e. the case where an image 
formed in the focal plane at a distance of one focal length from the lens.  The for-
mula works just as well for imaging at any distance, however, as long as Z is not 
taken to be the focal length, but to be the correct lens-screen distance for the imag-
ing set up.   
 
The Airy disc is usually defined in terms of its optical intensity as in Eq. 9.10, due 
to the fact that this concept originates with incoherent imaging.  For our purposes 
we need to consider addition of optical fields, so the field distribution is the ap-
propriate object for our calculations.  It can be expressed 

( ) ( ) ( )
Zrka

ZrkaJE
x

xJEE 00 ⋅
⋅== 11 22θ  (9.11) 

where I0 is the field at the center of the disc, and the other parameters are defined 
above.    
 
In many cases it is convenient to rewrite the Airy-disc expression in terms of the 
system f-number, which is defined as N=Z/2ae.  The expression then becomes  

( ) ( )
Nr

NrJ
EE 0 λπ

λπθ
⋅

⋅
= 12

 (9.12) 

This form highlights the dependence on the f-number of the imaging system; the 
smaller the f-number the smaller the PSF. 
 
The Airy-disc formula is also the far-field pattern from a circular aperture without 
an imaging lens.  In that case it is useful to express the pattern in terms of the ob-
servation angle,  θ , which is related to r and Z as Zr=θsin .  Using this formu-
lation, the Airy disc pattern becomes  

                                                           
e  Here we are talking about the generalized system f-number that simplifies to the 

standard f/2a for imaging at infinity. 
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( ) ( )
θ

θθ
sin

sin2EE 1
0 ka

kaJ=  (9.13) 

 
The Airy Disc field distribution is shown in Fig. 9.6.  The central lobe of the curve 
is bell-shaped as we would expect.  The side lobes are created by the sharp cut-off 
of the aperture, just as hard edges creates side lobes in truncated Gaussian as we 
observed in section 4.7.   
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Figure 9.5 The two-dimensional Airy Disc field pattern is circularly symmetric 

with a bell-shaped central lobe and significant side lobes.  The argu-

ment is ( )Nryx λπ ⋅=+ 22 , where r is the radial distance from 
the disc center, λ is the wavelength, and N is the system f-number. 

 
The field and intensity patterns of the Airy Disc are compared in Fig. 9.6.  Notice 
the dramatic reduction in the appearance of the side lobes in the intensity com-
pared to the field distribution.  It is tempting to conclude that these side lobes are 
mere curiosities that play no significant practical role.  For coherent systems, that 
is a fallacy, because we must consider the field PSF.  The effects of the side lobes 
become pronounced when they interfere with neighboring distributions.  
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Figure 9.6 Comparison of the Airy Disc field (a) and intensity (b) distributions.   
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The first nulls in the distributions appear at x≈3.83.  Taking the radius of the first 
null to be the radius of the image, we find the famous expression  

λ
λ

π ⋅⋅≈⇒≈
⋅
⋅= Nr

N
rx st

st
st 22.183.3 1

1
1  (9.14) 

In the case of imaging of an object plane at long distances, the lens-screen dis-
tance equals the focal length (Z=f) and the denominator becomes the standard f-
number, 2a/f, which is how this expression is typically presented.   
 
The half maximum value of the intensity distribution appears at x≈1.62, so the full 
width at half maximum (FWHM) of the intensity is 

λ
π

λ
λ

π ⋅≈⋅⋅≈=⇒≈
⋅

⋅= NNrFWHM
N

rx HM
HM

HM
62.12262.1  

This simple-to-remember formula says that the FWHM of the central lobe of the 
Airy Disc equals the system f-number multiplied by the wavelength!  
 
The Airy Disc is an exact expression for the far-field diffraction from a circular 
aperture.  Most practical lenses will have imperfections that make the far-field pat-
tern deviate from this ideal.  In high-quality systems optimized for monochromatic 
operation, e.g. optical lithography machines used in the IC and MEMS industries, 
these deviations are minor, and the system PSF approaches the Airy Disc.  In other 
cases, the aperture function is engineered to achieve a desired point-source (im-
pulse) response.  For example, it is possible to use a “Gaussian Aperture”[9] to get 
a Gaussian PSF that has the advantage of uniformly decreasing distribution with-
out side lobes. 
 
Even the best designed lens systems will at least to some degree deviate from the 
ideal Airy-Disc PSF.  In addition, the Airy Disc is difficult to use in analytical 
models and even create problem in some numerical calculations.  These issues 
lead us to use simpler PSDs.  In particular we will make extensive use of Gaussian 
approximations in our analytical calculations, because they greatly simplify the 
math and allow us to derive closed-form solutions to problems that are analytically 
intractable if we use the full-blown Airy disc formulation.    
 
We define the Gaussian PSF for the optical field and for the intensity as   

( ) 2

2

2

2

62.12
2ln x

0
c
x

0 eEeExE G
⋅−−

==  
(9.15) 

( ) 2

2

2

2

62.1
2ln

2
x

0
c
x

0 eIeIxI G
−−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=  (9.16) 



9:  Micromirror Arrays – Amplitude and Phase Modulation            343 

where the parameter x is defined as for the Airy Disc PSF, i.e. 
N
r

Z
rkax

λ
π ⋅=⋅= .  

Here again r is the radial distance from the disc center, λ is the wavelength, and N 

is the system f-number.  The value of the constant 
22ln

62.1=Gc  is chosen so that 

the FWHM of the intensity Gaussian PSF matches that of the Airy disc intensity 
distribution. 
 
This choice is made to closely match the central lobes of the two intensity PSDs.  
Rewriting the Gaussian PSDs in terms of the projection-system parameters we 
find  
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where we have introduced the PSF beam radius NNPSF λλ
π

ω 74.0
2ln
62.1 ≈
⋅

= .   
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Figure 9.7 Comparison of the Airy Disc ( ( )( )2
12 xxJ  - solid) and Gaussian 

( ( ) 2

2

62.1
2ln x

0eIxI
−

=  - dashed) intensity PDFs.  The FWHM of the two 
distributions are the same, but the Gaussian PDF does not have the 
side lobes that are present in the PDFs of all optical systems with hard-
edged apertures.  

 
The Airy Disc and the Gaussian approximation with the same FWHM are com-
pared in Fig. 9.7.  We see that the two are well matched except around the nulls of 



344      Photonic Microsystems 

the Airy Disc.  The main error of using this Gaussian approximation is that our 
calculations don’t capture the effects of the side lobes that are typically present in 
all optical systems that are not been specifically engineered to avoid them.  This is 
not an insignificant error.  In fact, dealing with the side lobes created by hard aper-
tures is a major concern in many optical designs. 

9.3.2 Image formation with finite Point Spread Functions 

To understand the effect of a finite-sized PSF on image formation, we start by 
considering an idealized imaging system, in which the PSF is independent of the 
position of the point source in the object plane.  Such systems are called shift in-
variant.  In addition, we will assume that there is no distortion in the imaging sys-
tem (other than that caused by the finite size of the PSF itself).  That means that if 
the magnification of the projection systems is M, then the coordinates in the object 
and image planes are related as 

ooii MyMxyx ,, =  (9.19) 

where xi,yi are the image-plane coordinates, and xo,yo are the object-plane coordi-
nates.   
 
The object plane can be expressed as a sum (integral) of impulses that are 
weighted in amplitude and phase  

( ) ( ) ( )∫∫ −−⋅=
yx,

,,, dxdyyyxxyxEyxE oooooo δ  (9.20) 

where Eo(x,y) is the electric field distribution (amplitude and phase) in the object 
plane, and δ(x,y) is the two-dimensional impulse function.  Imaging systems are 
linear, so we can find the field distribution, Ei(x,y), in the imaging plane by sum-
ming the images of the individual impulses in the object plane, i.e. by summing 
the PSFs  

( ) ( ) ( )

( ) ( ) ( )∫∫
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iioiii

yx,
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M

yxE

,,,

)()(,,1,

 (9.21) 

The image is simply the object appropriately magnified and convolved with the 
PSF!  The factor 1/M in the first line reflects the fact that the field strength is re-
duced as the square root of the area (the intensity is reduced linearly in the area).  
Equation 9.21 gives us a convenient mathematical tool for investigation of image 
formation with micromirror arrays. 
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9.3.3 Projection of a Gaussian Source 

Now we consider the simple case of projection of a Gaussian source by an imag-
ing system with a Gaussian PSF as depicted in Fig. 9.8.  The questions we ask 
ourselves are: How does the PSF change the image of the Gaussian source, and 
how small of a source can the system resolve? 
 

Projection lens 
w/aperture stop Screen Z 

θ

Blurred image of 
Gaussian source 

Gaussian light 
source  

a 

 
 

Figure 9.8 Projection of a Gaussian source.  The finite PSF of the projection sys-
tem blurs the image of the Gaussian on the screen.    

 
Using the formalism developed in the preceding section, we write (for simplicity 
of notation we set the field at the center of the source Eo(0,0)=1 in these calcula-
tions) 
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where ωo is the Gaussian beam radius of the object and ωPSF is the beam radius of 
the PSF.  The scale factor in front of the integral normalizes the integral of the 
PSF to unity.  This form shows how the Gaussian approximation to the PSF sim-
plifies our calculations; the integral is separable in the two integration parameters 
and readily carried out  
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The projection is a Gaussian with a beam radius equal to the sum of the radii of 

the magnified source and the PSF!  The factor 
M
1  shows that the field is reduced 

as the square root of the increase in area caused by the magnification, and the 

scale factor 
222

22

M
M

oPSF

o

ωω
ω

+
 simply reflects the fact that as the radius of the magni-

fied source becomes less than the radius of the PSF, the image grows dimmer, be-
cause it is blurred, i.e. spread over a bigger area.  This verifies what we would 
have guessed, namely that the image is determined by the smaller of the object 
and PSF.  There is little to be gained by making the magnified source smaller than 
the PSF of the imaging system.  Later we will see that for phase-modulating arrays 
we must match the size of the individual micromirrors to the projection-system 
PSF.   

9.3.4 Projection of a Gaussian Micromirror 

To apply the results of section 9.3.3 to micromirror arrays, we have to limit the 
maximum intensity to that of the illumination.  That means that the scale factor in 
the above equation becomes important.  To see how, let’s consider a dark Gaus-
sian pixel on a bright background.  Following the derivation of section 9.3.4, we 
find 
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This equation reveals the importance of the scale factor!  It reduces the contrast of 
the dark pixel on the bright background by increasing the minimum field of the 
pixel.  
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The image intensity as a function of the distance from the image center is shown 
in Fig. 9.9.  The parameters chosen for these plot are ωPSF=1, ωoM=4 (dashed), 
ωoM =2 (dotted), ωoM =1 (dash-dotted), and ωoM =0.5 (dashed-dotted).  For 
comparison, we also show the intensity PSF, 

222 PSFxe ω− .  The pre-factor 1/M is 
omitted in these plots to simplify comparison.   
 
The graphs show clearly that to create a truly dark image, the magnified pixel size 
must be very much larger than the PSF of the projection system.  Dark pixels with 
radii smaller than the radius of the PSF will indeed project as Gaussian distribu-
tions with close to the beam radius of the PSF, but at the cost of significantly re-
duced contrast.   
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Figure 9.9 Projection of a dark Gaussian pixel on a bright background for object 

beam radii of ω0M=4 (dashed), ω0M=2 (dotted), ω0M=1 (dash-dotted), 
and ω0M=0.5 (dash-double-dotted).  The solid line shows the intensity 

PSF, 
222 PSFxe ω−  where ωPSF=1.  

 
Our discussion of the PSF demonstrates that it sets a limit on how small a mi-
cromirror should be for optimum performance.  In section 9.2 we saw that the mir-
ror size was limited by the micromirror modulation contrast.  Whether it is the 
PSF or the modulation contrast that ultimately limits how small we can make the 
mirror in a given micromirror array depends on the application.   
 
In a projection display, which is the most common application of the DLP tech-
nology, the magnification M is large.  The magnified source beam radius is typi-
cally much larger than ωPSF, so the PSF plays a minor role in determining the size 
of the projected pixels on the screen.  For this type of application, the mirrors size 
is limited by the modulation contrast considerations of section 9.2.    
 
The situation is the opposite for systems that create microscopic images of mi-
cromirror arrays.  Examples of such systems are maskless lithography machines, 
in which a pattern created by a micromirror array is projected onto a photoresist-
covered wafer for printing of ICs and MEMS.  Here the micromirror image is de-
magnified, i.e. M<1.  Consequently, the PSF tend to dominate and it becomes the 
factor that limits the mirror size.    
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9.3.5 Projection of a 1-D Gaussian Source 

It is also instructive, as well as useful for the comparison of amplitude and phase 
modulation that we will carry out later, to briefly consider a 1-D Gaussian source 
of the form 
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where again we use the definition we NNPSF λλ
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same approach as in the preceding section, we find  
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Due to the fact that the integral is separable, the 1-D and 2-D Gaussian give essen-
tially the same result; the beam radius of the image is the sum of the object and 
PSF radii.  There is a difference in the scale factor, but that is simply due to the 
source is independent of the y coordinate.   
 
Extending this to dark lines on a bright background we find 
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Just as the dark pixel, the dark line has reduced contrast, caused by the scale fac-
tor, when the magnified image approaches the radius of the PSF.   

9.4 Micromirrors with Phase Modulation  

So far we have considered rotating micromirrors that modulate the projected light 
intensity by directing light outside the aperture of the projection optics.  This 
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should be considered a type of amplitude modulation, because it is primarily the 
amplitude of the reflected light that is being controlled by the position of the mi-
cromirror.  It is also possible to create micromirrors that primarily control the 
phase of the reflected light.  For example a micromirror that moves vertically in a 
piston-like motion will delay or advance the phase of the light that is reflected off 
them compared to light that is reflected off the neighboring mirrors.    
 
One typical example is shown in Fig. 9.10.  Here one mirror is pulled towards the 
substrate by a distance that corresponds to a quarter of a wavelength of the inci-
dent light.  The light that is reflected from this micromirror is therefore exactly out 
of phase (i.e. having a phase that is advanced by a total of π) with the light that is 
reflected from other parts of the array.  Depending on the size of the mirror and 
the projection system that is used, either the edges or the whole mirror will appear 
dark in projection.  The gaps between the mirrors are assumed to be non-
reflecting, so their only effect is to set up a weak amplitude grating that is of neg-
ligible consequence for the projection of the array.   
 

Substrate 

Plane wave at 
normal incidence 

t=λ/4

 
 

Figure 9.10 Phase shifting micromirror array.  Each mirror can translate vertically 
to set up a local variation in the phase of the reflected light.  In the con-
figuration shown there is one micromirror that is translated downwards 
by a quarter of a wavelength, so that the path length of, the light re-
flected from that mirror has an extra phase shift of π radians compared 
to the light that is reflected from the rest of the array.    

 
Phase shifting mirrors behave very differently than amplitude-modulating mirrors.  
In this section we will develop the tools and the insight required to compare and 
contrast phase shifting micromirrors to the rotating micromirrors of section 9.3.  
We will find that phase modulation is more complicated than amplitude modula-
tion, but also that it offers significant advantages under certain conditions.   

9.4.1 Projection of a Phase Step  

From sections 9.3.3-9.3.5, it is tempting to draw the conclusion that a projected 
feature with full contrast cannot have a beam radius that is comparable to that of 
the PSF.  That is, however, not true.  Consider a simple phase step along the y-
axis, i.e. a function that has a constant unity absolute value and a phase of 1θje for 
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x<0 and 2θje  for x>0.  This object field results in the following optical field in 
the image plane  
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Again we benefit from the fact that the Gaussian distribution is separable in Carte-
sian coordinates, and write   
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For 11 −=θje  and 12 =θje , i.e. a phase step where the field is uniformly negative 
for negative x values and positive for positive x values, this evaluates to 
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and the intensity becomes 
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where ( ) ∫ −=
x

u duexErf
0

22
π

is the error function.   

 
This closed-form solution to the intensity projection of a phase step is plotted as 
the solid line in Fig. 9.11 together with projections of dark Gaussian lines with 
ωoM=4 (dashed), ωoM =2 (dotted), ωoM =1 (dash-dotted), and ωoM =0.5 (dashed-
dotted).  The beam radius of the PSF is again set to unity (ωPSF=1).  Note that 
these projected Gaussian lines have better contrast than the Gaussian pixels of Fig. 
9.9.  The reason is that the scale factor is larger for lines than for pixels.   
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Figure 9.11 Projection of a phase step (solid) compared to dark Gaussian lines on a 
bright background for object beam radii of ω0M=4 (dashed), ω0M=2 
(dotted), ω0M=1 (dash-dotted), and ω0M=0.5 (dash-double-dotted).  
The PSF has a beam radius of unity (ωPSF=1). 

 
Just like the projections of the dark lines, the phase step projection has an intensity 
minimum exactly at the position of the step.  As opposed to the dark-line projec-
tions, the phase step projection reaches zero intensity at its center.  The existence 
of this null, that we have found from our mathematical modeling, could have been 
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predicted from the observation that the phase of the optical field is undefined at 
the phase step, so the field has to go to zero at that point to avoid ambiguityf.    
 
Figure 9.11 shows that the projection of the phase step is significantly narrower 
than the projection of any dark line.  If we compare the phase step to lines that 
give close to unity contrast, we see that the dark lines are about twice as wide.  In 
fact, the phase-step projection is not very much wider than the intensity PSF itself 
as shown in Fig. 9.12.   
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Figure 9.12 Comparison of projection of a phase step (dashed) to the PSF 
(ωPSF=1).  To simplify the comparison, the function 1-PFS is shown 
(solid).  

9.4.2 Projection of a Phase Modulated Line 

It is straightforward to extend our treatment of a single phase step to multiple 
phase steps.  Consider again an object of uniform intensity, but this time with a 
phase of θ1 for x<–w/2, θ2 for –w/2<x<w/2, and θ3 for x>–w/2.  This is the phase 
distribution we would get in reflection from a micromirror array where one line of 
mirrors is displaced with respect to the mirrors on either side.  To find the projec-
tion of this phase-shifted line of width w, we adopt the same approach as we used 
in section 9.4.1 to analyze the projection of a single line phase shift.   

                                                           
f  The same type of phase uncertainty and vanishing of the optical field is associ-

ated with an optical vortex, which is the point, or zero-dimensional, equivalent 
to the one-dimensional phase step that we have considered.  
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This formula shows that even a single phase-modulated line results in a quite 
complex intensity distribution, given by ( ) ( ) ( )iiiiiiiii yxEyxEyxI ,,, *= .  To get an 
overview we evaluate the expression for the special case θ1= θ3=0 and θ2=π.  This 
is the phase distribution we would get in reflection from a micromirror array 
where one line of mirrors is displaced by a quarter wavelength, which means a 
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path length difference of a half wavelength in reflection.  The projected field and 
intensity from such a phase-modulated line is given by  
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Figure 9.13 compares this intensity for four different values of the magnified mir-
ror width with the projection of a π phase step.  As expected, we see that only the 
edges of wide lines project as dark, while the centers of the wider lines project as 
bright independent of their phase shift.  As the line width is reduced, the dark 
edges merge, and the whole line appear dark.  Further reduction in line width re-
sults in an associated reduction in the projection width, but also in reduced con-
trast as the edges get too close to each other.   
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Figure 9.13 Comparison of the projection of a π phase step to projections of π 
phase modulated lines of different magnified widths; Mw=4ωPSF 
(dashed), Mw=2ωPSF (dotted), Mw=ωPSF (dash-dotted), and 
Mw=0.5ωPSF (dash-double-dotted)  For simplicity, the beam radius of 
the PSF is set to unity (ωPSF=1) in these plots. 

 
The optimum width of the mirrors is approximately equal to the Gaussian beam 
diameter of the PSF (2ωPSF).  This is very different from what we learned about 
amplitude-modulating micromirrors; If a rotating, amplitude-modulating mirror 
has sufficient rotation, the whole mirror projects dark, so there is no need to make 
sure that the mirror is not too large for the projection system. 
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9.4.3 Sub-Pixel Shifts in Phase-Modulated Micromirror arrays 

The complexity of the projected intensity of a phase-modulated micromirror array 
arises from the interference between the fields from the different mirrors, but this 
effect also gives phase-modulated mirror arrays some unique and powerful charac-
teristics.  Consider as an example a micromirror array that is set up with N phase 
modulated rows such that the phase is θ0 for x<0, θ1 for 0<x<w, θ2 for w<x<2w 
and so on up to θN for (N-1)w<x<Nw and θN+1 for x>Nw.  Following the same 
procedure as in sections 9.4.1 and 9.4.2, it is straightforward to show that the pro-
jected field is  
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If we restrict the phase differences to 0 and 1, then the intensity that results from 
this distribution has minima at the points (lines) between the mirrors as in Fig. 
9.13.  If, however, we chose the phases correctly, then we can place the intensity 
minima at intermediate locations, i.e. it is possible to control the position of spatial 
features with an accuracy that is better than the size of the micromirrors [10,11].  
This is of course of great utility in applications where the positioning of image 
features must be controlled with finer resolution than the images themselves.  

9.5 Projection of Micromirrors through Hard Apertures 

Our treatment of imaging through a Gaussian PSF gave us valuable insight into 
the limits of micromirror design that can be used to analyze a variety of applica-
tions.  The Gaussian approximation to the PSF simplifies the analysis and allows 
us to derive closed-form solutions.  We must emphasize, however, that certain as-
pects of our modeling is idealized to the point where some important effects are 
lost.  To get an appreciation for this effect, we go back to the general equation giv-
ing the object field as a convolution of the object field and the PSF 
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The scale factor in front of the integral normalizes the integral of the PSF to unity.  
As before, we are interested in amplitude and phase modulated lines, so we inte-
grate over the y variable 

( ) ( ) ( )∫ ⎥⎦
⎤

⎢⎣
⎡ −⋅⋅=

x
ioii dxMxx

N
MSincxExE
λ

π
π
1  (9.56) 

( ) ( ) ( )
2

1
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ −⋅⋅= ∫

x
ioii dxMxx

N
MSincxExI
λ

π
π

 (9.57) 

where [ ] zzSinzSinc =][ .  This image-plane intensity is plotted in Fig. 9.14 for 
amplitude-modulated dark lines (solid) and for phase-modulated lines with π 
phase shifts (dash-dotted).  The magnified widths are πλNMw 4=  (a), 

πλNMw 2=  (b), πλNMw =  (c), and πλNMw 5.0=  (d), and for simplicity 
we set 1=πλN .     
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Figure 9.14 Image intensity of a single dark line on a bright background projected 

through a system with an Airy Disc PSF. The plots show both ampli-
tude-modulated dark lines (solid) and phase-modulated lines with π 
phase shifts (dash-dotted).  The magnified widths are Mw=4λN/π (a), 
Mw=2λN/π (b), Mw=λN/π (c), and Mw=0.5λN/π (d), and λN/π=1.     
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The plots demonstrate that the Airy-Disc PSF, or more accurately the Sinc PSF 
because we are considering lines, that results from hard-edged, circular apertures, 
create projections that in most respects are very similar to the images created by 
the Gaussian PSF.  The interdependence of the size of the magnified object and 
the PSF are the same, and the relationship between the phase modulated and the 
amplitude modulated lines are the same.  The biggest difference is the side lobes 
of the projections.  These are caused by the side lobes in the Airy Disc, and create 
problems in many applications.   
 
Figure 9.14 also shows that the projections of the phase-modulated lines have lar-
ger side lobes than the amplitude-modulated images.  That is due to the fact that in 
the phase modulated images, the side lobes are interference between the light 
originating outside and inside the phase-modulated line.  In the amplitude-
modulated images, only the by the light outside the line participates, because there 
is no light originating from inside the line. 

9.6 Adaptive Optics 

In the treatment of phase-modulating micromirror arrays in sections 9.4 and 9.5 
we implicitly assumed that the purpose of the arrays were to create images suit-
able for projection.  In other word, the ultimate objective was to form spatially 
varying amplitudes, and the phase modulation was a means to an end, rather than 
an end to itself.  In Adaptive Optics the situation is diametrically opposite.  Here 
spatially varying phase modulation is the desired outcome, and any associated 
amplitude modulation is at best a nuisance and at worst a serious source of errors.  
The purpose of the micromirror arrays in adaptive-optics systems is to compensate 
for arbitrary phase errors in an incoming optical wavefront.  The phase errors 
might be caused by density variations in the propagation medium (e.g. turbulence 
in the atmosphere), or by flaws in the optical system caused by temperature varia-
tions or other time-varying environmental influences.   
 
A typical Adaptive Optics system is shown in Fig. 9.15.  An incoming wave front 
that is corrupted by transmission through a turbulent medium is collimated onto a 
phase-modulating mirror array and subsequently focused onto a camera.  Before 
reaching the camera the light from a known reference is separated from the light 
from the target and directed towards a wave-front analyzer.  By analyzing the ab-
errated light from the known reference, the phase corruption of the transmission 
medium can be determined and corrected by the phase-modulating mirror.  If, for 
example, the reference is a point source far from the imaging system, then the col-
limated beam should have flat wave fronts, so the adaptive-optics mirror is de-
formed such that the wave front of the reference light coming off the mirror is in-
deed flat.   
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The assumption is that the light from the target has been transmitted through the 
same path in the same medium so that it has accumulated the same phase distor-
tions.  After coming off the phase-modulating mirror, the light from the target has 
the phase fronts it would have had if the transmission medium had been homoge-
neous and therefore without phase distortion.  The system is dynamically updating 
the settings of the adaptive optics mirror as the phase distortion of the turbulent 
transmission medium changes over time.  
 
Adaptive Optics is used in three very important application areas.  The original 
motivation for the development of the technology was improvement of astronomi-
cal observations.  By removing the aberrations caused by transmissions through 
atmosphere, resolution can be substantially improved.  The reference signal is ei-
ther a bright star in the vicinity of the constellation under observation, or it is an 
artificial laser guide star that is created by energizing the sodium atoms in the 
mesosphere with a laser beam at 589.2 nm wavelength.  The sodium atoms re-emit 
the absorbed radiation, creating an artificial star that can be placed in any desired 
location, making possible aberration-free observations in all directions.  Existing 
Adaptive Optics for astronomical observations use large deformable mirrors actu-
ated by bulk piezoelectric transducers.  MEMS arrays are compelling for this ap-
plication, because of their relatively low cost and the large number of mirrors that 
can be integrated into a single array.   
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Figure 9.15 Adaptive Optics system designed to receive an optical signal from a dis-

tant target.  The signal is distorted by inhomogenities of the transmis-
sion medium, but the aberrations of the wave fronts are compensated by 
a deformable mirror.  Light from a reference is used to determine the 
settings of the deformable mirror.  
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Vision science is the other driver of Adaptive-Optics technology.  The vitreous 
body (vitreous humor) of the human eye contains inhomogeneities that make it 
difficult to image the retina with a resolution better than the size of the rods and 
cones.  By compensating the phase aberrations created by these inhomogeneities, 
one can obtain a more detailed picture, useful for diagnosis of retinal disease.  The 
small size and large number of degrees of freedom make MEMS arrays ideal for 
this application.   
 
Adaptive Optics is also very useful for cleaning up optical beams for free-space 
(as opposed to guided wave) communication through the atmosphere.  In these 
systems, the target can typically be thought of as a point source, so the target is its 
own reference.  Communication over long distances through the lower parts of the 
atmosphere is very demanding because of the large and rapidly varying phase ab-
errations.  The small size and associated high speed of MEMS phase-modulating 
arrays are therefore compelling reasons to consider them for free-space communi-
cation.    

9.6.1 Micromirror Arrays for Adaptive Optics 

The deformable mirrors of Adaptive Optics are quite different from arrays used 
for image projection.  Phase distortions caused by transmission typically has 
longer-range variations than the images that we are trying to collect, so spatial 
resolution is not the primary concern in the design of adaptive optics mirrors.  In 
fact, the mirrors typically have magnified sizes that are larger than the PSF of the 
imaging system.  This makes technical sense in systems that projects images with 
fine detail in the presence phase distortions that are slow functions of position in 
the image.   
 
In such systems the phase singularities associated with the transitions between 
mirrors lead to unwanted amplitude modulation.  We found in section 9.4 that as-
sociated with each phase discontinuity there is a step (error function) in the ampli-
tude distribution with a height determined by the phase difference across the 
boundary.  Projection systems can utilize these amplitude steps, and it is an advan-
tage that their heights are independent of the optical projection systems (the 
widths of the steps are proportional to the width of the PSF).  In Adaptive Optics, 
however, this amplitude modulation is a nuisance.   
 
From an optics point of view it is therefore advantageous to use continuous adap-
tive-optics mirrors like the one shown in Fig. 9.16.  This type of mirror avoids 
phase discontinuities that appear at the boundaries between individual elements of 
segmented mirrors like the one shown in Fig. 9.10.  Continuous mirrors are there-
fore standard in bulk implementations of adaptive optics.   
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Figure 9.16 Schematic of a continuous adaptive-optics mirror that can be deformed 

into the desired shape by electrostatic actuators.  The continuous mir-
ror avoids the phase singularities associated with the transitions be-
tween mirrors in segmented structures.   

 
The problem with MEMS implementations of continuous mirrors is that the posi-
tion of each actuator is strongly affected by the setting of other actuators in the ar-
ray.  If we consider a single element in Fig. 9.16, we see that the continuous mir-
ror connects the actuators such that each actuator is subject to forces from its 
neighbors.  This effect is particularly pronounced in arrays where the actuators can 
only exert a downward force, i.e. it is not possible to use electrostatics to push a 
given part of the mirror up.  To get good spatial control of the mirror with such ar-
rays, the forces of the mirror surface on each actuator has to be at most compara-
ble to, and preferably smaller than, the spring forces developed in the actuator it-
self.  These are again limited by the available electrostatic forces.  The result is 
that the relatively weak electrostatic forces set an upper limit on the bending 
strength of the reflecting diaphragm, resulting in weak mirrors with long-term re-
liability problems.  This problem is not present in traditional implementations that 
are not based on MEMS, because high-force actuators are available, so the de-
formable mirrors can have high bending stiffness. 
 
Figure 9.17 shows an individual micromirror that is better suited to MEMS im-
plementations.  The mirror has three degrees of freedom of motion; piston motion 
perpendicularly to the mirror plane and rotation on two orthogonal axes in the mir-
ror plane.  These three degrees of freedom of motion are referred to as Tip-Tilt-
Piston motion.  This complex mechanical functionality allows the array to form a 
linear approximation to a desired phase profile, so that phase discontinuities can 
be avoided, or at least significantly reduced.  This type of array can be thought of 
as a general diffractive optical element that can be configured for a wide range of 
different applications in addition to adaptive optics.   
 
The down side of the tip-tilt-piston design is that it is complex, and therefore more 
difficult and costly to fabricate and operate.  In Optical Micro Systems, as in 
MEMS in general, it is often advantageous to sacrifice functionality for simplicity 
of fabrication.  So even though the tip-tilt-piston functions better from an optics 
point of view, a simple piston-only mirror is often the better choice for practical 
systems.   
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Figure 9.17 Single pixel of a tip-tilt-piston micromirror adaptive-optics array used 
to control the phase front of optical beams [12].  The reflector is shown 
as transparent to allow an unobstructed view of the mirror architecture.   

 
Figure 9.18 shows an array of piston-motion, metal micromirrors that are directly 
integrated with CMOS circuitry.  Large arrays of micromirrors require integrated 
electronics for signal conditioning and multiplexing, so direct integration on 
CMOS is an enabling advantage.  The problem of phase discontinuities and the as-
sociated amplitude modulation is mitigated simply by decreasing the mirror size 
and increasing their numbers.  Smaller mirrors means smaller phase step at each 
mirror boundary.  The associated amplitude modulation also has higher spatial 
frequencies that are easier to remove by spatial filtering.  Small size and CMOS 
compatibility that enable arrays with large numbers of mirrors therefore make 
MEMS the ideal technology for piston-only, segmented deformable mirrors. 
 

   
(a)     (b) 

 
Figure 9.18 Expanded individual mirror (a) and 3 by 3 segment of a simple piston-

only, adaptive-optics metal micromirror array integrated on CMOS.  
Reprinted from [13] with permission. 

9.7 Phase vs. Amplitude Modulation 

The main results of sections 9.4 and 9.5 are the formulas for the narrowest pro-
jected dark lines created by micromirror arrays.  If we assume that the imaging 
systems has a Gaussian PSF, then a dark line created by amplitude modulation has 
a projected intensity given by (Eq. 9.38) 
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where I0 is the source intensity on each side of the dark line, M is the linear magni-
fication factor, ωPSF is the beam radius of the Gaussian PSF, and ω0 is the beam 
radius of the Gaussian dark line.  The corresponding expression for a phase step, 
i.e. the narrowest phase-modulated feature is (Eq. 9.46) 
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Comparing these two formulas we found that the projected phase step gives a dark 
line of about half the width of an amplitude modulated line of good contrast.  This 
factor-of-two improvement in spatial resolution of PM over AM is well known 
and exploited in a number of technologically important fields, including phase-
contrast microscopy, phase-mask lithography, and optical data storage.   
 
Equally important for implementations of microoptical systems is the fact that 
phase modulation requires less mechanical motion than what is needed for ampli-
tude modulation.  In section 9.2.1 we found that rotating mirrors needed to move 
their extreme ends on the order of a couple of wavelengths to achieve good con-
trast.  That corresponds to an average motion of about one wavelength.  Phase-
modulation mirrors, on the other hand, create high-contrast images with only a 
quarter wavelength of motion.  This difference is very significant, because most 
miniaturized systems are limited by the actuation technology, so reducing the re-
quired range of motion simplifies implementation.  
 
As engineers we know that nothing comes for free, so it is no surprise that phase 
modulation also has some very serious drawbacks.  Chief among these is disper-
sion.  The method we use to create phase delay in micromirror arrays is to create 
physical path length differences as when we move a mirror vertically with respect 
to its neighbors in an array.  A given path length difference, ΔL, results a phase 

difference of 
λ

π LΔ⋅2 , where λ is the wavelength of light.  This wavelength de-

pendence is of little consequence in monochromatic applications, but complicates 
the use of phase modulating micromirrors for white-light or broad-band systems.   
 
The numerical calculations in section 9.5 show that phase modulation creates lar-
ger side lobes than amplitude modulation does.  This is a complicating issue in 
many systems.  As we have seen, it can be dealt with by grading the transmission 
through the apertures to create Gaussian-like PSFs, but that is a non-standard, and 
therefore expensive, solution. 
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From section 9.4 we make the observation that it is phase differences that create 
features in the image, i.e. in phase modulated mirror arrays it is really the mirror 
edges that are important.  That means that the mirrors have to be designed to work 
with a specific PSF, and that neighboring pixels will influence each other more 
strongly than in amplitude modulated arrays.  This is both an opportunity and a 
problem.  It is disadvantageous that PM mirror arrays only work well in systems 
that are specifically designed to have the correct PSF, and it complicates the con-
trol of the array that the setting of one mirror will influence the setting of its 
neighbors.  On the other hand, it is clearly a great advantage to be able to use mul-
tiple mirrors to achieve sub-mirror positioning accuracy as discussed in section 
9.4.3.  
 
When we ask the question of which is better, amplitude modulation or phase 
modulation, the obvious answer is that it depends on the application.  For exam-
ple, direct phase modulation as shown in Fig. 9.10 is of little use in micromirror 
projection displays.  These systems have large magnification, and the mirror size 
is determined not by fundamental considerations of diffraction, but by technologi-
cal constraints.  It is therefore practical to design the magnified views of the rotat-
ing mirrors slightly larger than the PSF of the projection system.  This makes the 
alignment of the optical system non-critical, and each mirror in the array can be 
controlled without regard to the state of its neighbors.  The non-dispersive charac-
ter of amplitude-modulating mirrors is also a strong practical advantage for white 
light imaging.  These are the reasons that rotating mirrors are preferred for large-
screen projections. 
 
The fundamentally superior spatial resolution and smaller displacement require-
ments of phase-modulating mirrors can be used to advantage in a number of prac-
tical system, however.  Systems that require the ultimate in spatial resolution, like 
active illumination microscopy and mask-less lithography, are obvious examples.  
Another opportunity presented by phase modulation is to use actuated arrays to 
create tunable diffractive optical elements.  The dispersive nature of phase-
modulating micromirrors can also be utilized to create optical filters and sensors.  
In the following chapters we will investigate the characteristics of optical micro-
systems that are based on phase modulation, diffraction, and/or interference, but 
before we go into detail, we will in the next section introduce some of the opera-
tional principles to clarify the opportunities offered by optical phase modulation. 

9.7.1 Diffractive Optical MEMS  

Traditional diffractive optics like gratings, zone plates, and holograms are static 
devices, i.e. they cannot be reconfigured to provide multiple degrees of freedom in 
optical manipulation or sensing applications.  Using MEMS technology we can 
create large arrays of optical devices that can be precisely positioned using micro-
actuators.  Typically, the optical devices are simple mirrors that impart a phase 
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shift as shown in Fig. 9.10, but more complex optical modulators with amplitude, 
phase, and/or polarization control are also possible.   
 
Taken to the extreme, such arrays can be thought of as a type of universal optics, 
i.e. an optical device that can be configured to act as a lens, an imager, a beam 
splitter, a wavelength filter or any other optical component that can be imple-
mented by spatially modulating the properties of an incident optical field.  Such 
universal optical synthesizers will be expensive, require complex control algo-
rithms, and will not perform as well as devices that are optimized for a specific 
task, so specialized devices that have the minimum complexity required for a 
given function are better choices for most practical applications.   
 
Phase-modulating or diffractive optical MEMS therefore come in many different 
variations, some of which are described in the following.  The examples are cho-
sen to illuminate operational principles.  The goal of this section is not compre-
hensive coverage, but rather to provide a titillating glimpse of the opportunities.    
 
The Spatial Light Modulators for Maskless lithography shown in Fig. 9.19a and b 
are designed to produce images with the smallest possible feature size and the best 
possible ability to position small features in off-grid positions.  The contrast in the 
image, on the other hand, does not have to be very good because modern photore-
sists exhibit a threshold in their light sensitivity that allows sharp features to be de-
fined by images that contain some background light.   
 

          
(a)     (b) 

Figure 9.19 Examples of micromirror arrays for mask-less lithography.  (a) Mi-
cronic’s Spatial Light Modulator [14].  (b) Conceptual drawing show-
ing the design of Lucent’s MEMS mirror array for maskless lithography 
[15].  Reprinted with permission.  

 
The grating light modulator [16] of Fig. 9.20 (a) is essentially an amplitude modu-
lator, even though it locally affects only the phase of the incident light.  The 
amount of phase modulation determines the diffraction from the grating modula-
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tor, so that the phase modulation is converted into amplitude modulation by an ap-
erture that selects either the diffractive or the reflective light from the grating.   
 

          
 

(a)      (b)  
 

Figure 9.20 Spatial Light Modulators (SLMs) based on phase modulation in micro-
gratings.  Each micrograting can be switched between a reflecting and 
a diffracting state.  The drawing (a) shows details of a single pixel in a 
Grating Light Modulator for projection displays [17], and the SEM (b) 
shows Lightconnect’s SLM used in fiber-optic Voltage Controlled Opti-
cal Attenuators [18].  Reprinted with permission. 

 
The simple mechanical structure of the grating modulator gives it several advan-
tages.  First and most importantly it is easy to manufacture and therefore mechani-
cally precise which gives it high optical fidelity.  Second, it can be made small and 
lightweight and therefore fast.  Its small size together with its robustness also 
makes it relatively easy and inexpensive to package.  
 
The Lightconnect SLM of Fig. 9.20 (b) operates on the same principle as the 
GLV; it converts phase modulation into amplitude modulation by controlling the 
diffraction efficiency of a micrograting.  Compared to the GLV, the Lightconnect 
SLM has much reduced polarization sensitivity due to its fourfold rotational-
symmetric design.  This device is therefore well suited to fiber-optic applications 
that require polarization insensitivity.   
 
The tunable blazed grating of Fig. 9.21 represents a class of diffractive optical 
MEMS that extends the GLV principle to optical filtering and spectroscopy.  In 
these devices the MEMS SLM is designed to create a tunable diffraction filter.  By 
correctly arranging the positions of the individual reflectors of the MEMS SLM, 
the spectral components of the incident light are preferentially diffracted into the 
output aperture of the filter.  To enable a wide range of filter functions to be syn-
thesized, the individual reflectors of the SLM must be individually controlled and 
have a range of motion that is substantially larger than that required for mono-
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chromatic operation.  The tunable blazed grating of Fig. 9.19 is designed to oper-
ate on a higher diffraction order that corresponds to the blaze angle of the grating.  
This gives the Tunable Blazed Grating high dispersion (wavelength dependence), 
and therefore superior spectral resolution.   
 

 
 
Figure 9.21 Tunable Blazed Grating for optical filtering and spectroscopy [19].   

 
The examples shown in Figs. 9.19 through 9.21 are all actuators that influence or 
modulate the optical field.  Their function is to create a light field with specific 
properties.  The last example, shown in Figure 9.22, shows a sensor for which the 
optical output field is a function of some measurand.      
 

 
 
Figure 9.22 AFM array with interferometric displacement sensing.  Reprinted from 

[20] with permission.   
 
In the specific example shown in Fig. 9.22, the measurand is the force on the tip of 
an Atomic Force Microscope.  This force changes the diffraction efficiency of the 
grating that is integrated into the AFM cantilever beam, and the change in diffrac-
tion efficiency is determined by measurement of the diffracted light.  The grating 
creates an interferometer so that the relative position of the AFM tip can be meas-
ured with interferometric precision without requiring sub-wavelength alignment of 
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the light source and optical detector.  The use of this type of displacement sensor 
is not restricted to AFMs.  Accelerometers [21], microphones [22,23,24]], IR de-
tectors [25,26], and sensors for bio-molecular associations [27] have been realized 
based on this principle. 
 
The above examples demonstrate the versatility and wide field of use of diffrac-
tive optical MEMS.  These diverse optical devices are all based on the same opti-
cal interactions principles, although different applications clearly require different 
MEMS designs and implementations.  In the following chapters we will describe 
in detail several types of diffractive optical MEMS, starting with Grating Light 
Modulators for monochromatic light in Chapter 10.  After describing the Grating 
Light Valve, which in many ways is the simplest example of diffractive optical 
MEMS, we extend the treatment to modulators optimized for fiber optics in Chap-
ters 11.  In Chapter 12 we study the properties of interferometers, including de-
formable gratings, as displacement sensors.  We complete the description of dif-
fractive MEMS in Chapter 13, where we turn our attention to the filtering 
properties of micromirror arrays.   

9.8 Summary of Micromirror Arrays 

This chapter starts with an in-depth discussion of the scaling of rotating, or tilting, 
micromirrors.  In an analysis that parallels the approach we used to study optical 
scanners in Chapter 7, we show that diffraction impose fundamental limits on the 
scaling of rotating mirrors used in projection displays.  The most important results 
of the analysis are the formulas that relate minimum mirror size (d) and minimum 
deflection (t) to specified contrast (Cspec), wavelength (λ), and rotation angle (Δθ) 
of the micromirror 

( )
θπ

λ
Δ⋅

⋅
= specC
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 (9.60) 
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which evaluate to 2.5 um and 0.9 um respectively for Cspec=1000, λ=500nm, and 
Δθ=0.7.  These expressions show that micromirrors can be scaled to just a few 
wavelengths and still provide high contrast.  In fact, most systems are constrained 
by practical consideration, rather than by these fundamental limits.   
 
Section 9.3 looks at micromirror scaling from a different perspective, focusing on 
the characteristics of the system that is used to project the image created by the 
micromirror array.  We find that the projected image of a micromirror is given by 
the scaled convolution of the magnified optical field and the Point Spread Func-
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tion (PSF) of the projection system.  That has several important consequences.  
We find that it is useless to make micromirrors so small that their magnified image 
is smaller than the PSF.  In fact, maintaining good contrast requires that the mag-
nified mirror size is about twice the PSF or larger.  The conclusion is that the type 
of amplitude modulation provided by rotating micromirrors does not allow pro-
jected images with minimum features that are comparable to the PSF of the imag-
ing system.   
 
This shortcoming of amplitude-modulating mirrors leads us to consider phase 
modulation.  In section 9.4 we show that phase-modulating mirrors give about 
twice the spatial resolution of rotating mirrors, and that this can be achieved with 
only a quarter wavelength displacement, compared to the one to two wavelengths 
that are necessary for rotating mirrors.  We also find that fact that the images of 
neighboring phase-modulating mirrors interact.  This gives us the opportunity to 
position dark features with an accuracy that is better than the size of the individual 
micromirrors, but it also present a complicating, and sometimes cost driving, con-
trol problem.    
 
In the final section of the chapter, we compare and contrast the characteristics of 
phase and amplitude modulating micromirro arrays, and conclude that the opti-
mum modulation format depends on the application.  As a general rule, however, 
phase modulation provides better functionality at the cost of increased complexity.  
To illustrate some of the opportunities of phase modulating microsystems, we fin-
ish the chapter with a set of examples of phase-modulating, or diffractive, optical 
MEMS.   

Exercises 

Problem 9.1 - Gaussian Point Spread Function 

In the text we use a Gaussian Point Spread Function mostly because it simplifies 
analytical modeling, but a Gaussian PSF also has other advantages. 
 

a. How can you create a Gaussian PSF? 
b. What are the practical advantages and disadvantages of a Gaussian PSF? 

Problem 9.2 - Curved Micromirrors 

The micromirrors in the arrays we have considered are all flat and they are created 
on flat substrates.   
 

a. What would be the advantages of arrays of curved micromirrors?  
b. Ditto for curved substrates? 
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Problem 9.3 - Non-local Response 

The non-local response of phase-modulating mirrors creates both opportunities 
and challenges.  One potential advantage is that the effect of motion of one mi-
cromirror can be maximized by adjusting the position of its neighbors.  We will 
restrict our considerations to the situation where the nearest neighbors are moved 
symmetrically as shown in the figure below. 
 

Substrate 

x y 

 
 

The response to motion (x) of the central mirror is affected by the positions of the sur-
rounding mirrors.   

 
a. Write an expression for the projection of the three lines as a function of x 

and y, the wave length of the incident light, the PSF, and the magnification 
of the projection system.   

b. Can you find a situation, in which a non-zero y improves the response of 
the central mirror?  Use numerics and/or plotting if necessary. 

c. How can this effect be utilized for practical purposes? 

Problem 9.4 - Vortices 

The 2-D equivalent to a phase step is a vortex, i.e. a phase singularity around 
which the phase increases from zero to 2p .   
 

a. How can we create an approximation to a vortex at the intersection of four 
micromirrors in a square lattice?  

b. Write an expression for the projection of a vortex. 
c. What are the advantages and difficulties in creating small features using 

vortices? 

Problem 9.5 - Tilting Micromirrors 

In the section on tilting micromirrors we made the assumption that these devices 
are used as amplitude modulators, i.e. the function of the mirrors are to direct 
some part (or none) of the incident light outside the aperture of the projection op-
tics.  It is, however, also possible to use them as phase modulators.  In that case 
we set up the projection systems to capture all the light from each micromirror ir-
respective of its rotation angle.  The only things that varies with rotation is then 
the linearly varying phase across the mirrors.   
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a. Use the techniques developed in this chapter to find the response of a 
tilting, phase modulating micromirror.  Make simplifying assumptions to 
arrive at an analytical solution. 

b. Under what conditions does tilting, phase-modulating micromirrors 
perform better than piston-motion, phase-modulating micromirrors, and 
under what conditions is the opposite true?  

c. Can you use phasors as a simple means to illustrate the point made in b)? 

Problem 9.6 - Phase vs. Amplitude 

Compare amplitude and phase modulation by listing their relative strengths and 
weaknesses.  

Problem 9.7 - Wild Duck Chase 

Invent something to do with photography based on micromirrors.  (Don’t expect 
help from Gregers.) 
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10:  Grating Light Modulators 

10.1 Introduction to Grating Light Modulators 

In Chapter 9 we described the optical properties of mirror arrays and demonstrated 
that phase modulation is preferable to amplitude modulation for many applica-
tions.  The advantages of phase modulation are explored further in this chapter on 
Grating Light Modulators (GLMs) [1].  The GLM is a simple, yet versatile, optical 
modulator that use diffraction to convert phase modulation to amplitude modula-
tion.  In other words, it performs the function of an amplitude modulator, but is 
based fundamentally on phase modulation and retains many of the advantageous 
characteristics of phase modulators.   
 
The Chapter starts with a phenomenological description of the operational princi-
ples, the mechanics, and the optics of GLMs.  We then use phasor notation to ex-
plore some of the first-order design issues.  This treatment leads us to the high-
contrast GLM.  The mathematical modeling is refined in Section 10.5 and used to 
determine the scaling properties of GLMs.   
 
The last part of the chapter is devoted to a detailed description of projection dis-
plays based on grating modulators.  In this section we look closer at the imple-
mentation of the grating modulator itself, concentrating on actuation and mechan-
ics.  The most important and unique elements of the optical system design is also 
described.  

10.2 Phenomenological Description of MEMS Grating 
Modulators 

10.2.1 Mechanical Design and Actuation of Grating Light Modulators 

MEMS actuators enable positioning of micromirrors with high spatial precision 
and high speed.  That allows us to turn diffraction gratings into high quality opti-
cal switches or amplitude modulators.  A simple MEMS implementation of such a 
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deformable grating is shown in Fig. 10.1.  The fabrication starts by deposition of a 
sacrificial film and a structural film on a silicon substrate.  A grating is defined in 
the structural layer by photolithography.  Following this step, the sacrificial layer 
is etched away under the grating so that the grating elements become free-standing 
ribbons as shown.   
 
The amount of reflected light from the grating modulator is controlled by position-
ing the movable ribbons.  There is a multitude of actuation principles that can be 
applied to the task of moving and positioning the ribbons, including thermal, mag-
netic, piezoelectric, and electrostatic actuation.  However, the particular device 
structure, with ribbons that are suspended relatively close to a flat substrate, makes 
electrostatic actuation particularly simple to implement.  All that is needed is that 
the ribbons and the substrate are conducting and that they can be held at different 
electrostatic potentials.  Electrostatic actuation is therefore by far the most com-
mon actuation mechanism used in practical grating light modulators.  
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Figure 10.1 Schematic of a single deformable rating modulator with a cut-out to 
show the ribbon structure.   

 
The grating modulator of Fig. 10.1 has several important advantages.  First, the 
fabrication is very simple with only a single mask needed to define the grating it-
self.  In practice the fabrication is more complicated, requiring several masks to 
define wiring, reflectors, and sacrificial layer to be removed, but the number of 
photolithography steps that have to be carried out is still quite small.  This sim-
plicity is important in and of itself, but here it achieves extra significance because 
it simplifies the integration of grating modulators into arrays and with other semi-
conductor devices, e.g. transistors, so that integrated, multifunctional microsys-
tems can be built. 
 
The second important advantage of the grating modulator is that the required film 
thicknesses are on the order of an optical wavelength or less.  This is fortuitous 
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because the wavelengths of visible (400 nm to 650 nm) and of near infra-red light 
used in optical fibers (1,300 to 1,600 nm) are comparable to the film thicknesses 
used in modern Integrated Circuit technology.  Optical components are more sen-
sitive to surface roughness and curvature than electronic devices, but with careful 
attention, most thin-film technologies used for electronics can be adapted to dif-
fractive optical MEMS.   
 
The lateral dimensions of grating modulators range anywhere from less than 10 
microns to several hundreds of microns.  This is orders of magnitude larger than 
state-of-the-art transistors, but we nevertheless are able to place large arrays with 
thousands or even millions of modulators on chips of standard size.  All together, 
this means that the advanced methods and tools, as well as the enormous capacity, 
of the IC industry can be readily applied to the fabrication of deformable grating 
modulators.   
 
Being able to build grating modulators using IC technology is of little value if the 
end product is not also robust and reliable.  It is clear from Fig. 10.1 that the grat-
ing light modulator, although small, is a machine with moving parts.  The differ-
ence from the typical machinery we use every day is that the grating modulator 
cannot practically be maintained or repaired.  It has to function unassisted for its 
entire lifetime, which for some applications might reach 1014 cycles!  It has been 
shown that grating modulators can indeed function without measurable wear and 
tear over such large umber of operations, provided that they are made from high 
quality ceramics or single-crystalline materials, and that they are packaged in an 
inert atmosphere.  The reason for this is that the mechanical motion of a grating 
modulator required to produce nearly complete off-on switching (or 100% con-
trast) is one quarter of the wavelength of the light, i.e. only about 150 nm at visi-
ble wavelengths.  This small required motion leads to stresses that are much lower 
than the yield stress of the ribbon material.   
 
Another advantage of the small mass of the ribbons and the small distance that 
they must be moved is that the switching speed can be very high.  Rise and fall 
times as short as 20 ns have been demonstrated [2,3].  Clearly switching speeds on 
this order are low compared to optoelectronic devices like semiconductor lasers 
and modulators, but the fact that the grating modulator can be readily integrated 
into large arrays means that the combined information throughput of a grating 
modulator array can be very high.    
 
The demonstrably high speed of the basic grating light modulator of Fig. 10.1 is 
partially a function of the small gap between the ribbons and the underlying sub-
strate.  As we will see, the gap is of the same size as the ribbon thickness, and 
equal to one quarter of the wavelength of the light that is to be modulated.  This 
small distance enables relatively large electrostatic forces to be applied to the rib-
bons, but is also makes accurate position control of the ribbons difficult because of 
the electrostatic instability.  This makes the basic grating modulator as shown in 
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Fig. 10.1 unsuitable for analog operation.  It is effectively a binary device with the 
ribbons either relaxed or pulled all the way to the substrate.   
 
It is, however, straight forward to modify the basic grating modulator for analog 
operation.  All that is needed is that the ribbons are moved further from the sub-
strate such that it is possible with electrostatic actuation to continuously control 
the position of the movable ribbons over a range corresponding to a quarter of the 
wavelength of the light.  Typically this is done in conjunction with another struc-
tural change, which is to fill the gaps between the movable ribbons with fixed rib-
bons at the level of the movable ribbons in their relaxed state.  This reduces the 
dispersion of the device, as we will see in the treatment of optical functionality in 
the following.  
 
From this discussion we can conclude that the grating modulator is fast and reli-
able, that it can be integrated into multifunctional microsystems, and that it can be 
produced at low cost in large numbers due to its compatibility with IC fabrication 
technology.  Unfortunately, this IC compatibility does not extend to packaging.  
The relatively small chip size will in principle make grating arrays simple and in-
expensive to package, but, unfortunately, optical modulators require an optical in-
terface and must be packaged in an inert atmosphere, so the packaging techniques 
of the IC industry cannot be applied without significant modifications.  The wide 
range of different shapes and sizes of the systems that are based on grating modu-
lators has also made it difficult to standardize packaging.  The result is that custom 
solutions have to be developed separately for each grating modulator application.  
Much of the cost advantage of the grating-modulator chips therefore disappears by 
the time the chips are packaged.  At the present time this creates a significant hur-
dle for commercialization of new products, but presumably this hurdle will be 
lowered as standards for optical MEMS packaging are developed.   

10.2.2 Optical Design and Operation of Grating Light Modulators 

Now we will turn our attention from the mechanical design and properties of the 
grating light modulator to its optical functionality.  As with any grating, the de-
formable grating modulator diffracts light.  The unique feature of the GLV is that 
the amount of diffraction, the diffraction efficiency, can be controlled through the 
application of an electrostatic voltage.   
 
The principle of operation is explained in Fig. 10.2.  Figure 10.2a shows what 
happens to a monochromatic plane wave at normal incidence on the grating modu-
lator when the grating ribbons are in the upper position, i.e. the relaxed state with-
out an applied electrostatic force.  In this case, the height difference between the 
top of the ribbons and the substrate corresponds to exactly one half of the wave-
length of the monochromatic plane wave.  The path length difference for the light 
that is reflected from the ribbons and the light that is reflected from the substrate is 
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therefore exactly one wavelength, which means that the two reflected parts are in 
phase and interfere constructively in reflection.   
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Figure 10.2.  The grating modulator switches light by controlling diffraction.  When 
the ribbons of the grating are in the relaxed state, as in a, the parts of 
the incident light that are reflected from the ribbons and from the sub-
strate are in phase, and all the incident optical power is reflected.  
When the ribbons are pulled to the substrate, as in b, the reflections 
from the ribbons and the substrate are in opposite phase, and all the in-
cident optical power is diffracted.   

 
If, on the other hand, the ribbons are pulled down to the substrate by an applied 
electrostatic force, as shown in Fig. 10.2b, then the height difference between the 
top of the ribbons and the substrate is exactly one quarter of the wavelength of the 
light.  The total path length difference is now exactly one half wavelength, and the 
two reflected parts are out of phase and interfere destructively in reflection.  The 
plane wave is therefore not reflected from the grating, but instead its optical power 
is diffracted into a set of diffraction modes at discreet angles.   
 
In the implementation of a deformable grating shown in Fig. 10.2, optical path 
length differences are created by moving a reflector so that the reflected light must 
propagate over a longer distance.  This variation of path length difference allows 
us to control the optical phase.  There are many other physical phenomena that can 
be used to control optical phase, but displacement of mirrors are among the most 
robust and conceptually most straight forward.  It is also particularly simple to im-
plement in MEMS technology.   
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The relationship between path length and phase delay is, however, only valid at 
one single wavelength.  If we use grating light modulators to manipulate broad 
band light (i.e. light that is not to a good approximation monochromatic), we must 
consider the variation of phase delay across the optical input spectrum.  We will 
see later that that might lead to slightly different implementations, depending on 
what type of response we want across the input spectrum.     
 
The two states of the grating shown in Fig. 10.2a and b are extremes in the sense 
that in (a) the path length difference is one wavelength and ALL the incident light 
is reflected, while in (b) the path length difference is half  a wavelength and ALL 
the incident light is diffracted.  If the path length difference is somewhere between 
half and one wavelength, the returning light from the grating will be a mix of re-
flected and diffracted light.  By controlling the exact position of the ribbons and 
thereby the path length difference, we have analog control over how much light is 
reflected and how much is diffracted.  The net effect is that we can control the 
state of the light coming off the grating modulator by controlling the height differ-
ence, or grating amplitude, of the deformable grating.  Of course this requires that 
we have a structure and an actuation mechanism that allows continuous position-
ing of the ribbons. 
 
The principle of operation of the grating modulator as described in Fig. 10.2 dem-
onstrates that it is an extension of the Eidophore [4,5,6], a display technology that 
was first demonstrated in 1943.  The display engine, or light modulator, of the Ei-
dophore is a thin reflective and conductive diaphragm that is suspended over an 
oil film.  The reflective layer can be deformed electrostatically to form a diffrac-
tion grating, so just like the grating modulator, the Eidophore display can be 
switched between a reflective and a diffractive state.   
 
The MEMS implementation gives the grating modulator several advantages over 
the Eidophore.  In particular, MEMS technology allows better dimensional con-
trol, more flexible grating design, better compatibility with electronics, and better 
reliability.  All together this makes grating modulators smaller, faster, and easier 
and less expensive to fabricate, integrate, package, and operate.     

10.2.3 Schlieren Projection System 

 
The Schlieren system shown in Fig. 10.3 is an example of how arrays of grating 
light modulator can be used in a projection display.  Here the GLV is uniformly il-
luminated at near-normal incidence.  Any pixel that is in the reflective state will 
send the light incident on it back towards the light source via the turning mirror on 
the optical axis.  Light from the reflecting pixels will therefore not reach the 
screen, and they will appear dark.  Pixels that are in the diffractive state will send 
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the incident light around the turning mirror so that it is imaged on the screen by 
the imaging lens.  The diffracting pixels will therefore appear bright on the screen.   
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Figure 10.3. Basic Schliern projection system using an array of grating light modu-
lators as the image forming element.  Each pixel on the screen corre-
sponds to a modulator in the array.  If the modulator is in the reflecting 
state, the light is reflected back out of the system, and the pixel on the 
screen is dark.  If, on the other hand, the modulator is in the diffracting 
state, the light is imaged onto the screen, and the pixel appears bright. 

10.3 Phasor Representation of Grating Modulator 
Operation 

To get a quantitative understanding of the operation of the grating light modulator, 
particularly its analog operation and its response to broadband light, it is instruc-
tive to use the phasor representation introduced in Chapter 2.  The phasor dia-
grams of Fig. 10.4. represent three different states of a Grating Light Modulator.  
Each diagram shows three phasors representing optical fields.  The phasors repre-
senting the fields reflected from the ribbons and from the substrate are shown as 
solid lines, while their sum, representing the total reflected field, is shown as a 
dashed line.   
 
What is not shown in Fig. 10.4 is the diffracted field.  The gratings we are consid-
ering in this chapter are metal coated (i.e. the reflectivity is high and uniform) and 
have periods that are larger than the wavelength, so we can assume that the sum of 
the reflected and diffracted powers is constant and equal to the incident power 
multiplied by the reflection coefficient of the metal.  In other words, whatever 
power is not in the reflected field, will be in the diffracted field.  
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Figure 10.4a) is the phasor representation of the physical situation shown in Fig. 
10.2a).  The two phasors are in phase so their sum attains its maximum value, 
which is the sum of the absolute values of the two reflected parts.  In this state, 
there is no particular significance associated with the relative size of the two 
phasors. 
 
 

a) b) c) 

Reflective 
State 

Diffractive 
State 

Intermediate 
State 

 
 

Figure 10.4.  Phasor representation of the optical reflected fields from a Grating 
Light Modulator.  The two phasors representing the light reflected from 
the ribbons and from the substrate are drawn as solid lines, while total 
reflected field is drawn as a dashed line.  In (a) the two reflected parts 
are in phase, resulting in a maximum value for the total reflected field 
(shown offset for clarity).  In (b) the two reflected parts are exactly out 
of phase, so the total reflected field is zero.  In (c) the phase difference 
between the two reflected parts is between zero and π radians, so the 
resulting total reflected field is between zero and its maximum value.   

 
In Fig. 10.4b) the path-length difference for the light reflected from the two parts 
of the modulator is π radians, i.e. the two parts of the reflected light are in exactly 
opposite phase.  The result is that there is no reflected light from the modulator in 
this state.  The incident light is therefore completely diffracted.  It is clear from the 
figure that we only get complete suppression of reflection when the two phasors, 
representing the two parts of the reflected light, are equal so that they exactly can-
cel when they are in opposite phase.  For the physical implementation shown in 
Figs. 10.1 and 10.2, this means that the areas of the ribbons must match the areas 
between the ribbons to achieve complete diffraction.    
 
The usefulness of the phasor representation becomes clear when we consider Fig. 
10.4c) that shows the reflected light when the two parts of the reflections have a 
relative phase between zero and π radians.  The resulting reflected field now has a 
value that is somewhere in between zero for the out-of-phase configuration and 
the maximum value for the in-phase configuration.  We can find the resulting re-
flected field for an arbitrary relative phase, θ, by vector summation.  Here we are 
not interested in the phase of the reflected light, so we write:  
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where totE  is the total reflected field, ribbonE  is the reflected field from the rib-

bons, and substrateE  is the reflected field from the substrate.  To simplify the calcu-
lations, we assume that the reflected fields from the ribbons and from the substrate 
are of equal magnitude, i.e. substrateribbon EE = . 
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2
cos2 2 θ⋅⋅= ribbontot EE  (10.3) 

 
The reflected optical power then becomes:  

2
cos2 θ⋅⋅= incidentreflected PRP  (10.4) 

where Preflected and Pincident are the reflected and incident optical powers, respec-
tively.  As pointed out above, the light that is not reflected must be diffracted, so 
the diffracted power, Pdiffracted, can be expressed as:  

2
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2
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⎠
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⎜
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⎛ −⋅⋅= incidentincidentdiffracted PRPRP  (10.5)

 
These two simple harmonic expressions for the reflected and diffracted optical 
powers are shown graphically in Fig. 10.5.  Note that the diffracted light here 
means the total diffracted light summed over all diffraction orders.  Later we will 
develop a more complete model that allows us to distinguish between the powers 
in different diffraction modes.   
 
The curves confirm our earlier assertion that to switch light we must change the 
relative phase by an amount of π radians.  To get complete switching we can for 
example go from a state with 2π radians to one with π radians relative phase dif-
ference.  This is the switching strategy employed in the implementation shown in 
Figs. 10.1 and 10.2.  The periodic curves of Fig. 10.5 demonstrate, however, that 
that is not the only switching strategy.  In fact we will see that we can achieve less 
dispersive (less wavelength-dependent) switching by changing the relative phase 
from zero relative phase to π radians.    
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One of the important figures of merit for optical modulators is their contrast, 
which we define simply as the ratio of maximum optical power output to mini-
mum optical power output.  The required contrast is application dependent, but 
most systems require well in excess of 20dB contrast, and many high-quality dis-
play systems require contrast as high as 30 dB.   
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Figure 10.5. Total reflected (green line) and total diffracted (blue line) optical pow-

ers normalized to the power reflectivity of the grating modulator as a 
function of relative phase difference of the two parts of the reflected 
light.  Both the reflected and diffracted optical powers are harmonic 
functions of the phase difference.   

 
It is clear from its definition that contrast is more strongly dependent on errors in 
the dark state than error in the bright state, so in any system that requires high con-
trast, we must pay special attention to the dark state.  Figure 10.5 shows that in 
principle a grating modulator can achieve zero output power, so it is theoretically 
possible to get infinite contrast.  In practice, it is of course impossible to verify 
that the output is exactly zero, so even in the best case we have a finite contrast 
that is given by our measurement resolution.  More typically, the dark state is de-
termined by scattered light or by dispersion (wavelength dependence) of the 
modulator as we will discuss in detail later.  
 
As mentioned above, in optical MEMS technology we control optical phase indi-
rectly by creating variation in optical propagation length or path length.  That 
means that we only control the phase differences at one specific wavelength, and 
light at all other wavelengths will experience a different relative phase.  This has 
implications for how we should design and operate many different kinds of dif-
fractive optical MEMS, including grating modulators.   
 
Figures 10.4 and 10.5 illustrate that for monochromatic light, there is no differ-
ence between having a zero path length difference, a path length difference of one 
wavelength, corresponding to a relative phase of 2π, or even path length differ-
ence of several wavelengths, corresponding to relative phases of n·2π (here n is an 
integer).  For broad band light this is no longer the case, because path length dif-
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ferences no longer uniquely determines phase differences.  This is explained in 
Fig. 10.6 that show the phasor representation of the reflections from a grating 
modulator of three slightly different wavelengths.   
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Figure 10.6.  Phasor representation of reflected light from a grating light modulator 
in the reflective (a) and diffractive (b) states at three different wave-
lengths.  At the center wavelength (solid), the phasors add in the reflec-
tive state and subtract to zero in the diffractive state.  At the wave-
lengths slightly longer than the center wavelength (dashed), the phasors 
add slightly out of phase in the reflective state, and do not completely 
annihilate each other in the diffractive state.  The same is true for 
wavelengths that are slightly shorter than the center wavelength (dot-
ted).   

 
Figure 10.6a represents the grating modulator in the state shown in Fig. 10.2a 
where the ribbons are suspended over the substrate at a distance equal to one half 
of the center wavelength, which is the wavelength that the grating modulator is 
designed for.  It can be in any part of the spectrum.  The path length difference is 
then exactly one center wavelength, so the two parts of the reflected light (shown 
as solid phasors) are exactly in phase and their vector sum achieves its maximum 
value.   
 
Now let us consider a wavelength that is slightly longer than the center wave-
length.  At this wavelength the path length difference is slightly less than one 
wavelength, so the reflection from the substrate (dashed) is not quite in phase with 
the reflection from the ribbons.  The total reflected field (dashed) therefore has a 
slightly lower amplitude and a slightly different phase than the reflection at the 
center wavelength.   
 
The situation is very similar for a wavelength that is slightly shorter than the cen-
ter wavelength.  Now the path length difference is slightly more than a wave-
length, so the light from the substrate (dotted) has advanced more than 2π radians 
in phase compared to the light from the ribbons.  The total reflected field (dashed) 
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at this shorter wavelength is therefore advanced in phase and has a slightly lower 
amplitude than the reflected field at the center wavelength.  The net effect of hav-
ing broad band light incident on a grating modulator that is in the reflective state is 
therefore to slightly attenuate wavelengths other than the center wavelength and 
also to give slightly different phase response across the broad-band spectrum. 
 
When the grating modulator is in the diffractive state, the effect on off-center 
wave lengths is more dramatic.  At the center wavelength the path length differ-
ence is exactly one half wavelength, so the reflections from the ribbons and from 
the substrate cancel each other exactly, and all the light is diffracted.  At a wave-
length slightly longer than the center wavelength, the reflections from the sub-
strate (dashed) have advanced slightly less than π radians, which means that the 
total reflected field (dashed) is non-zero.  Similarly, reflections from the substrate 
of wavelengths slightly shorter than the center wavelength (dotted) have advanced 
slightly more than π radians, and again the total reflected field (dotted) is finite.   
 
The net effect is that we get the same type of phase variation across the spectrum 
as we saw in the reflective state, but the relative amplitude change is much larger 
in the diffractive state.  The absolute variations as a function of wavelength of the 
fields are also larger in the diffractive state.  In most applications, however, we 
care about variations in optical power, which goes as the square of the optical 
field, and the absolute power variations are actually larger in the reflective state 
because of the longer path length difference and the correspondingly stronger 
phase dependence on wavelength.     
 
Figures 10.4 and 10.6 show the phasor representations of the reflected fields.  In a 
completely analogous fashion, we can depict the total diffracted fields.  The struc-
ture of the diffracted fields are more complex as we will see in the more detailed 
treatment later, but for now we will use the fact that the light that is not reflected is 
diffracted.  The total diffracted field is simply the vector difference between the 
reflections from the ribbons and from the substrate as shown in Fig. 10.7.  We see 
that the phasor representation of the total diffractive field in the reflective state is 
similar to the reflected fields of the diffractive state and vice versa.   
 
There are, however, important differences.  In particular we see from the figure 
that dispersion is quite different for the reflected and diffracted fields.  While the 
diffractive state has a larger relative amplitude variation for the reflected light, the 
opposite is true for the diffracted light, i.e. the reflective state is more dispersive 
for diffracted light.  In the specific implementations illustrated in Figs. 10.2, 10.4, 
10.6, and 10.7, diffracted light from the reflective state experience the most dis-
persion, followed by reflected light from the diffractive state, reflected light from 
the reflective state, and finally diffracted light from the diffractive state.  
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Figure 10.7.  Phasor representation of diffracted light from a grating light modulator 
in the reflective (a) and diffractive (b) states at three different wave-
lengths.  At the center wavelength (solid) the phasors subtract in the re-
flective state and add in the diffractive state.  At longer (dashed) and 
shorter (dotted) wavelengths the phasors are not perfectly in phase in 
the diffracted state, and they do not perfectly cancel in the reflective 
state.  

10.4 High Contrast Grating Light Modulator 

Based on the observations made in section 10.3, it is clear that the basic projection 
system of Fig. 10.3 is far from optimal when used with a broad band light source 
combined with a grating light valve of the construction shown in Fig. 10.1 and 
10.2.  In any display it is very important to have high contrast, which is defined as 
the ratio of maximum to minimum optical power per pixel.  Even low-quality dis-
plays need contrast on the order of 100, while really superior image sharpness re-
quires a contrast of closer to 1,000.  When a pixel is in its dark state, it must there-
fore block light efficiently across the whole spectrum of the illuminating source.  
In other word, the dark state must have the lowest possible dispersion.  The dis-
persion of the bright state is not nearly as critical, because small variations in the 
total optical power in the bright state do not lower the contrast significantly.   
 
The problem with the projection system of Fig. 10.3 is that is uses precisely the 
most dispersive configuration to create dark pixels.  As explained above, a dark 
pixel is formed when the corresponding grating modulator is in it reflective state.  
Light at the center wavelength will then be reflected back towards the light source 
by the turning mirror.  The relatively strong dispersion of this state will, however, 
lead to significant amounts of diffracted light at wavelengths other than the center 
wavelength.  With broadband light sources, it is therefore difficult to obtain good 
contrast in this configuration.   
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Fortuitously, there is a straight forward solution to this problem.  Consider for a 
moment the modulation characteristics of a grating light modulator as illustrated 
in Fig. 10.5.  So far we have described the operation of grating light modulators as 
switching from a reflective state with a 2π radians path length difference to a dif-
fractive state with a π radians path length difference.  This is of course not the 
only possibility for switching from reflection to diffraction.  We can chose to go 
from any reflectance maximum to any reflectance minimum.  In particular, it is 
advantageous to switch from a zero path length difference to one that equals π ra-
dians.  This can be done by modifying the grating light modulator so that the static 
reflection plane (the substrate in Fig. 10.1) and the movable reflection plane (the 
ribbons in Fig. 10.1) coincide in the reflective state.   
 
There are many ways that can be implemented, but in MEMS technology it is 
most straight-forward to create a modulator that consists of uniform ribbons that 
are separated by the minimum amount that the technology will allow.  The opera-
tion of such a grating light modulator is shown schematically in Fig. 10.8.  When 
the individual ribbons of this grating are all in the relaxed state, the reflections 
from the ribbons are all in phase, so they interfere constructively and the reflected 
field is maximized.  To switch to the diffractive state, every other ribbon of the 
grating are actuated so that the path length difference fro the light that is reflected 
from the actuated ribbons and from the unactuated ribbons is exactly π radians.   
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Figure 10.8.  Grating modulator designed for high-contrast operation.  In the reflec-
tive state, the ribbons are all at the same plane, and the reflections from 
the ribbons are all in phase.  In the diffractive state, every other ribbon 
is actuated to create a path length difference of π radians.   

 
In a practical implementation, there will have to be some space between the rib-
bons.  This creates a weak grating of half the period.  Some light will be diffracted 
from this parasitic grating, but the diffraction angle is twice that of the fundamen-
tal diffraction order, so the diffracted light of the reflective state can be separated 
from the diffracted light of the diffractive state.     
 
The primary advantage of the design shown in Fig. 10.8 is that the reflective state 
is non-dispersive.  There is no path length difference in this state, so all wave-
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lengths interfere constructively in reflection.  Other than the diffraction from the 
parasitic grating of half the period, there is no diffracted light from this state, even 
if broad band illumination is used.  This complete absence of diffraction allows us 
to make a projection system that can achieve very high contrast.  The projection 
principle, which is very similar to the Schieren system we have already intro-
duced, is shown in Fig. 10.9.   
 
 
 

High-contrast 
Grating Light 

Valve 

Light Source

Imaging 
Lens 

Screen 

Aperture to block 
2nd order diffraction 

1st order 
diffraction 

2nd order 
diffraction

 
 

Figure 10.9. Schliern projection system using high-contrast grating light modula-
tors.  Grating modulators in the diffractive state create bright pixels on 
the screen, while reflecting modulators create dark pixels.  In the re-
flecting state the grating produces very little diffracted light, other than 
the 2nd order diffraction from the parasitic grating, so the pixels are 
dark over the full spectrum of the illuminating light source, leading to 
high contrast. 

 
As before, we have that grating light modulators in the reflective state will reflect 
most the light back towards the illuminating light source.  Some light is diffracted 
by the parasitic grating, but its diffraction angle is twice that of the fundamental 
grating.  This second-order diffracted light can be blocked from the screen by an 
appropriately placed aperture as shown.  The reflective state is therefore for prac-
tical purposes non-dispersive, and it creates pixels with very uniform and low il-
lumination cross the spectrum of the light source.   
 
In the diffractive state, which is used to create bright pixels on the screen, the op-
eration of the high-contrast grating modulator is essentially the same as that of the 
simpler modulator described above.  In particular, the pathlength difference is half 
a wavelength at the center wavelength, so the dispersion characteristics of the 
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high-contrast grating light modulator in the diffractive state is as shown in Fig. 
10.5a and 10.6b.  There is some variation in the diffracted light as a function of 
wavelength, and that will lead to a reduction of the maximum light level of each 
pixel, but the reduction in brightness is relatively small, and it does not lead to 
significant decrease of the contrast.   
 
As shown in Fig. 10.9, only the 1st order diffracted light reaches the screen, which 
means that the effective diffraction efficiency is about 80% as we will see from 
the more detailed model that we will develop later.  In principle, this can be im-
proved by configuring the aperture to block the 2nd order diffracted light, but pass 
3rd and higher orders.   
 
In addition to its outstanding optical properties, the high-contrast grating modula-
tor also has some distinct mechanical advantages, stemming from the fact that the 
distance of the movable ribbons over the substrate is not a critical parameter.  In 
the basic grating light modulator, this distance equals one quarter of the center 
wavelength, and this small distance makes it difficult to operate in an analog, non-
contact mode.  Using a distance that is one quarter plus an integer number of half 
center wavelengths is a possible solution, but that comes at the cost of dramati-
cally increased dispersion.  The high-contrast modulator, on the other hand, can be 
designed with a gap that can be optimized for actuation purposes, making it 
straight forward to control the ribbon position with high accuracy.    

10.5 Diffraction Gratings 

The simple phasor model is useful for understanding some aspects of grating light 
modulator operation.  We have used it to explain the differences between the basic 
grating modulator and the high-contrast grating modulator, and we will use it 
again to explain the dispersive characteristics of more complex modulators used in 
fiber optics.  The phasor model leaves unanswered a number of critical questions 
about the grating light modulators, however: Where does the diffracted light go?  
How long and wide should the ribbons be and how many do we need?  To answer 
these questions we need a detailed mathematical model of diffraction from a phase 
grating as shown schematically in Figure 10.10.  Once we have such a model, we 
will be able to develop design equations for grating modulators and other diffrac-
tive Optical MEMS devices. 
 
In our treatment we will concentrate on reflective gratings because these are more 
easily implemented than transmission gratings in MEMS technology.  The equa-
tions we develop are, however, quite general.  With minor modifications they can 
be applied to transmission gratings and other, more complex, periodic structures. 
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Figure 10.10 Schematic drawing of a periodic reflection grating.  The grating is 
modeled as uniform in the z-direction (perpendicular to the plane of the 
drawing) and periodic in the x-direction.  Each period has a reflectance 
with a spatially varying phase delay, θ(x).  In general the absolute 
value of the reflectance also varies spatially, although we will concen-
trate on phase-only gratings. 

 
The well-known grating equation gives a partial answer to the question of where 
the diffracted light goes.  This equation gives the directions in which the reflec-
tions from each period of the grating add in phase, i.e. the direction in which the 
path length difference for the reflections from neighboring periods of the grating is 
an integer number of wave lengths.  From Fig. 10.11 we see that this condition of 
path length difference is met when:   

⇒⋅=Ψ⋅−Ψ⋅⇒⋅=− λλ mddmABDC 01 sinsin  (10.6) 

d
m λ⋅=Ψ−Ψ 01 sinsin  (10.7) 

where Ψ1and Ψ0 are the incident and diffracted angles, d is the grating period, λ 
is the wavelength of the incident monochromatic light, and m is any integer (posi-
tive, negative or zero).  The incident and reflected/diffracted angles can be com-
bined to a single angle parameter that is defined as 

01 sinsin Ψ−Ψ=p  (10.8) 

This combination of the incident and diffracted angles into a single parameter is 
very convenient in that it greatly simplifies the grating equation and related equa-
tions that we will derive later.   
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Figure 10.11 The schematic shows to adjacent periods, or unit cells, of a reflection 
grating.  Reflections from adjacent unit cells interfer constructively for 
combinations of incident and diffracted angles that make the path 
length differences (DC-AB) equal to integer number of wavelengths.  
This principle is expressed in the grating equation (Eq. 10.7). 

 
The grating equation tells us some of what we need to know to design grating light 
modulators.  In particular, it shows in what directions light will be diffracted, and 
underscores the importance of the period of the grating.  It does not specify how 
much light goes into the different possible diffraction directions, however, and it 
therefore gives us no information on how to design and modulate the individual 
unit cells to achieve a desired angular distribution of light.  To get a more com-
plete, but still simple, analytical expression for the diffraction characteristics of 
such gratings, we use Fraunhofer diffraction theory [7].  This theory is valid in for 
diffraction from periodic objects with unit cells that are large compared to the 
wavelength of the incident light.   
 
Fraunhofer diffraction theory treats the optical field as a scalar, i.e. it neglects the 
vector nature of the electromagnetic fields.  Consequently, it does not make pre-
dictions about polarization sensitivity of diffraction or other polarization effects of 
gratings.  Such effects become increasingly pronounced as we scale down the unit 
cells of the grating.  It turns out, however, that although exact results require a 
more complete and complex theory, the simple formulas given by Fraunhofer dif-
fraction are quite accurate and useful even for structures where dimensions of the 
smallest features approach the wavelength.   
 
In later chapters we will discuss Phonic Crystals that are periodic structures with 
periods on the order of the wavelength or below.  In such structures, the directions 
of the electromagnetic fields are important, and in addition, there are substantial 
amounts of coupling of the incident light to optical modes of the grating.  Photonic 
Crystals can therefore not be modeled accurately with Fraunhofer diffraction the-
ory, or any other theory that does not take into consideration polarization effects 
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and interactions of the incident and diffracted optical fields with optical modes of 
the grating (or Photonic Crystal) itself.    
 
In our analysis of diffraction from a reflective MEMS grating, we assume mono-
chromatic, plane wave illumination of a grating that is periodic in the x dimension, 
and uniform in the z dimension as shown in Fig. 10.10.  The Fraunhofer diffrac-
tion integral can then be written 

( ) ( )∫ −⋅⋅=
Grating

jkpxdxexrCpE  (10.9) 

where E(p) is the optical field of a plane wave propagating away from the grating 
in the direction given by the angle parameter p, C is a normalizing constant, r(x) is 
the optical field reflection of the grating, k = 2π/λ is the propagation constant, and 
λ is the wavelength of the incident light.   
 
Motivated by the grating equation, we use the angle parameter 01 sinsin Ψ−Ψ=p  
to specify the incident and reflected/diffracted angles.  As before, this combination 
of the incident and diffracted angels into one parameter greatly simplifies the ana-
lytical expressions, but it is an approximation that comes at a price.  For many 
structures of interest the diffraction efficiency, and other important characteristics, 
will depend on the incident and diffracted angles independently, and not only on 
the differences in the values of their sine functions.  A good example of a device 
where this must be taken into consideration is the well know blazed grating.  This 
will become important for our discussions of MEMS blazed gratings for optical 
filtering.  For now, however, we will consider gratings operated at near-normal in-
cidence, so that the grating reflection function r(x) is independent of the incident 
angle Ψ1.  Under these circumstances it is very useful to combine the incident and 
diffracted angles into the parameter p. 
 
We now use the fact that the grating transfer function is periodic to rewrite the 
Fraunhofer integral as the response of a single grating period multiplied by a sum 
that gives the relative phase response of the individual elements of the grating:    

( ) ( ) ∑∫
−

=

⋅−− ⋅⋅⋅=
1

0

N

n

ndjkp

Period

jkpx edxexrCpE  (10.10) 

where N is the number of periods in the grating and the transfer function, r(x), 
now is integrated over only one period.  The sum has a closed-form solution, so 
that the expression can be simplified to 

( ) ( )∫ −
−

−
⋅⋅⋅

−
−=

Period

jkpx
jkpd

jNkpd
dxexrC

e
epE

1
1  (10.11) 
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In principle, the reflection can have any spatially varying magnitude and phase 
across the period of the grating, but for now we will consider an idealized grating 
with a field reflection of uniform absolute value and a phase that varies spatially in 
a binary fashion across the unit cell of the grating.  This is a good approximation 
for a MEMS grating consisting of metal reflectors that can be positioned at differ-
ent height levels.  The reflection function of one grating element can then be ex-
pressed as  

( )
⎪
⎪
⎩

⎪⎪
⎨

⎧

<<−⋅

<<−<<−⋅
=

−

4
 

4
for      e

 
24
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for      e
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j
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θ
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 (10.12) 

 
Here r , which represents the uniform field reflectivity from all parts of the grat-
ing, will have a value between zero and unity.  For typical MEMS implementation 
with Aluminum-coated mirrors, the reflectivity is about 0.9.  The angle θ is the 
phase delay created by the height differences on the grating surface.  It is of course 
wavelength dependent, which we have to take into consideration when we treat 
broad band light. For now we are interested in monochromatic light, so the phase 
angle θ is a constant.  
 
Given this reflection function, the Fraunhofer integral over one period, d, evalu-
ates to 
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The intensity or irradiance of a uniform optical wave is proportional to the field 
multiplied by its complex conjugate (or the square of the norm) and can be ex-
pressed as 
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Finally we can write the following equation for D(p), the intensity reflectivity, or 
intensity diffraction, from the grating in the direction given by p:a 
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We note that the equation consists of three parts.  The first part, R, simply says 
that the diffracted optical power is scaled by the reflectivity of the grating.  This is 
of course true for any grating with uniform reflectivity.   
 

The second part of the equation is the periodic function ( )
( )2sin

2sin
2

2

kpdN
Nkpd

⋅⋅π
 that 

we will call the grating function.  It describes the response due to the periodic 
structure of the grating.  It does not contain any information about the unit cells of 
the grating, so this factor will be the same for all gratings with a given period, d, 
and number of grating elements, N.   
 
The grating function is plotted in Fig. 10.12.  It is periodic in the parameter 

2kpd  with a period of π.  The local maxima in each period of the grating func-
tion are called the diffraction orders of the grating.  The maximum at 2kpd =0, 

                                                           
a We are using the following definition of the sinc function: ( ) xxxsinc sin= .  

The reader should be aware that the alternative notation, 
( ) ( ) xxxsinc ⋅⋅= ππsin , is also used in many texts. 
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which is really the specular reflection from the grating, is also called the 0th dif-
fraction order of the grating.  The maxima at 2kpd =±π are the ±1st diffraction 
orders, the maxima at 2kpd =±2π are the ±2nd diffraction orders, and so on up to 
the ±nth orders at 2kpd =±n·π.   
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Figure 10.12. Plot of the grating function 
xN

Nx
2

2

sin
sin

⋅⋅π
as a function of x for N= 2 

(dashed), 4 (dotted), 10 (dot-dashed), and 20 (solid),.  The function is 
periodic with a period of π, and its integral over one period is unity, in-
dependent of N.  In the limit of large values of N, it approaches a comb 
function. 

 
The integral of the grating function over one period has a value of unity independ-
ent of Nb.  This means that for large N, the grating function approaches a set of 
delta functions at the angular positions π2⋅= nkpd , where n is an integer.  In 
other words, the grating function is a comb function for large N.  This is what we 

                                                           
b  The integral of the grating function over one period is simple to evaluate 
once we realize that the indefinite integral of xNx 22 sinsin  can be written as 
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elements of the sum integrate to zero over one period.  The value of the grating 
function integrated over one period is then:  
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expect from a large grating.  We get diffraction orders that are very close to plane 
waves at well defined angles.   
 
For MEMS implementations, we are more interested in the other extreme.  We 
would like to miniaturize the gratings as much as possible, so it is important to 
know how few periods we can have and still get good separation of the diffraction 
orders.  We see that the separation of the diffraction orders is Δpseparation=λ/d, and 
the width of an order to the first nulls is Δpwidth=2λ/Nd, so the ratio of separation to 
width equals N/2.  From a miniaturization point of view, this is good news, be-
cause a grating with as few as 3 periods is sufficient to create diffraction patterns 
with well defined and clearly separated diffraction orders.   
 
From this discussion we see that the grating function we have derived contains the 
same information about the diffraction pattern as the grating equation.  It gives us 
the directions of the diffraction orders, but no information about how much of the 
incident optical power is diffracted into the different orders.  That information is 
contained in the third part of Eq. 10.16, which we will call the modulation func-
tion.   
 

The modulation function, 
2
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4
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2
sinc

2
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2
sinc

2
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⎠
⎞

⎜
⎝
⎛ −⋅+⋅ kpdkpdkpd θθ , 

specifies how the distribution of light between the diffraction orders depends on 
the phase shift θ.  When the phase delay is zero (θ=0), which means that the grat-
ing is really nothing more than a flat mirror, the modulation function becomes 

( )22 kpdsinc .  In this case, the reflectivity in the 0th order is given by the material 
reflectivity R, and the reflectivity is zero in all other orders, as we would expect 
from a flat mirror.  For θ=π/2, the modulation function is zero in the reflected, or 
0th, order, so all the light is diffracted into the two 1st order and higher diffraction 
modes. 
 
This is the same as what we realized using our phasor model of the grating light 
modulator, but now we are in a position to get a more complete picture of how the 
light is distributed between diffraction orders, which is something we need to 
know to understand and design grating light modulators.  We start by applying the 
Fraunhofer grating equation (Eq. 10.16) to the simplest possible case, which is 
that of a large grating, i.e. a grating with a large number of elements (N -> ∞).  
We know that in this case the ratio in front of the parenthesis is a comb function 
with delta functions at ( ) 02sin =kpd .  The diffraction (or more correctly reflec-
tion) in the zeroth order diffracted mode (kp = 0) is then  

( ) ( )θθ cos1
22

cos0 02
0

0 +⋅=⋅== IIkpD  (10.17) 
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One remarkable property of phase gratings is being made very clear by this ex-
pression.  Unlike amplitude gratings, where the minimum intensity in the zero or-
der is one half of the incident intensity, a phase grating can diffract all the inten-
sity out of the zero order.  This is very important in practical applications, because 
if the diffraction from a grating is less than complete, then any modulator based on 
diffraction from that device will have reduced optical efficiency.   
 
The intensity in the nth order mode, where n is larger than zero, is given by 

( )
2

sinccos1
22

sinc
2

sin2 2022
0

πθπθπ nInI
d

nkpDn ⋅−⋅=⋅⋅=⎟
⎠
⎞

⎜
⎝
⎛ =  (10.18)

Notice that only odd order modes exist.  Again this is different from the more fa-
miliar amplitude grating result.  Table 10.1 gives the numerical values of the fac-
tor ( )22 πnsinc , as well as the accumulated diffracted power in all orders up to 
the nth.   
 

n 1 3 5 7 9 11 

2
sinc2 πn

 0.405285 0.045032 0.016211 0.008271 0.005004 0.003349 

∑
=

⋅
n

i

i

1

2

2
sinc2 π

0.810569 0.900633 0.933056 0.949598 0.959605 0.966304 

 
Table 10.1. Relative power in the nth diffracted order and relative power in all 

modes up the nth for a binary phase grating in its diffractive state.  
 
We see that an optical system that uses the combination of the two first order dif-
fraction modes to create a bright state has at best a through put of 81%.  This is the 
case for the Schlieren projection system of Fig. 10.3.  If the system also picks up 
the two third order diffraction states, the efficiency increases to 90%.  To go sub-
stantially beyond the 90% given by the combined 1st and 3rd orders takes heroic ef-
forts.  The table shows that we have to include all orders up to the ±7th to get 95%, 
and to get to 99% we have to include all odd orders up to the 27st! 
 
In practical systems we typically use only the first diffraction orders and for some 
special cases the third orders might be included, but we seldom go beyond that.  
The exception is high-quality diffractive lenses (which are of course also grating 
governed by equations similar to the one we have found for rectilinear gratings), 
where we use multiple phase steps to align several diffraction orders.    
 
Table 10.1 gives the relative diffracted power of our deformable binary phase 
grating when it is in its diffractive state, i.e. the phase angle is θ=π/2.  For the gen-
eral case of 0<θ<π/2, the sum of the diffraction into all modes (including the 0th 
order or reflected mode) becomes 
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Combined with the well known result from Fourier expansion; 
( )∑
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8 n n
π , 

we see that Rtotal evaluates to R as it should. 
 
Based on the insight that the modulation function provides on the distribution of 
the optical power between diffraction orders, we can provide a more accurate 
graph of diffracted intensity vs. the relative phase shift between the two parts of 
the grating light modulator as shown in Fig. 10.13.  Here we have plotted the rela-
tive intensity in reflection and in different diffracted orders relative to the incident 
optical intensity as a function of the relative phase difference between the reflec-
tions from the different parts of the grating.  There are three curves for the dif-
fracted light; one for only one 1st order by itself, one for the combination of the 
two 1st orders, and on for the two 1st orders combined with the two 3rd orders.   
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Figure 10.13. Total reflected light (solid), diffracted light in one 1st order (dashed), 

diffracted light in both 1st orders (dot-dashed), and diffracted light in 
both 1st and both 3rd orders (double-dot-dashed) from a grating modu-
lator as a function of relative phase difference of the two parts of the 
reflected light.  In all cases the optical powers are harmonic functions 
of the phase difference.   

 
We see that all the diffracted orders have the same dependence on the phase dif-
ference, θ.  This means that when the reflected light is at its maximum, all diffrac-
tion orders are at zero, and when the reflected light is zero, all diffraction orders 
are at their maxima.  It is therefore indeed possible to create an optical system that 
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capture several diffraction orders and maintains good contrast with the reflected 
light.  We also realize, however, that the different diffraction orders propagate in 
different directions, so capturing more diffraction orders requires increasingly 
complex optics and gives diminishing returns.   
 
The optimum tradeoff between optical efficiency and complexity is of course 
completely dependent on the application, but as a general rule we can say that cap-
turing only 40% of the light is too little and capturing more than the 3rd orders is 
too much complexity for the relatively small return.  Practical systems therefore 
either use both 1st orders or combine both 1st and 3rd orders.    
 
Figure 10.13 illustrates what we already have learned from the phasor model, 
namely that we need a phase shift of π/2 radians to get high-contrast switching.  
That is, however, not the only useful way to operate a deformable grating.  It is 
also possible to use the grating as a displacement sensor.  Instead of changing the 
relative position of the two elements of the grating unit cell by an actuator, we de-
sign the grating such that this displacement is a function of an external measurand.  
In principle, the measurand can be anything, e.g. pressure, force, acceleration, ro-
tation, or magnetic fields, or biomolecular associations.  In any case, we would 
like to be able to measure the smallest possible deflection to create a system with 
good sensitivity.  In other words, we would like to create the biggest possible 
change in optical output, be it reflection of diffraction, for the smallest possible 
phase shift.  In this case, we would like to operate at those points on the curve 
where the light vs. phase slope is the highest, i.e. at those points where the phase 
difference is K·π/4 with K an odd integer.  Some of these high-sensitivity points, 
useful for sensor operation, are marked on Fig. 10.13.   
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Figure 10.14 Reflections from two adjacent unit cells of a deformable grating modu-
lator with grating amplitude t.  The phase modulation is caused by the 
physical separation of the two reflectors in each unit cell, so it is de-
pendent on the wavelength as well as the incident and refracted angles.  
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In the above derivation, the phase grating is assumed to be taking place in a plane. 
In reality the deformable grating modulator is a three dimensional structure, and 
the phase modulation is obtained by moving one reflective surface with respect to 
another.  The phase modulation will therefore be a function of the wavelength of 
the incident light and of the angles of incidence and diffraction as shown in Fig. 
10.14.  Note, however, that it is not dependent on the grating period, d. 
 
The phase difference is simply given by  

λ
πθ Δ⋅= 2  (10.20) 

where λ is the optical wavelength and Δ is the path length difference.  At normal 
incidence, the path-length difference simply equals twice the grating amplitude, 
i.e. Δnormal=2t.  At non-normal incidence, however, we must be careful to take ac-
count not only of the vertical difference between the two reflections, but also of 
the lateral shift of the optical beams.   
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Figure 10.15 Close up of the deformable grating modulator.  Because it is caused by 
physical displacement, the phase modulation is dependent on the inci-
dent and refracted angles.  

 
From Fig. 10.15 we see that the total path length difference for the light that is re-
flected from the top and bottom levels of the grating can be expressed as:  

⇒Ψ−Ψ⋅−+=−−+=Δ oi DECDDECDAFABDECD 22 sinsin  

o

o

oi

i

i

tt
Ψ
Ψ−

Ψ
+

Ψ
Ψ−

Ψ
=Δ

cos
sin

coscos
sin

cos

22
( )oit Ψ+Ψ= coscos  

 

(10.21) 

Combining these equations, we can write the following expression for the phase 
difference: 
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( )oi
t Ψ+Ψ⋅⋅= coscos2

λ
πθ  (10.22) 

Once the lateral shift of the optical beams is properly accounted for, we get the 
opposite dependence on the cosines than what we might expect!  This thickness 
dependence is ubiquitous in optical interference phenomena, e.g. interference from 
soap films and other structures with multiple reflections separated by a thin spacer 
layer, so it is well worth making a note of. 
 
The expression we have found for the phase modulation is valid for relatively 
small incident and diffraction angles.  It is clear from Fig. 10.14 that at larger an-
gles, we must worry about amplitude variations caused by shadowing effects in 
the three dimensional grating structure.  At even larger angles, evanescent modes 
become important and the Fraunhofer theory breaks down completely.  For the 
relatively small incident and diffraction angles and small grating amplitudes rela-
tive to the grating period of practical grating modulators, the Fraunhofer diffrac-
tion theory is in good agreement with experiments. 
 
The grating equation and the equation for the phase difference show that both the 
angular directions of the diffracted light and the ratio of reflected to diffracted 
light is dependent on wavelength for all finite values of the phase difference θ.  In 
other words, a grating light modulator in any configuration other than the zero 
path-length-difference state is wavelength dependent.  This means that all configu-
rations other than θ=0 will suffer a reduction of contrast if the light source is not 
monochromatic.   
 
Wavelength dependence is therefore problematic in many GLM applications, but, 
like most problems, it can be turned into a feature and used to good advantage.  
Specifically, their wavelength dependence allows grating modulators to be used as 
tunable optical filter and tunable optical synthesizers.  This is illustrated in Fig. 
10.16 that shows a grating modulator used as a color filter.  The grating is set up 
to diffract light at a specific center wavelength.  At shorter wavelengths there is 
finite reflection, and the diffraction angles are smaller.  Longer wavelengths also 
have finite reflection, while the diffraction angles are larger.  In this chapter and 
the next we will discuss several instances in which wavelength dependence is a 
problem requiring a solution, while we will postpone the detailed treatment of de-
signs and characteristics of grating modulators optimized for spectral filtering to 
Chapter 13.   
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Figure 10.16 Diffraction from a grating modulator at three different wavelengths.  

The modulator is set up to diffract all the light at the center wavelength 
(solid-white).  Most of the light at this wavelength comes off the modu-
lator in the ±1st and ±3rd diffraction modes (there is some light in 
higher order modes).  Light at slightly longer wavelengths (solid-gray) 
is partially diffracted and partially reflected, and the diffraction angles 
are larger than for the central wavelength.  Light at slightly shorter 
wavelengths (dotted) is also partially diffracted and partially reflected, 
but the diffraction angles are smaller.  By correct configuration of ap-
ertures, the dispersive grating can be used to create a color filter.  

 
We can now summarize what we have learned about grating modulator design 
from Fraunhofer diffraction theory:   
 
First we verified the insight we had gained from our phasor model that a relative 
displacement of only a quarter wavelength is sufficient to completely switch the 
grating modulator between its reflective and diffractive states.  We also found that 
as little as three periods of a grating is sufficient to create a high-quality modula-
tor.  This is good news, because it means that grating modulators can be miniatur-
ized in both its in-plane and vertical dimensions!   
 
The third thing we learned is that the diffracted light exits the grating in different 

directions given by the well-known grating equation: 
d

m λ⋅=Ψ−Ψ 01 sinsin , and 

that any one order do not contain more than about 40% of the incident light.  This 
clearly complicates the systems based on grating light modulators, because we 
need to control several diffraction orders to achieve high optical efficiency.  This 
shortcoming of the basic grating modulator becomes one of the driving forces be-
hind innovation in grating modulator design. 



10:  Grating Light Modulators            403 

 
The grating modulator manipulates light by changing the path length for part of 
the light that is being diffracted.  This dependence on path length can be turned 
around and used as a sensing mechanism.  The Fraunhofer model shows how the 
grating should be constructed to achieve the highest possible sensitivity to dis-
placement.  We will use this to analyze and design deformable grating sensors in 
Chapter 12.    
 
The last thing Fraunhofer theory taught us about grating modulators is that they 
are dispersive, i.e. they are wavelength dependent.  This follows from the fact that 
we create phase modulation in the grating modulator by establishing path length 
differences for different parts of the incident light.  A constant path length, or time 
delay, leads to a wavelength dependent phase difference.  This dispersion, just as 
the existence of multiple diffraction orders, complicates systems design and be-
comes a driver for innovation.  The phase difference is also angle dependent, but 
that is usually not of practical significance.  

10.6 Projection Displays Based on Grating Modulators  

Now we have covered the basics of grating modulators in sufficient detail that we 
can turn our attention to practical implementations.  The detailed MEMS designs 
are of course strongly dependent on applications.  Here we will first consider grat-
ing modulators for displays, and then go on to discuss how to optimize the modu-
lators design for fiber optical applications.   

10.6.1 Actuator Design 

Our grating analysis led to the development of two important equations for reflec-
tivity and phase shift:  
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These equations show that a displacement of a quarter wavelength (corresponding 

in reflection to a phase shift πλ
λ
π =⋅

4
2  radians) is sufficient to complete switch a 

grating modulator between its reflective and its diffractive states.  For visible 
wavelengths centered around 500 nm, this means a displacement on the order of 
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125 nm, and for fiber-optic communication wavelengths around 1550 nm, a dis-
placement of about 400 nm.  The lateral dimensions of the individual ribbons of 
the grating must be slightly larger than the wavelength of the light for the equa-
tions to be valid, but we need only three period (3 ribbon pairs or 6 ribbons) to 
create a grating modulator with good separation of the diffracted and reflected 
light, so as a rule of thumb the lateral dimensions should be on the order of, or lar-
ger, than ten wavelengths.   
 
Their small in-plane, and even smaller vertical dimensions make grating modula-
tors at visible and near-IR wavelengths very compatible with IC and MEMS tech-
nology.  Most materials used in MEMS can be deposited as thin films, ranging in 
thickness from hundreds of nanometer to several micron.  The thickness control 
and uniformity, both across any given wafer and between wafers, are excellent 
over this range.  Furthermore, the surface roughness of most as-deposited thin 
films is also sufficient to yield high-quality optics.  The exceptions here are films 
of some polycrystalline materials, like poly-Si and poly-Ge, that might create 
problems due to their surface roughness.  The bottom line is that IC and MEMS 
technology can easily meet the demands on vertical structural accuracy set by 
grating modulators. 
 
Likewise, the lateral definition of the grating represents no challenge for modern 
lithography, which at present is pushing below the 100 nm barrier.  If we use our 
rule of thumb of ten wavelengths, we see that an array of a one million grating 
modulators only occupies 5 by 5 mm in the visible and 15 by 15 mm at fiber-optic 
wavelengths.  Large arrays can therefore readily be accommodated on chips of 
modest size, which not only reduce chip price, but also the cost of packaging. 
 
The excellent compatibility with standard IC technology let us have our pick of 
materials without having to worry about problems with dimensional control, so we 
are free to design our ribbons structures based on functional considerations.  
Clearly the small displacement that is required favors a simple parallel-plate elec-
trostatic actuator.  Electrostatic actuation does not require special materials be-
yond standard conductors and insulators to control the electrostatic potentials, and 
they are therefore material compatible with IC and MEMS technology.  The small 
required displacements also mean that the electrode gap in the electrostatic actua-
tors can be small, so that large electrostatic forces can be created with relatively 
small voltages.  There is therefore no need for more complex and difficult-to-
fabricate structures, e.g. combdrives, whose primary purpose is to extend the 
travel range of electrostatic actuators.   
 
To get an idea of how a simple parallel-plate actuator will perform in a grating 
light modulator we will use a simple spring mass model as shown in Fig. 10.17.  
The ribbon is modeled as a conducting plate of mass m=ρ·A·t, where ρ is the den-
sity of the ribbon material, A is the area of the ribbon and t is its thickness.   
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Figure 10.17 Spring-mass model of a grating-modulator ribbon actuated by a paral-
lel-plate electrostatic actuator.  The lower electrode is fixed to the sub-
strate, while the upper electrode, the ribbon, is suspended on a spring 
and can move in response to the applied electrostatic force.     

 
The purpose here is to get an overview of the design space, so we will use any rea-
sonable approximation that simplifies the derivations.  We start with the approxi-
mation that the fields are uniform between the electrodes and zero outside, so we 
can write the following expression for the electrostatic force: 

2

22

22 g
AV

A
QF ε
ε

==  (10.25) 

where ε=8.85·10-12 Fm-1 is the dielectric constant (the exact value of the dielectric 
constant is ε= 8.854,187,817·10-12 Fm-1 by definition), A is the ribbon area, g is the 
ribbon-substrate gap, and V is the applied voltage.   
 
The resonance frequency of the spring-mass system is 

m
kf

π2
1=  (10.26) 

where k is the spring constant of the ribbon suspension, and m is the ribbon mass.  
We assume that the flexibility and precision of our MEMS technology allow us to 
give the spring constant any value, so we chose to set it equal to the maximum 
value that enables the required λ/4 displacement with the maximum voltage, Vmax, 
applied.   
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The ribbon-substrate gap is a strong function of the wavelength, because it must at 
a minimum equal one quarter of the wavelength.  We will distinguish between two 
cases: In what we will call the contact mode, the gap equals one quarter of the 
wavelength, which means that the ribbons touch the substrate in their maximum-
deflection state.  Clearly it is not practical to allow the two electrodes to touch, but 
they can be separated by a thin insulator.  In the second mode of operation, which 
we will call continuous mode, the ribbon-substrate gap is more than three times 
the maximum deflection, so that the ribbon can be electrostatically positioned at 
any deflection between zero and one quarter wavelength without problems with 
electrostatic instability.   
 
To build in a safety margin and to keep the formulas simple, we will say that the 
gap equals the wavelength, i.e. it is four times the maximum deflection, in the con-
tinuous mode.  The resonance frequency can then be expressed as:  

t
DVf

⋅⋅
⋅=

ρ
ε

λπ
2

2 23
modemax  (10.28) 

where the constant Dmode is 4 for contact mode and 1 for continuous mode.  As-
suming that the ribbons are close to critically damped, the 10%-to-90% switching 
time for the ribbons is related to the resonance frequency through the following 
expression:  
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This expression is plotted in Fig. 10.18 for silicon nitride ribbons.  The density of 
silicon nitride is about 3,000 kg/m3 (the exact value depends on whether the film is 
stoichiometric or if it is silicon rich).  Other possible ribbon materials like silicon, 
silicon dioxide and aluminum, have lower densities ranging from 2,200 to 2,700 
kg/m3, but that has only a minor effect on the results.  The ribbon thickness is cho-
sen to be 100 nm, which is reasonable for many practical applications and well 
within the capabilities of modern thin-film deposition processes.  
 
The range of voltages in Fig. 10.18 is representative of voltages used in practical 
devices.  Voltages below 10V tend to make the devices too sensitive to shock and 
vibrations during fabrication, packaging, and installation, so only rarely is an elec-
trostatic MEMS device designed for such low maximum voltage.  At the other 
end, 200V represents an upper limit for the voltage that can be applied to electro-
static actuators with micron sized gaps.  From a systems point of view, much 
lower voltages are preferred, so practical devices tend to have maximum voltages 
of a few tens of volts.  
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Figure 10.18 Switching times in seconds as a function of maximum applied voltage 
(logarithmic scale) for grating light modulators driven by parallel-plate 
actuators.  The ribbons are 100nm thick and made of silicon nitride 
with a density of 3,000 kg/m3.    

 
The graphs of switching times demonstrate that even though the grating modulator 
is a mechanical structure, it performs at speeds that are unheard of for any other 
type of machinery!  We see that using relatively modest actuation voltages, we can 
design grating modulators with switching times well below 1 us.  Even in the most 
difficult case, which is that of continuous operation at 1.55.um wavelength, a volt-
age of less than 30V is enough to break the 1 us barrier.   
 
For the opposite extreme, which is that of contact mode operation at 500 nm 
wavelength, the graph predicts that it is possible to get below 10 ns.  The 20 ns 
switching times referenced above were indeed obtained in contact mode.  These 
early results are still among the fastest MEMS ever reported, although it seems 
quite obvious that even faster devices can be designed and fabricated.  

10.6.2 Ribbon Mechanics 

The speed analysis that led to the graphs of Fig. 10.18 is based on the assumption 
that we can design the ribbons to have exactly the right spring constant that will 
give the correct maximum deflection of λ/4 for a given maximum applied voltage, 
while at the same time making the ribbons quite thin.  The validity of this assump-
tion depends on the available technology and on the exact structure we are trying 
to fabricate.  For example, if the spring force is mainly due to bending of the rib-
bons, then it becomes difficult to make sufficiently stiff springs as we reduce the 
ribbon thickness, because the bending stiffness goes as the cube of the thickness.   
 
It is therefore very convenient, even critical, to be able to use tensile stress to 
stiffen the ribbons.  A complete and instructive description of the effect of stress 

λ=1.55um, continuous mode 
λ=1.55um, contact mode 
λ=0.5um, continuous mode 
λ=0.5um, contact mode 
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on beams (or ribbon) deflection can be found in [8].  Here we will consider the 
two limiting cases of bending beams and vibrating strings.   
 
In a bending beam, the potential energy storage is dominated by stress in the mate-
rial causes by bending.  In a vibrating string, on the other hand, the potential en-
ergy is mostly stored as stress caused by elongation.  The ribbons of a grating 
modulator will in principle store potential energy both as bending stress and elon-
gation stress, but typically one or the other will be dominant.  
 
To get simple, closed form expressions for the displacement along the length of a 
beam we will assume uniform loads.  This is not exact, because the electrostatic 
forces will typically vary along the length of the ribbon, but it is a convenient ap-
proximation, and it gives results that are in good agreement with observations.   
 
For bending beams, i.e. low-stress ribbons dominated by bending, the deflection 
curve takes the form [9] 

( )22
32

xLx
tE

qy −⋅
⋅

=  (10.30) 

where L is the ribbon length, t is the ribbon thickness, E is the Young’s modulus 
of the ribbon material, and q is the applied spatially uniform and temporally har-
monically varying force per unit of area (or applied pressure).  Note that any 
symmetric load will give a deflection curve with the same boundary conditions 
(zero deflection and zero slope at the ends) and same symmetry (mirror symmetry 
about the midpoint of the ribbon), so the shape, if not the magnitude, given by the 
equation is a good approximation to the deflection resulting from any realistic 
loading condition.   
 
If, due to the particular deposition conditions of the material, the ribbon has a 
large tensile stress, then the stored potential energy in the ribbon is mostly due to 
elongation, and its deflection can be expressed as [10,11,12,13]:  

( )xLx
t
qy −⋅
⋅⋅

=
σ2

 (10.31) 

where t is the ribbon thickness, and σ is the tensile stress in the ribbon.   
 
The deflection shapes given by two equations above, together with the shape of a 
vibrating string [14], are plotted in Fig. 10.19.  As expected, the stress dominated 
ribbon behaves very much like a vibrating spring, and it has a much larger flat part 
in the center than the bending dominated beam.  This is of great advantage in grat-
ing light modulators, because we would like all the light reflected from the ribbon 
to get the same phase delay.  This “flattening” effect can be further enhanced by 
removing the electrostatic force from the center of the beam, i.e. arrange the sub-
strate electrodes such that the electrostatic force is not applied at the center.  
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Figure 10.19 Deflection curves for of bending-dominated ribbons (dashed), elonga-

tion-dominated (solid) ribbons.  The well-know vibrating string is in-
cluded for comparison (dot-dashed).  The elongation-dominated, or 
stress-dominated ribbon, which deflects very much like a vibrating 
string, is a significantly flatter at the center than the bending dominated 
beam. 

 
The resonant frequency of the fundamental vibration mode of both bending-
dominated and stress-dominated ribbons can conveniently be found by the 
Rayleigh method [[15]].  This method is based on the fact that a vibrating me-
chanical oscillator has a constant, or near constant, stored energy over the vibra-
tion cycle.  The kinetic energy at the time of maximum vibration velocity, (i.e. no 
deflection) must therefore equal the maximum potential energy at the time of 
maximum deflection (i.e. no velocity).  The Rayleigh method for determining the 
resonant frequency is very insensitive to errors in the actual deflection curve.  To 
get useful results, all we need are reasonable approximations to the real deflection 
curves.   
 
To apply the Rayleigh method, we need to calculate the stored kinetic and poten-
tial energy in the ribbons.  The maximum kinetic energy of a ribbon element dx 
undergoing harmonic vibration is given by 

dxtbyEkin ⋅⋅⋅⋅⋅= ρω 22

2
1  (10.32) 

where ω is the natural frequency of the harmonic oscillations, y is the harmonic 
vibration amplitude, and ρ, b, and t are the density, width, and thickness of the 
ribbons, respectively.  The potential energy due to bending and elongation are 
given by [16]:   
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where E is the Young’s modulus of the ribbon material, I is the ribbon moment of 
inertia, and σ is the tensile stress in the ribbons.  Other energy terms like rotational 
kinetic energy and shear potential energy [17] are negligible in practical grating 
modulators.   
 
Now we apply the Rayleigh method, i.e. we integrate the maximum kinetic energy 
(Eq. 5.33) over the ribbon, and set it equal to the integral of the maximum poten-
tial energy.  First we carry out the calculation for the bending-dominated case.  Of 
course we are using a symbolic-math software package to do the integrals. 
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Similarly, we find for the stress dominated case: 
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This formula is virtually identical to the expression for the resonance frequency of 
the fundamental mode of a simple vibrating string. (The vibrating string has a de-
flection given by ( )Lxyy ⋅⋅= πsinmax , and the resonant frequency is 

ρσ
π L22

1
⋅

, which differs from our expression by the factor 007.110 ≈π  

[18]).   
 
Comparison of the above equations shows that the resonance frequencies of both 
the bending-dominated and stress-dominated ribbons are dependent on ribbon ge-
ometry and material constants.  The main difference is that the bending beam is 
characterized by its Young’s modulus, while the stress-dominated ribbons depend 
on material stress.  The materials that have the durability, reliability, and IC com-
patibility required for grating modulator fabrication have only a very limited range 
of elastic-modulus values.  Material stress on the other hand is a strong function of 
fabrication parameters like deposition temperature, pressure and chemical compo-
sition and can be controlled with precision over several orders of magnitude.  For 
example, the stress in silicon nitride films can be accurately controlled from the 
MPa level to several hundreds of MPa [19].   
 
An additional advantage of the stress dominated ribbon is that its resonance fre-
quency is independent of ribbon thickness, while the bending-dominated beam has 
a diminishing resonance frequency as the thickness is reduced.  This means that 
stress-dominated ribbons can be made much thinner and therefore faster than 
bending beams.  For example, if we design a 20 um long and 100 nm thick ribbon, 
it will be 100 times faster if it has a stress comparable in value to its Young’s 
modulus.   
 
The benefit of using stress as a design parameter in ribbon design is therefore two-
fold.  First we get the added flexibility of being able to chose exactly the stress we 
ant to achieve the desired ribbon stiffness.  Secondly, we can make the ribbons as 
thin as our technology allows without compromising switching speed.  Most ap-
plications that critically depend on fast switching will therefore incorporate tensile 
stress in the ribbons.  The conclusion is that it is indeed possible to achieve 
switching speeds that are approaching the fundamental limit set by mass and 
spring constant if we are willing and able to control the stress in the ribbons. 

10.6.3 Linear Display Architecture 

The switching speeds demonstrated in Fig. 10.18 are impressive, particularly con-
sidering the fact that these are mechanical devices.  The question remains, how-
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ever, whether this speed can be turned into useful practical advantages.  For fiber 
optic applications we can make the argument that faster is always better.  The 
switching speeds of grating modulators cannot compare to those of electro-optic 
devices, but switching times in the 100 ns range are still very useful for network 
reconfiguration in response to changing traffic patterns and to link failures.   
 
For displays it is not so obvious that the capability to switch in the tens or hun-
dreds of nanoseconds is useful in practical systems.  Video refresh rates even for 
the highest quality displays are less than one hundred Hertz, so what use are 
speeds that several orders of magnitude faster?  The answer is that the ability to 
switch at high speed allows flexibility in the addressing of the individual pixels in 
the displays, and, more importantly, it allows more efficient display designs, like 
the linear-modulator-array, or 1-D, architecture [20] shown in Fig. 10.20.     
 

 

1-D GLV
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Figure 10.20. Schlieren-type display system based on a linear array of GLMs.  Shown 

schematically is the path of light for one grating modulator in the dis-
play.  The spatially coherent beam from the illuminating laser reflects 
off the turning mirror and is focused by the cylindrical lens to a stripe 
on the linear grating modulator array.  The diffracted light from each 
grating modulator is imaged onto a screen through the scanning mir-
ror. 

 
The optical system using a linear array is similar to the system we studied earlier 
in that it is a Schlieren-type display with a turning mirror that serves the dual pur-
poses of directing the illumination to the modulator array and blocking reflected 
(but not diffracted) light from each modulator from reaching the projection screen.  
Where the 2-D system can use any light source, the 1-D system requires a source 
with substantial spatial coherence, so that the illuminating light can be effectively 
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focused to a narrow stripe on the modulator array.  In practice this means that the 
light source must be a laser.  The reflected light from the modulators is blocked by 
the turning mirror and sent back towards the source.  (Care is taken not to couple 
the reflected light into the source, because that type of feedback into a laser will 
cause instability and optical power fluctuations.)  The diffracted light, on the other 
hand, misses the turning mirror and is imaged onto the projection screen through a 
scanning mirror.  The function of the scanning mirror is to translate the modulated 
stripe of light from the grating-modulator array across the screen to form a 2-D 
image.  Each modulator in the array therefore does not correspond to a single pixel 
on the screen, but rather a column of pixels.   
 
The operation of the linear-array display require that each modulator can be recon-
figured not at the image refresh rate, but at a mush higher rate that equals the re-
fresh rate multiplied by the number of pixels in a column.  Typical high-quality 
displays might have a refresh rate of 100 Hz and 1,000 pixels in each column, so 
the modulator refresh rate is 100 kHz.  The switching time must then be substan-
tially shorter than 10 us, so that the switching can take place in a small part of the 
grating refresh rate.   
 
It is clear from the graphs in Fig. 10.18 that grating modulators can be designed to 
have more than sufficient speed for this type of operation.  This is true both for the 
contact mode and the continuous mode.  MEMS displays based on arrays of rotat-
ing micromirrors, e.g. TI’s DLP technology, require much larger displacement to 
achieve high contrast, and therefore do not have sufficient speed for linear-array 
operation.     
 
Another consequence of the one-modulator-per-column-of-pixels design shown in 
Fig. 10.20 is that each modulator must be able to handle the optical power of one 
whole column.  In practice, this does not present problems for image projection.  
Regular Aluminum-coated mirrors that absorb about 10 % of the incident light can 
handle the power levels required for even the most bright projection displays.   
 
Given that GLMs have the required speed and power handling, the swept-linear-
array system has numerous advantages.  Most obviously it requires much fewer 
modulators than two-dimensional displays.  For a 1,000 by 1,000 pixel display, the 
linear array only has one thousand elements, while the 2-D array has one million.  
Fewer elements translate into simpler fabrication and better yield. 
 
More importantly, the geometry of the linear array allows drive and multiplexing 
circuitry to be placed next to, rather than underneath, the modulators.  This allows 
more flexibility in integration of the modulators and their driving and multiplexing 
circuitry.  For example, the circuits can be made on the same substrate before OR 
after the modulator fabrication is completed, OR the circuitry can be made on 
separate chips and flip-chip bonded to the modulator substrate.  With 2-D arrays it 
is practically impossible to avoid placing multiplexing transistors underneath the 
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arrayc.  This means that the circuits must be made first and be subject to the ther-
mal loading of going through the modulator fabrication process, which again mean 
that the transistor technology must be developed especially for integration with 
grating modulators.   
 
The bottom line is that for 2-D arrays the transistor technology must be custom 
developed and must be re-optimized each time the modulator fabrication process 
is changed.  1-D arrays, on the other hand, can be integrated with standard, state-
of-the-art circuitry, which means that a number of providers can be found.  The 
development cost of modulator arrays AND electronics is therefore much less for 
1-D than for 2-D arrays.   
 
From a MEMS design point of view, the 1-D array is simpler because the fill fac-
tor does not depend on the termination of the ribbons.  We can therefore use any 
convenient structure that suspends the ribbons with correct spring constant without 
having to worry about how light is reflected from the terminations.  To achieve 
high fill factor in 2-D arrays, the suspending spring must be created on a separate 
layer underneath the reflecting surfaces of the ribbons.    
 
The final advantage of the linear array is that it leaves more room for the driving 
circuitry so that it is more practical to operate the grating modulators in the con-
tinuous, or non-contact, mode.  Typical display applications need 12 bits of grey 
scale (12 bits of resolution of the optical power), so holding a grey-scale value re-
quires a larger number of transistors.  2-D arrays typically are operated in a binary 
fashion, with grey scale created though temporal multiplexing.  This type of op-
eration fits well with contact-mode modulators and requires fewer transistors in 
the multiplexing circuitry of each pixel.  Contact mode is, however, more difficult 
to sustain repeatedly and without wear over a large number of switching cycles, so 
non-contact mode is preferable from a reliability point of view.  

10.6.4 1-D Modulator Array Fabrication 
A grating modulator design suitable for 1-D arrays is shown in Fig. 10.21.  It has 
three periods of fixed and movable ribbon pairs.  The movable ribbons can be 
pulled towards the substrate by electrostatic attraction.  In the relaxed state with no 
deflection of the movable ribbons, the grating is in its reflective state, which is the 
dark state of the imaging system of Fig. 10.20.  When the ribbons are at their 
maximum deflection of λ/4, the grating is in its diffractive, or bright, state.  Me-

                                                           
c  The instability of the parallel-plate electrostatic actuator creates a deflection vs. 

voltage curve with significant hysteresis.  It is possible to use this bi-stability as 
a set-and-hold mechanism so that any modulator in a 2-D array can be switched, 
by addressing the row and column to which it belongs, without changing the 
states of the other modulators in the row or column.  This type of mechanical 
memory is, however, difficult to implement in large arrays, so this approach has 
not yet been adopted in commercial products.    
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chanically the fixed and movable ribbons are identical.  The only difference be-
tween them is that the fixed ribbons are electrically shorted to the substrate so that 
there are no electrostatic forces pulling them downwards.     
 

 
 

Figure 10.21 Schematic drawing of a single pixel in Silicon Light Machine’s high-
contrast grating light modulator.  The grating has three pairs of silicon 
nitride ribbons with an overlayer of aluminum to enhance reflectivity.  
Every other ribbon can be actuated by electrostatic attraction towards 
the substrate to switch from the reflective (relaxed) state to the diffrac-
tive (actuated) state.  (Courtesy Silicon Light Machines) 

 
The tools and processes needed to fabricate the grating light modulator of Fig. 
10.21 are relatively simple by IC standards.  There are many variations on the 
process flow, depending on the available technology, but a typical fabrication se-
quence goes something like this:  

1. Thermal oxidation (SiO2) of standard <100> wafers to a thickness of 
1µm.  This step creates an electrically insulating layer.  A process with a 
lower thermal budget can be substituted if necessary.  

2. Deposition of 0.5 um of polycrystalline silicon.  This film will become 
the lower electrode.  Metals cannot be used because of the subsequent 
high-temperature fabrication steps.  The conductivity of this layer is not 
critical, so poly-Si films with about 10 Ω/sq are sufficient.  Attention has 
to be paid to the surface roughness of this layer, however, because the to-
pography of this film will translate into films that are deposited later. 

3. Mask 1 is used to define the lower electrodes and the wiring in the Poly-
Si film through photolithography and dry etching.   

4. The Poly-Si layer is oxidized protect it from the subsequent sacrificial 
etch.  A thin silicon dioxide layer of about 30 nm is sufficient for this 
purpose.   

5. A layer of amorphous silicon is deposited.  This layer will be removed 
before the process is complete, and its purpose is to define the spacing 
between the substrate electrode and the ribbons.  Its thickness is therefore 
an important design parameter.  For contact mode operation in the visible 
it should be about 600 nm to roughly match the longest wavelength to be 
modulated.  The cross section of a ribbon after the completion of this 
process step is shown in Fig. 10.22a. 
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6. Mask 2 is used to define openings in the a-Si layer, through which the 
silicon nitride ribbons will be attached to the poly-Si wiring layer.  

7. A layer of silicon nitride is deposited with low-pressure Chemical Vapor 
Deposition (LP-CVD) at relatively elevated temperatures (~ 600 ºC).  
The thickness of this layer is not critical from an operational point of 
view, so the thickness and the stress of the nitride film will be chosen to 
provide the right spring constant for the ribbons, while staying within the 
bounds of the available technology.  It is important to control the stress in 
the film, so the nitride is not necessarily stoichiometric (i.e. the ratio of Si 
to N in the film is not exactly as given by the formula Si3N4). A typical 
thickness is about 100 nm.  Figure 10.22b shows a cross section of a rib-
bon at this stage. 

8. Mask 3 is used to define via holes in the nitride film to allow the alumi-
num overlayer on the ribbons to contact the poly-Si wiring.  

9. Aluminum is deposited and patterned using Mask 4 and 5.  A thin layer 
of about 50 nm is sufficient to give the ribbons close to the reflectivity of 
bulk aluminum, while thicker layers are needed to form bond pads so two 
separate deposition and masking steps will typically be required 

10. The ribbons and their supporting springs are defined in the Silicon Ni-
tride film by lithography with Mask 6 followed by dry etching of the Ni-
tride.  

11.  The a-Si sacrificial layer is removed in a gas-phase Xenon-difluoride 
(XeF2) etch.  This etch is unique in that it etches silicon (and Poly-Si and 
A-Si with high preferentiality over almost any other material used in IC 
technology.  In particular, it is difficult to find another sacrificial layer-
etch combination that does not damage thin Aluminum films.  After this 
step, wafer processing is finished and the ribbon cross section is as 
shown in Figure 10.22c. 

 
Figure 10.22 shows schematically the cross section of a single ribbon at various 
stages of the process sequence, while Fig. 10.23 shows Scanning Electron Micro-
graphs of part of a linear or 1-D modulator array.  The process as described here 
uses only 6 lithography steps.  In practice we might choose to use a couple of ex-
tra masks for purposes of integration and packaging, but still the process is by all 
standards very simple. 
 
The ribbon material of the modulators shown in Figs. 10.22 and 10.23 is Silicon 
Nitride (Si3N4), which is a very stable and robust insulator.  Typically, all grating 
modulators are operating at a small fraction of the tensile yield stress, even it their 
most deflected state.  This is possible because the operational principle of the grat-
ing modulator requires such small maximum deflections.  In combination with 
non-contact operation, this leads to negligible material fatigue and good reliability 
over the expected life time of the modulators.    
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Figure 10.22 Schematic cross section of a single ribbon (the movable and fixed rib-

bons have identical cross sections) in a high-contrast grating light 
modulator at three different stages of the fabrication process (not to 
scale).  At the completion of the process, the silicon nitride ribbons are 
suspended by springs over the substrate electrode, so that they will 
move towards the substrate when actuated by electrostatic attraction.   

 

       
(a)     (b) 

 
Figure 10.23 Scanning Electron Micrograph of a part of a Silicon Light Machines 

grating light modulator array.  Figure a) shows about 15 individual 
modulators, each with 3 ribbon pairs, of an array of 1080, and figure b) 
shows a close up of the ribbon suspensions.  Each modulator is made 
up of three pairs of one movable and one fixed ribbon.  The array is 
addressed from both sides, so the period of the addressing lines in b) 
corresponds to two modulators or 12 ribbons.  (Courtesy Silicon Light 
Machines) 
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10.6.5 Light Sources for Swept-Line Projection Displays  

The tensile stressed ribbons meet the speed and power handling requirements and 
work very well in the swept-line projection display.  The overall system is also 
quite power efficient.  The fill factor in a 1-D grating modulator array is deter-
mined by the spacing between the movable and fixed ribbons.  With ribbon widths 
on the order of a few micron and using modern photo lithography, this fill factor is 
on the order of 95% or better.  Combine that with an Aluminum reflectivity of 
91% at visible wavelengths, and a diffraction efficiency into the two first orders of 
81%, and the overall maximum throughput of the modulator is about 70%.   
 
Of the 30% that is lost, about 20% is scattered into higher diffraction orders.  This 
scattered light must not be permitted to reach the screen, because that will reduce 
the contrast.  The other 10% is absorbed in the metal and the substrate of the 
modulator chip and is only problematic if it results in overheating of the ribbons.   
 
The swept-line architecture also has the advantage of projecting an image with no 
pixilation.  The linear grating-modulator array is pixilated, but only in terms of 
their electronic addressing.  Mechanically there is no difference going between 
ribbons of the same or neighboring modulators.  The pixelation of the modulators 
is therefore not discernible in the projected line on the screen.  Likewise there are 
no discernible pixel boundaries in the sweep direction on the screen.  The result is 
a very clean projected image without the disturbing higher spatial frequencies 
common to pixel-based projection systems.    
 
Overall, the swept-line projection display with linear grating arrays works very 
well.  It exhibits high contrast, good efficiency, simple and inexpensive chip tech-
nology, and it is robust and reliable.  It has been demonstrated in form factors 
ranging from handheld devices to the enormous 10 meters by 50 meters display 
exhibited by Sony Corporation at the 2005 World Exposition in Aichi, Japan.   
 
Comparing the swept-line display to the traditional Schliern projector with a 2-D 
modulator array, we see that there are two major differences between the two opti-
cal systems.  The most obvious is the scanning mirror that enables the linear 
modulator array to create a 2-D image.  The scanner does not represent a signifi-
cant increase in complexity.  High-quality scanners of all sizes, ranging from 
MEMS scanners for the smaller systems to galvanometric scanners for the larger 
displays, are inexpensive and readily available.   
 
The second difference is less obvious, but more difficult to deal with.  The 
scanned-line projector requires a spatially coherent light source, i.e. a laser, to al-
low most of the light to be focused onto a single, narrow line at the modulator ar-
ray.  Traditional light sources are spatially incoherent and their output light can 
therefore not be focused to a narrow line.   
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This difference in focusing between traditional and spatially coherent sources is il-
lustrated in Fig. 10.24.  The light bulb, like any traditional light source of finite 
area, can be considered as a collection of individual light emitters with no fixed 
phase relationship between their emitted optical fields.  That means that each indi-
vidual source creates an illuminated spot of an area equal to the point spread func-
tion of the lens system.  The total illuminated area is then the sum of the illumi-
nated spots from each of the individual sources.  For typical light emitters, 
particularly the high-power sources required for projection displays, the illumina-
tion area is many times larger than the point spread function.   
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Figure 10.24. Comparison of illumination with traditional and spatially-coherent 
light sources.  The light bulb acts as a large number of independent 
light sources, so the illuminated area is determined by the spatial extent 
of the source.  The spatially coherent laser beam appears to originate 
in a point, so it illuminates an area equal to the point spread function of 
the lens system. 

 
Spatially coherent lasers behave very differently.  The optical fields from different 
parts of their output apertures have a well-defined phase relationship (typically 
they are all in phase), so that the light appears to be, or can be made to appear to 
be, originating from a single point.  The illuminated area in the image plane is 
then equal to the point spread function of the lens system.  
 
The consequence of the short length of the GLM ribbons and the large ratio of 
length (perpendicularly to the ribbons) to width (along the ribbons) of the 1-D 



420      Photonic Microsystems 

grating modulator is that practical swept-line displays need lasers for illumination.  
This creates both challenges and opportunities.  The first consideration is avail-
ability.  A fully functioning display requires three colors, red, green, and blue, that 
are individually modulated and projected.  Fortuitously, lasers and optical para-
metric oscillators are now available at all wavelengths in the visible spectrum.  
There are, however, big differences in cost and complexity of lasers of different 
colors.  Semiconductor lasers emitting in the red are powerful, efficient, reliable, 
and inexpensive.  They are also available as laser arrays that eliminate the appear-
ance of speckle in swept-line displays (see below).  Semiconductor lasers are also 
commercially available in the green and blue, but they are less mature, so their 
specifications and diversity of designs cannot match those of red laser diodes.  The 
technology is advancing rapidly, however, and new products with improved char-
acteristics are continuously being developed.  It is a safe bet that high-power, low-
cost blue and green laser-diode arrays will become available in the near future.  
When that happens Grating Light Modulator systems for a wide range of applica-
tions will become competitive in the market place.  These systems will befit from 
the very high brightness, as well as the efficient and reliable operation and very 
long lifetimes of semiconductor lasers.  
 
Beyond availability and price, another issue that we must consider when using la-
ser for projection is speckle.  Speckle is the spatial pattern a laser spots makes 
when reflected off a scattering surface.  To observe it, simply shine a laser pointer 
on a piece of paper and note that the illuminated spot is not uniform, but has a 
well-developed amplitude modulation.  If the laser is single-mode, i.e. its output is 
a single optical beam with a well-defined phase front, then the contrast in the 
speckle pattern is unity.   
 
The speckle is, however, not inherent to the laser beam itself.  If we were to take a 
picture of the laser beam directly (never look directly into a laser, not even a low-
power laser pointer!), the picture would not show a speckle pattern, but rather a 
smoothly varying intensity distribution as we would expect from a Gaussian beam.  
The speckle we see on the projection screen is a consequence of the irregularity of 
the scattering surface, as illustrated in Fig. 10.25.  If we consider an area of the 
projection-screen corresponding to the minimum resolvable spot for the viewer, 
then the perceived brightness of the area depends on the direction of the viewer 
and on the details of the scattering surface.  If the light from different parts of the 
area interferes destructively, then the area appears dark, while if the light inter-
feres constructively, it appears bright.  The observed intensity pattern therefore 
has the same randomness as the scattering surface.   
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Figure 10.25. Laser speckle is caused by the irregularities of the surface that the laser 
illuminates.  The height differences of the scattering surface create 
phase differences so that light from different parts of the surface inter-
fere differently in different directions.  The result is a speckle pattern 
with 100 % contrast if the laser has a single spatial mode.  

 
Laser speckle is very noticeable and degrades the image quality of laser projec-
tions.  Fortunately, it is relatively straightforward to remove it or decrease it to 
negligible levels.  The trick is to mimic a traditional light source, which, as de-
scribed above, really should be thought of as several independent light sources.  
By overlaying several speckle patterns they average so that their contrast is re-
duced.   
 
A convenient way to this is to use a laser array as shown in Fig. 10.26.  The lasers 
in the arrays do not have a fixed phase relationship, so they are indeed independ-
ent light sources.  The coherence of the individual lasers allows the output of the 
array to be focused to a tight line on the GLM pixels, but each pixel along the line 
is illuminated by several neighboring lasers.  Once the light is projected on a 
screen, the each pixel will show light coming from several lasers from slightly dif-
ferent directions.  The speckle patterns created by each laser are independent and 
will average out to an almost uniform illumination.   
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Figure 10.26. A semiconductor laser array used for swept-line projection displays 
consist of laser that operate independentlyd, so that the array is spa-
tially coherent on the short axis and in-coherent on the long axis.  The 
outputs from the different laser are shown in different shades for clar-
ity.  The array output can be focused to a narrow line in which each 
point is illuminated by several overlapping laser beams coming from 
slightly different directions.  The effect is to average out the speckle 
pattern from each laser and produce a uniform projection. 

10.7 Summary of Grating Light Modulators 

Most optical detectors are square-law devices, i.e. they are sensitive to optical 
power or intensity, but not directly to optical phase.  That does not mean that it is 
useless to modulate the phase of optical signals.  On the contrary, phase modula-
tion is often more efficient than direct amplitude modulation.  In Chapter 9 we 
demonstrated that phase singularities result in images with intensity minima that 
are smaller and have better contrast than those produced by any amplitude modu-
lation.  In this chapter we show that phase modulated gratings can be switched be-
tween reflecting and diffracting states, and that this switching can be converted to 
amplitude modulation by simple optical systems.  The main conclusion of the 
phenomenological description in the first part of this chapter is that phase modula-
tion followed by PM to AM conversion in diffraction gratings is straightforward to 
implement using MEMS technology, and that this approach leads to Grating Light 
Modulators of simple mechanical and optical designs.  
 
The phasor representation of optical fields, that was first introduced in Chapter 2, 
is used here to model the optical characteristics of GLMs.  It gives us an accurate 
                                                           
d  There are also phased arrays of semiconductor lasers, and those are very useful 

for many applications, but in project displays we prefer arrays of independent 
lasers.  
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dependence of reflected and diffracted light on grating amplitude, and allows us to 
establish the analog and digital modulation properties of the GLM.  The phasor 
representation is also a very useful tool for investigation of dispersive properties, 
and it leads us to the high-contrast GLM design.   
 
The basic phasor description cannot answer questions about GLM scaling, how-
ever.  To understand how far we can miniaturize the GLMs, we model it as a peri-
odic array of phase delays and adapt the standard Fraunhofer diffraction formula 
to this structure.  The resulting equations tell us the required size and number of 
grating elements in practical GLMs, and guide the design of MEMS implementa-
tions.  
 
The last part of the Chapter is devoted to a detailed description of GLM projection 
displays.  This example illustrates how well phase-modulating MEMS arrays are 
suited to this application.  The small required displacement of only λ/4, makes the 
projected arrays compact, reliable, and inexpensive.  The small inertia and effi-
cient actuation also gives the GLMs high speed, which enable the swept-line ar-
chitecture and further reduces complexity and cost. 

Exercises 

Problem 10.1 - Phasor Representation 

Use the phasor representation to describe the following optical components (see 
Chapter 6 for their description): 

a. Mach-Zender Interferometer 
b. 3-dB coupler 
c. Fabry-Perot Interferometer 
d. Ring filter 
e. Diffraction grating 
f. What are the advantages, if any, of the phasor representation in each case?  

If you find the phasor representation contrived and therefore useless in any 
of these cases, explain how. 

Problem 10.2 - Holographic Display 

a. How can the high-contrast GLM be modified to give both amplitude and 
phase modulation? 

b. Show how this in principle can be used to create a holographic display. 
c. Comment on the practicality of such a holographic display.  What are the 

potential commercial uses of holographic displays? 
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Problem 10.3 - Corner Cube Grating 

Consider the corner-cube grating shown in the figure.  Each element of the grating 
is a corner cube in two dimensions (i.e. there is no variation in the dimension per-
pendicular to the plane).  Note that each corner cube retro reflects the light that is 
incident on it. 
 

Substrate 

ΨiΨo

 
Corner Cube Grating.  Each corner retro reflects the light, so that a diffraction pattern 
is formed by the interference of the retro reflections. 

 
a. Follow the procedure of Chapter 10.5 and write an equation for the retro 

reflected diffraction pattern.  Make any reasonable simplifying assumption, 
but justify their use. 

b. What are the advantages and disadvantages of this structure compared to 
traditional gratings? 

c. What functions could you implement if each corner cube can be moved 
vertically or horizontally by MEMS actuators? 

d. Describe how you could implement the corner-cube grating using IC and 
MEMS fabrication techniques.   

Problem 10.4 - GLM Corner Cube 

a. How can you combine a GLM with a corner cube (i.e. a single element of 
the corner-cube grating of Problem 10.3) to create a retro reflecting modu-
lator?  

b. How is the efficiency of the modulator affected by the incident angle? 
Analyze the modulator in 2-D to simplify the expressions. 

Problem 10.5 - Diffractive Corner 

Consider the 2-D diffractive corner in the figure.  The purpose of this structure is 
to retro reflect the light in the first order diffraction modes of the grating.  Assume 



10:  Grating Light Modulators            425 

that the truncated pyramidical hole is anisotropically etched in <100> silicon, so 
that the angle β is given by ( ) °≈− 7.542tan 1 .   
 

α

Substrate 

β

 
Diffractive Retro Reflector.  The first order diffracted modes of the grating are reflected 
back in the direction of the incident light. 

 
a. Show that in 2-D and under the small-angle approximation, all light that 

hits the diffractive retro reflector and that is diffracted into the first order 
diffraction modes of the grating, is sent back along the incident path. 

b. How can the principle of the diffractive retro reflector be extended to 3-D? 
c. What are the advantages and disadvantages of the diffractive retro reflector 

compared to the corner cube? 

Problem 10.6 - Tilting GLM 

The GLM below have tilting, rather than piston-motion, micromirrors. 
 

Axis of rotation  

 
Grating Light Modulator with tilting mirrors. 

 
a. Draw a schematic of an optical system that uses the tilting-mirror GLM. 
b. What is the minimum distance that the edges of the mirror have to move? 
c. Compare and contrast the tilting-mirror GLM to the standard GLM.  In 

what types of application would you prefer one over the other? 
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11.1 Fiber Optic Modulators 

Chapter 10 covers the basics of Grating Light Modulators (GLMs) and presents a 
set of tools and equations for their design and modeling.  GLM system integration 
is illustrated through the example of a projections system with Schliern optics.  In 
this chapter we extend the treatment to GLMs for fiber optics.   
 
Grating modulators are among the fastest micromechanical systems with demon-
strated response times as low as 20 ns [1].  Still, they are not nearly fast enough to 
be used to encode data on fiber optic communication channels where data rates 
now exceed 40 Gb/s.  The roles for GLMs in fiber optics are therefore as variable 
attenuators, variable spectral filters, channel equalizers etc.  In these applications, 
the GLM changes the signal strength of a one or more fiber channels at a rate that 
is low compared to the signal frequency.  The signal itself is typically digital on-
off keying or some more complex data format, but the GLM operates as an analog 
modulator, i.e. it controls the signal strength in a continuous fashion.  
 
Optical modulators for fiber optics are quite different from the projection-display 
modulators described in Chapter 10.  Ideally, all optical modulators should have 
perfect contrasta, and no wavelength dependence or polarization dependence.  In 
addition to these first order operational characteristics, we would also like our 
modulators to have high power handling, linear operation (i.e. the transmission 
should be a linear function of the control signal, so that analog signals can be re-
produced with perfect fidelity), low power consumption, insensitivity to environ-
mental influences including temperature variations, long-term stability, small size, 
and low cost.  No real modulator will have all these properties.  The best we can 
do is to prioritize the characteristics that are the most important for the target ap-
plication.   
 

                                                           
a  Perfect contrast means that in the on state, the modulator transmits all the light 

without attenuation, while in the off state, the modulator transmits no light.  Per-
fect contrast therefore also implies zero insertion loss, but loss is not nearly as 
important as leakage in the off-state. 
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Fiber optic data modulators do typically not need as high contrast as display 
modulators.  Most systems use digital modulation formats, and small differences 
of the off-state are no more important than similar differences of the on state.  On 
the other hand, modulators that are designed for analog operations like variable at-
tenuation, channel equalization, and traffic grooming, i.e. exactly the types of ap-
plications where optical MEMS plays a significant role, do require high contrast.  
The extreme example is modulators that are used as a part of a switch to block a 
signal so that another can be introduced.  In such systems, the cross talk (ratio of 
unwanted to wanted signal power) should be better than -40 dB [2]. 
 
Dispersion is also very important in fiber-optic systems, because spectral phase 
distortion leads to temporal pulse distortion that compromise signal fidelity.  The 
effects of linear dispersion can in principle be reversed or mitigated through pre-
distortion.  When combined with optical non-linearities of the fiber, however, dis-
tortion will lead to non-reversible signal degradation.  Dispersion must therefore 
be tightly controlled, but the total dispersion is dominated by dispersion of the fi-
bers, so dispersion in discreet modulators typically can be ignored.  
 
Lastly, polarization dependence is much more of a challenge in fiber optics than in 
displays.  In projection displays we can control the polarization of the illumina-
tion, so that polarization dependence can be ignored.  Controlling input polariza-
tion is impractical in fiber optics.  As we learned in Chapter 5, standard, single-
mode fiber is not really single mode at all, but rather two-mode due to the pres-
ence of two orthogonal polarization modes.  On perfect fibers, these two modes 
are degenerate (i.e. they have the same effective index of propagation constant) 
and uncoupled.  The irregularities of real fiber will, however, lift the degeneracy 
and introduce time-varying coupling between the modes.  Consequently, real fiber 
exhibit polarization-mode dispersion (pulse spreading due to differences of propa-
gation constant for the two polarizations) and time-varying output polarization.   
 
Polarization-mode dispersion is only important in very high capacity systems, but 
the time varying output polarization means that the state of polarization is un-
known in practical fiber systems.  Some specialized systems use polarization 
maintaining fiber or truly single-mode fiber to avoid polarization variations, but 
the standard solution is to use polarization independent components.  Polarization 
dependence can be achieved by separating the polarizations and treating them in-
dependently before recombining, but the simpler, more practical, and less expen-
sive solution is to construct the optical components to be inherently polarization 
independent.   
 
The focus of this short chapter is the design of GLMs to meet fiber optic system 
requirements.  In section 11.2 we use the phasor representation to model the be-
havior and optimize the dispersion characteristics of the three-level GLM.  Then, 
in section 11.3, we consider geometries that minimize the polarization depend-
ence.  We show that the linear geometry of Chapter 10 is inferior to two-
dimensional gratings with square and hexagonal unit cells.   
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11.2 Low Dispersion Grating Light Modulators 

The high-contrast grating light modulator described in Chapter 10 is ideal for dis-
plays and a number of other applications that require very high contrast, because it 
produces a near perfect dark state.  We achieve this in a Schlieren projection sys-
tem, with a high-contrast grating light modulator that has a reflective state with 
very low dispersion.  The dark state is therefore dark over a broad band of optical 
wavelengths.  Bright pixels are created by setting the modulator to its diffractive 
state.  This state has some dispersion that leads to coloring of the bright pixels, but 
that can be ignored in most cases, or compensated for if necessary.   
 
On the screen of the Schlieren display the bright pixels are created by combining 
two (or more) diffracted orders.  This combination means that the fields of the two 
diffracted orders interfere.  The resulting interference pattern average over the 
pixel and is therefore on no consequence to the viewer.  (This should not be con-
fused with the speckle pattern that we must take care to remove from any projec-
tion display with laser illumination.)  In display applications we can therefore 
think of the combination of the diffracted orders as a simple addition of the optical 
powers in each order.   
 
If we try to use a similar Schlieren system in a fiber optical modulator or switch, 
we can no longer ignore the interference between the diffracted orders.  If we 
place a fiber in the position of a bright pixel, the incident angles of the diffracted 
orders and the interference between them will lead to very inefficient coupling of 
the light into the fiber.  In principle we can combine the two diffracted orders with 
high efficiency, but it requires another grating or other optical device, and the 
phase relationships of the two diffracted beams must be controlled with sub-
wavelength accuracy (interfereometric precision).  One possible way around these 
problems is to use only one diffracted order and block the other, but that means we 
are throwing away more than half the light, so it is not an efficient design.   
 
The conclusion is that Schlieren type optics is impractical for fiber optics.  What 
we need is a modulator that uses the reflective state as the bright state (on state).  
The diffractive state will then be the dark state (off state) and must be engineered 
for low dispersion so we can achieve high system contrast.   

11.2.1 Three-level Grating Light Modulator 

To see how to design a modulator with a low-dispersion reflective state, consider 
the three-level grating of Fig. 11.1.  Here the movable and fixed ribbons are of dif-
ferent widths, and the space between them is large enough that we also get signifi-
cant reflections from the substrate.  There are therefore three reflected-field com-
ponents (phasors) that are added to give the total reflected field.  The relative 
strengths of these field components are given by the relative widths of the ribbons 
and the space that separates them.   
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Figure 11.1.  Three-level grating modulator designed for low dispersion of the dif-
fractive state.  The fixed ribbons are an integer number of half wave-
lengths above the substrate, so the reflections from the fixed ribbons 
and the substrate are always in phase at the center wavelength.  In the 
reflective state, all reflections are in phase at the center wavelength, but 
there is some dispersion due to the ribbon-substrate gap.  In the diffrac-
tive state, the movable ribbons are moved down so that their reflections 
are out of phase with the reflections from the fixed ribbons and from the 
substrate.  This creates a low-dispersion diffractive state, because at 
off-center wavelengths, the phase error of the fixed-ribbon-to-substrate 
gap compensates for the phase error of the fixed-to-movable ribbon 
gap.   

 
The reflections from the fixed ribbons and from the substrate are in-phase at the 
center wavelength.  In the structure shown in Fig. 11.1, this is achieved by setting 
the height of the fixed ribbons over the substrate to 1.5 times the center wave-
length, so that the total phase difference between the reflections off the fixed rib-
bons and the substrate is 6π radians.  In principle we could have chosen the path-
length difference to be any integer number of half wavelengths, corresponding to 
an integer number of 2π phase difference. 
 
In the reflective state, the movable ribbons are in the same plane as the fixed rib-
bons, so that all the reflections are in phase at the center wavelength.  The phasors 
representing this state are shown in green in Fig. 11.2a).  When the incident light 
is at a slightly longer wavelength, the substrate reflections are delayed by a little 
less than 6π radians, so the overall reflected light is also lagging behind in phase 
as demonstrated by the dashed phasors in Fig. 11.2a).  Associated with this phase 
lag, there is also a slight amplitude reduction a shown.   
 
The substrate reflections of wavelengths that are a little shorter than the center 
wavelength, on the other hand, accumulate slightly more than 6π radians phase de-
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lay relative to the ribbon reflections.  The result is that the overall reflected field is 
advanced in phase relative to fields at the center wavelength, and again there is an 
associated reduction in amplitude.   
 
Figure 11.2a shows that the three-level grating modulator has significant disper-
sion in its reflective state.  The magnitude of the dispersion is similar to that of the 
diffractive state of the basic modulator and the high contrast modulator in the dif-
fractive state.  This is acceptable, however, because in the three-level grating 
modulator the reflective state will be used as the on state, so the dispersion will 
only slightly color the output light without significantly reducing contrast.    
 
 Reflective 

State 
Diffractive 

State 

a) b)  
 

Figure 11.2.  Phasor representation of three different wavelengths reflected from a 
three-level grating light modulator designed for low dispersion of the 
reflected dark state.  At the center wavelength (solid), all the phasors 
add in phase, while at wavelengths slightly longer (dashed) or shorter 
(dotted) than the center wavelength, phase errors lead to significant 
dispersion in the reflective state.  The diffractive state, on the other 
hand, has very low dispersion, because the phase errors of the substrate 
and movable-ribbon reflections compensate each other.    

 
The usefulness of the three-level grating modulator becomes clear when we con-
sider dispersion from its diffractive state.  In this state, the movable ribbons are 
positioned one quarter of a center wavelength below the fixed ribbons, so the 
movable-ribbon reflections lag behind the fixed-ribbon reflection by π radians.  At 
the center wavelength, the substrate and fixed-ribbon reflections are in phase (or 
more correctly 6π radians out of phase), and their sum is exactly cancelled by the 
movable-ribbon reflections as shown in Fig. 11.2b).   
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To get perfect cancellation, the combined width of the movable ribbons must 
equal the combined widths of the fixed ribbons and the separating gaps.  In other 
words, perfect cancellation requires:  

cba =+  (11.1)

where a is the fixed ribbon width, b is the combined widths of the two gaps in 
each period of the grating, and c is the width of the movable ribbons.   
 
At wavelengths slightly longer than the center wavelength, the phase difference of 
the reflections from the fixed gratings and from the substrate is slightly less than 
6π radians, so their sum also lags in phase relative to the fixed-ribbon reflections.  
Similarly, the movable-ribbon reflections are not quite π radians behind the fixed 
ribbon reflections.  The net result, shown by dashed phasors in Fig. 11.2b is that 
the total reflected field is very close to zero even for wavelengths longer than the 
center wavelength.  
 
We can go through an analogous argument for the wavelengths shorter than the 
center wavelength.  Now the substrate reflections are more than 6π radians, and 
the movable-ribbon reflections more than π radians, behind the fixed ribbon re-
flections.  Again the result is that the total reflected field is very close to zero also 
for wavelengths that are shorter than the center wavelength.  This is shown in dot-
ted phasors in Fig. 11.2b. 

11.2.2 Optimum Design of Three-Level Grating Modulator 

The cancellation of the reflected fields from the diffractive state of the three-level 
grating modulator is not exact.  To find the optimum design and to be able to cal-
culate how much residual dispersion we are left with, we must consider the vector 
sum for non-center wavelengths in detail.  The goal is to have the three vectors 
representing the reflections from the fixed ribbons, the movable ribbons, and the 
substrate form a triangle as shown in Fig. 11.3.  In other words, we would like to 
find a combination of lengths (a,b,c) and angle ratio (α/β), that allow the three 
vectors to form a triangle.   
 
The ideal solution would be independent of the angle β, because that would mean 
that the solution is valid for all wavelengths.  Unfortunately, it is immediately 
clear that such a solution do not exist.  If we set β=0, we see that the solution is 
a+b=c, as noted above.  It is obvious, however, that this solution does not work 
for β≠0.  The best we can hope for is therefore to find a solution that minimizes 
the dispersion across the wavelength range of interest.   
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Figure 11.3.  Phasors representing the reflections from the fixed ribbons (a), sub-
strate (b), and the movable ribbons (c) of the three-level grating light 
modulator in the diffractive state.  The angles α to β represent the 
phase lag relative to the fixed ribbons of the movable ribbons and the 
substrate respectively.       

 
In Figure 11.3, the vector lengths, a, b, and c represent the areas of the fixed rib-
bons, gaps, and movable ribbons, while the angles α and β are the phase of the re-
flections from the movable ribbons and the substrate relative to these same reflec-
tions at the center wavelength.  The ratio k=β/α is therefore a constant equal to the 
ratio of the distance of the movable ribbons and the substrate from the fixed rib-
bons at the center wavelength.  The numerical value of the constant k=β/α must 
be an even integer, because the operation of the three-level grating modulator re-
quires that the substrate must be an integer number of half center wavelengths be-
low the fixed ribbons, while the movable ribbons must be a quarter of a center 
wavelength below the fixed ribbons in the diffractive state.  For the specific modu-
lator design of Fig. 11.1, the ratio is 6, but it could in principle just as well have 
been 2 or 4 or some other even integer.     
 
We start our analysis of the vector, or phasor, sum representing the reflections 
from the three-level grating modulator by using simple geometrical identities to 
write:  

( )βπ −⋅−+= cos2222 baabc  (11.2) 
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For small angles, this simplifies to: 
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In the small-angle limit, we find the following solution that is indeed independent 
of wavelength:   
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k
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(11.5)

and 

bac +=  (11.6)

The second part of this solution is what we earlier found to be valid at the center 
wavelength.  It simply says that the vector must add up to zero when they are par-
allel or close to parallel (small angels).  We also find that the ratio of the movable-
ribbon reflections to the gap reflections must equal the ratio, k, of the phase lags.  
To first order, the value of k does not matter, so we are free to choose it so that we 
can simplify the actuation or the fabrication of the modulator, or we can use some 
other criteria that is important for a given application or technology. 
 
The modulator of Fig. 11.1 fulfills both conditions (Eqs. 11.5 and 11.6), so it does 
indeed have zero dispersion in the limit of small optical bandwidths (small wave-
length variations leading to small phase angles).  In fiber optics, the fractional 
bandwidths are small, typically on the order of a few percent, so the small-angle 
solutions are often sufficient.   

11.2.3 Contrast in the Three-level Grating Modulator 

As noted above, the solution is not perfect for finite optical bandwidths.  To see 
how well the three-level modulator extinguishes broadband light, consider a situa-
tion where the spectrum of the incident light is centered at a wavelength λc and 
has a fractional bandwidth of Δλ/λc.  For the shortest wavelength in the incident 
spectrum, λc+Δλ, the phase lag of the reflections from the substrate is 
0.5·k·π·Δλ/λc, and for the longest wavelength it is -0.5·k·π·Δλ/λc.  Similarly, the 
phase lags for the reflections from the movable ribbons in the diffractive state are 
±0.5 π·Δλ/λc for the extreme wavelengths.  We can then use vector summation to 
find the power reflectivity at the shortest wavelengths in the diffractive state: 
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Combined with the condition bac += , this gives 
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This is a relatively complex-looking formula, but it only has two free parameters, 
the factor k and the fractional bandwidth Δλ/λ, and it is further simplified by the 
fact that k can only take even integer values.  To gain an understanding of how 
low the reflectivity is at extreme wavelengths, we plot the reflectivity as a function 
of fractional bandwidth for a few values of the factor k.  This is done in Fig. 11.4 
for fractional bandwidths up to 0.5, which is roughly the fractional bandwidth of 
white light.  
 
It is immediately clear from Fig. 11.4 that the reflections at a fractional bandwidth 
of 0.5 are too high for all three designs.  Even in the best case of k=2, the reflec-
tions at the extreme wavelengths are just a little less than -10 dB, leading to con-
trast values on the same order.  This is not sufficient for most practical white-light 
imaging applications that require as high as 30 dB contrast for best image quality 
as discussed before.      
 
For fiber optics, on the other hand, the situation looks very good.  The Conven-
tional band, or C-band for short, of single-mode fiber optical communications 
ranges from 1530 nm to 1565 nm, so Δλ/λc ≈ 0.02.  Over this narrow wavelength 
range we see from the figure that the attenuation of the reflected light is better 
than -50dB even in the worst case.  If we also include S-band (for short-
wavelength band), that goes from 1460 nm up to C-band, and L-band, that goes 
from C-band to 1625 nm, we have a total fractional bandwidth of about 0.1.  In 
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this case the maximum attenuation is about -24 dB for k=6, -29 dB for k=4, and -
38 dB for k=2.  These numbers are much worse than for C-band, but still useful 
for many applications in fiber optics.  
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Figure 11.4. Reflection on a dB scale as a function of relative bandwidth from a 

three-level modulator in the diffractive state.  The three curves repre-
sent the reflection for three different values of the phase difference be-
tween the two fixed levels of the grating.  The solid line is for a phase 
difference of 2π, the dashed for 4π, and the dot-dashed for 6π.   

 
It is possible to improve the contrast across a broad input spectrum by allowing 
some reflection at the center wavelength.  That allows us to create two reflection 
nulls at wavelengths on either side of the center wavelength.  The key here is the 
symmetry of Eq. 11.3.  Consider the situation where we have an input spectrum 
with a width Δλ centered at λc.  By choosing the ratio c/b so that Eq. 11.3 is ful-
filled at β= 0.25·k·π·Δλ/λc, it is also automatically fulfilled at β=− 0.25·k·π·Δλ/λc.  
This value of c/b and the corresponding value of a/b found from Eq. 11.3, creates 
two nulls in the reflection spectrum at λc±0.25·Δλ.  There will be finite reflections 
at λc, but the maximum reflection for any wavelength in the spectrum will be 
lower than when we use the small angle approximation to Eq. 11.3.   
 
We will not pursue this approach in detail here, but rather leave it as an exercise 
for the reader.  The conclusions of the analysis will not change substantially, how-
ever:  The three level grating is excellent for relatively narrow band applications, 
for example fiber optic modulators in C-band, but not for applications that require 
truly wide-band operation like imaging with a white-light source.    

11.2.4 Wavelength Dependence of Attenuation 

Figures 11.2 and 11.3 do not tell the whole story about the three-level grating 
modulator.  In addition to the purely reflective state explained in Fig. 11.2a, and 



438      Photonic Microsystems 

the purely diffractive state of Fig. 11.2b and Fig. 11.3, we must also consider in-
termediate states as shown in Fig. 11.5.  We see that if the modulator is set to give 
a small, but finite reflection at the center wavelength, then the longest wavelength 
will get a significantly larger reflection, while the shortest wavelength will get 
less.  The result is that there is significant variation of attenuation across the opti-
cal input spectrum.  
 
The variation of attenuation cross the spectrum from the three-level modulator as 
illustrated in Fig. 11.5 is of little consequence in some applications, but creates 
problems in others.  In particular, Voltage-controlled Optical Attenuators (VOAs) 
used to flatten the spectrum in WDM fiber optic systems must meet stringent re-
quirements on spectral variation at different levels of attenuation.  VOAs based on 
a single three-level grating modulator has been commercialized for C-band opera-
tion, but operation across the combined S, C, and L bans require more complex 
solutions incorporating several modulators.   
 

 
 

Figure 11.5.  Phasor representation of three different wavelengths reflected from a 
three-level grating light modulator in an intermediate state.  At the cen-
ter wavelength (solid), the phasors add to the selected magnitude, but at 
longer wavelength (dashed) the magnitude is larger than selected, and 
at shorter wavelengths (dotted) it is smaller.  The result is significant 
variation of attenuation across the spectrum.        
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11.2.5 Alternative Modulator Architectures 

The three-level grating modulator of Fig. 11.1 is a simple and ingenious solution 
to the problem of making a modulator with low dispersion in its reflective state.  
The structure of the three-level modulator is practically speaking not any more 
complicated than the basic or high-contrast modulators, because in all three cases 
we must fabricate one and only one layer of ribbons above a substrate, and all the 
movable ribbons move uniformly, i.e. only one control voltage is needed.   
 
Clearly there are more complex variations of the grating modulator that can be 
very useful for specific applications.  For example, the three-level modulator of 
Fig. 11.6 has the same ribbon structure as the three-level modulator we have dis-
cussed up to now, but both of the two sets of ribbons are movable.  This simple 
modification allow us to optimize the modulator for a given center wavelength.  
We move all ribbons such that their reflections are in phase with the substrate re-
flections (or more correctly out of phase by some integer of 2π radians) at the cho-
sen wavelength.  Around this center wavelength we can then modulate the reflec-
tance spectrum by moving the set of wider ribbons from the reflective state in 
which all ribbons are in the same plane, to a diffractive state in which the reflec-
tions from the two set of ribbons are out of phase (i.e. the path-length difference is 
π radians).    
 

 Ribbons in 
one plane => 
reflection 

Ribbons in 
separate planes 
=> diffraction 

 
 

Figure 11.6  The figure shows two overlaid states of a three-level grating modulator 
with two sets of movable ribbons.  In the reflective state (dark colored 
ribbons) the ribbons are all in the same plane, and the reflections from 
the ribbons are all in phase.  In the diffractive state (light colored rib-
bons with dashed outlines), every other ribbon is actuated to create a 
path length difference of π radians at the chosen center wavelength.   

 
Being able to optimize the path-length differences for operation at a chosen wave-
length does not give the modulator more bandwidth, but we can choose where in 
the spectrum that bandwidth is applied.  For example, we can modulate three dif-
ferent light sources in the visible wavelength range, let’s say Red, Green, and 
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Blue, sequentially with the same modulator, and achieve high contrast for each 
color.  So even though the three-level modulator cannot directly modulate white 
light with high contrast in the reflective state, it can indeed be used to create a 
high-contrast RGB image using three different light sources.      
 
The three-level grating modulator of Fig. 11.6 is only marginally more complex to 
fabricate than the standard three-level modulator.  Clearly there are many varia-
tions on this basic structure that allows optimization of one important figure of 
merit or other.  For example, we can envision making four-level modulators that 
have very good broad band contrast, and that combine good color filtering in one 
state with very high optical efficiency in another.  For almost any application that 
can be performed as a sequence of relatively narrow band modulation functions, 
there will be a grating light modulator that performs very well and that is simple to 
fabricate and operate in practice.  This illustrates the point we made in the intro-
duction to this chapter.  The flexibility and precise dimensional control that we get 
from integrated-circuit fabrication technology, makes MEMS the preferred tech-
nology for implementations of grating modulators.      

11.3 Polarization Independent Grating Light Modulators 

In our discussions so far we have modeled the grating light modulator in all its 
variations as one-dimensional in the sense that the optical interaction between the 
incident light and the grating is confined to a plane, in which the grating is peri-
odic in one dimension and uniform in the other.  In reality, of course, the gratings 
are three-dimensional objects as shown in Fig. 11.7.  A complete model of the op-
tical interaction would have to include the fact that the gratings have depth that 
leads to shadowing and other effects, and that they are uniform only over a finite 
length leading to additional diffraction effects from the terminations of the rib-
bons.  In practical grating modulators, these effects have only insignificant influ-
ence on operation so they can, for most practical purposes, be ignored.   
 
Polarization dependence, on the other hand, is an issue that is important for many 
practical implementations for the grating light modulator.  It becomes progres-
sively worse as device dimensions are scaled down.  This is unfortunate, because 
the most important strength of MEMS technology is that it enables miniaturiza-
tion.  Both the lateral and vertical dimensions of the gratings can be controlled 
with high precision.  Vertical precision is of course necessary for phase control, 
while lateral accuracy allows us to create very narrow ribbons.  As for any inte-
grated-circuit device, the tendency is to shrink it to the minimum dimensions that 
can support the desired functionality.  For the grating light modulator, this means 
that the period of the structure will be not much larger than a wavelength.  It is ex-
actly at this length scale that periodic structures exhibit the strongest polarization 
effects.    
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For many applications, polarization dependency is simple to deal with.  For exam-
ple, in a laser-based imaging system, the input polarization to the modulators can 
be held constant so that any polarization sensitivity is immaterial.  Unfortunately, 
there are applications for which this approach will not work.  Notably in fiber op-
tics, the polarization state of the incident light is randomized by temperature de-
pendent and time-varying birefringence on the fiber.  For fiber optic applications, 
it is therefore necessary to modify the grating modulator to remove or reduce its 
polarization sensitivity.  
 

 Movable ribbons Fixed ribbons  

 
 

Figure 11.7  The structure of the grating modulator lead to a number of second or-
der effects, including shadowing of the substrate reflections by the rib-
bons, diffraction from the ribbon terminations, and polarization de-
pendence caused by the electric field of the incident optical beam sees a 
different structure whether the electric field is oriented along or per-
pendicular to the ribbons.  The polarization effects increase as the di-
mensions of the grating ribbons approach the wavelength of the inci-
dent light.     

 
The cause of polarization sensitivity in gratings is their rectilinear geometry.  The 
ribbons of the grating light modulator of Fig. 11.7 interact differently with light 
whether its electric field is pointing along or perpendicular to the ribbons.  This 
realization points the way to the solution to the polarization dependency problem.  
It is caused by the geometry, so we must change the geometry to remove the prob-
lem.  Specifically, we must make a grating that is the same for all polarizations.   
 
One solution is a quadratic lattice with a four-fold symmetric unit cell aligned 
with the lattice as shown in Fig. 11.8.  By symmetry, a grating of this design will 
have the same response to light at normal incidence whether the light is polarized 
along the <10> or the <01> direction of the lattice.  Any linear optical response of 
light at normal incidence must then be completely polarization independent, be-
cause the incident optical field can be expressed as a superposition of fields in the 
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<10> and <01> directions, and the response to each part of the superposition then 
add linearly to give the total response.  
 

<10> 

<01> 

 
 

Figure 11.8  Square lattice with four-fold rotation symmetric unit cell.  Optical de-
vices with this symmetry are polarization insensitive in all linear re-
sponse to light at normal incidence.      

 
The symmetry of Fig. 11.8 guarantees polarization independence only for optical 
fields at normal incidence.  Any tilt between the optical axis of the excitation light 
and the lattice will break the symmetry and allow, but not necessitate, polarization 
dependence.  To minimize polarization effects on oblique incidence and for fo-
cused light (which can be considered a superposition of plane waves at different 
incidence), optical designers therefore often use structures of higher symmetry in 
an attempt to minimize polarization effects.   
 
An example of such a highly–symmetric grating is the Lightconnect grating 
modulator [3] shown in Fig. 11.9.  The design has a square lattice and a circularly 
symmetric pedestal reflector.   
 
The square lattice is a good design for reducing polarization dependence of linear 
optics, but under certain conditions, the hexagonal lattice, shown in Fig. 11.10 is 
better.  To see that the hexagonal symmetry also leads to polarization independ-
ence, consider light polarized in the horizontal and vertical directions (shown as 
solid and dashed vectors in Fig. 11.10).  First we see that by symmetry, the re-
sponse of normally-incident light polarized along the vertical direction and along 
the directions at ±30 degrees to the horizontal must be the same.  The linear re-
sponse to horizontally polarized light, which can be expressed as a superposition 
of fields along the directions at ±30 degrees to the horizontal, is therefore equal to 
the response to vertically polarized light.  As for the square lattice, we have that 
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two orthogonal polarizations have the same response, which means that the struc-
ture is polarization independent at normal incidence.   
 

Movable reflector 

Fixed substrate 
reflectors  

Fixed pedestal 
reflectors  

 
 

Figure 11.9  The Lightconnect grating modulator is optimized for fiber-optic appli-
cations.  It has a three-level reflector design to minimize dispersion, 
and it is four-fold rotation symmetric to minimize polarization sensitiv-
ity.  Reprinted with permission.    

 

 
 

Figure 11.10  Hexagonal lattice and unit cell, whose responses are independent of po-
larization for light at normal incidence and uniform in its polarization 
dependence for off-normal incidence. 
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Both quadratic and hexagonal lattices will in general be polarization dependent to 
light at off-axis incidence.  What makes the hexagonal lattice preferable for certain 
device structures is that the polarization dependence is the same for all directions 
of the projection of the optical axis on the lattice.  In other words, the polarization 
dependence at a given incident angle is the same no matter what direction the op-
tical axis is tilted.  This is not the case for the square lattice, which can have dif-
ferent polarization dependencies for light tilted along different directions.  This 
difference is, however, typically not sufficiently important for the optical designer 
to choose the hexagonal over the square lattice.  The simpler layout and more 
straight-forward wiring of the multiplexing circuitry of quadratic lattices make 
them the choice for many practical array implementations. 

11.4 Summary of GLMS for Fiber Optics 

Fiber optic modulators are quite different from display modulators, because the 
phase sensitivity of coupling to single mode fibers makes Schliern type optics im-
practical for fiber optics.  To get the required throughput, fiber-optic systems need 
modulators that use the reflective state as the on state and the diffractive state as 
the off state.   
 
The most important finding of this chapter is that a three-level GLM can be de-
signed to have very low dispersion in the diffracting state (off state), so that high 
system contrast can be achieved.  The key to the low dispersion of the three-level 
GLM is that in the diffractive state the reflections from the movable ribbons are 
out of phase with the reflections from the fixed ribbons and from the substrate, 
such that the phase error of the fixed-ribbon-to-substrate gap compensates for the 
phase error of the fixed-to-movable ribbon gap at off-center wavelengths.  The 
three-level grating modulator has significant dispersion in its on state.  This dis-
persion will slightly color the output light without significantly reducing contrast.   
 
The most important finding of the last section of this chapter is that the polariza-
tion dependence of the GLMs is due to their geometry, and that gratings with 
square or hexagonal unit cells have no polarization dependence at normal inci-
dence.  At off-normal incidence, hexagonal gratings perform better than ones with 
square unit cells, but the later has the seemingly minor, but often determining, ad-
vantage that it is simpler to lay out and wire.  

Further Reading 

Fiber-Optic Communication Systems, Third Edition, Govind P. Agrawal, Wiley 
ISBN 0-471-21571-6, 2002. 
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Exercises 

Problem 11.1 - Two-Moving-Levels Grating Light Modulator 

The text describes a three-level GLM with one movable level and two fixed levels.  
Consider now a three-level GLM with two movable levels. 

a. Using phasor diagrams, describe the dispersion characteristics of this 
GLM.  What are the advantages of two moving levels? 

b. What type of applications would benefit from a two-moving-levels GLM?  

Problem 11.2 - Single Phase Step Modulator  

The mode selective properties of single-mode fiber make it possible to create a fi-
ber modulator that has only two mirrors (or even only one if the substrate is used 
as a reflector).  Such a modulator can be made with a focusing lens that creates a 
well defined beam waist on the modulator and that captures all specularly re-
flected light, or it can be made by simply sticking the fiber up against the mirrors 
without the use of a lens as shown in the figure.   
 

 Single-mode fiber

D 
 

Single Phase Step Modulator.  The two mirrors create a phase step along the dividing 
line between the mirrors. 

 
a. Explain qualitatively how the modulator works. 
b. Calculate the maximum back reflection as a function of the fiber to-to-

modulator distance D. 
c. Using phasors, show how the back reflection depends on the height differ-

ence of the mirrors, when the phase step is off set from the center position 
by δ. 

d. The modulator can also be made with multiple phase steps.  What are the 
advantages and difficulties of single phase step modulators? 
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Problem 11.3 - Polarization Insensitive Fiber Modulator 

In Problem 11.2 the phase step is along a straight line.  This leads to polarization 
dependence of the modulated output.  The figure shows two attempts at removing 
or reducing the polarization dependence.  

Four square 
mirrors 

Circular 
mirror 

Doughnut 
mirror 

 
Designs of polarization-insensitive phase step modulators.  In the four mirror design, 
pairs of diagonally opposite mirrors move as a unit.   

 
a. Will each of thee designs prohibit polarization dependence?  Explain your 

answer. 
b. What should be the radius of the circular mirror? 
c. Which one of these solutions is more practical? 

Problem 11.4 - Fabry-Perot GLM 

In the GLMs we have described each phase modulator is a simple reflector, and 
phase modulation is created exclusively by changes in path length.  Now consider 
a GLM in which each phase modulator is a Fabry-Perot. 

a. How could you realize such a modulator? 
b. What would be the advantages in terms of required mechanical motion? 
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12.  Optical Displacement Sensors 

12.1 Introduction to Optical Displacement Sensors 

The main theme of this book is manipulation of light, i.e. how to use amplitude 
and phase modulation to shape and direct the optical field.  Mostly we have con-
centrated on positioning and deforming of reflecting surfaces to achieve the de-
sired optical effect.  In this chapter we will consider the opposite; How to use 
measurements of the optical power to deduce the position, deflection, or rotation 
of a mechanical structure.  As in the rest of the book, we will investigate systems 
that, in whole or in part, can be implemented on the chip scale.  We will occasion-
ally mention macroscopic measurement systems, but our focus will be on 
microoptics.   
 
The conceptually simplest optical method for determining the displacement of a 
mechanical object is to reflect a light beam off the object and record the position 
of the reflected beam on a position sensitive detector (PSD).  If the system is set 
up properly, then measurements of the position of the optical beam on the PSD al-
low us to deduce the position of the reflecting object.  One much used displace-
ment sensor of this sort is the so called “optical lever” used in Atomic Force Mi-
croscopes (AFMs) and shown in Fig. 12.1    
 
An alternative method for measuring the position of the AFM cantilever is the fi-
ber interferometer, as shown in Fig. 12.2.  Here the reflected field on the fiber 
consists of two interfering parts; the reflection from the fiber facet and the reflec-
tion from the cantilever.  These parts interfere to set up the back reflected light on 
the fiber and to give the interferometer its position sensitivity. 
 
The theoretical limits for the lever and interferometer measurements are similar 
and exhibit similar wavelength dependence.  In practice, interferometry typically 
achieves better sensitivity, because it is easier to obtain close-to-theoretical per-
formance with the interferometer.  Its sensitivity is practically speaking independ-
ent of the transversal beam size.  The optical beam of the lever has to be focused 
on the detector to achieve good sensitivity, so it becomes impractical in the theo-
retical limit.  Nevertheless, the lever is more used because its sensitivity is good 
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enough for many applications even with large beams, and with a large beam, and 
therefore a long collimated region, it is very simple and practical.    
 

 

AFM cantilever with 
atomically sharp tip  

Position Sensitive 
Detector (PSD) Laser beam incident on 

the cantilever  

α α

z  Δx0  

 
 

Figure 12.1 The Optical Lever is a combination of a moving mirror, here 
placed on an AFM cantilever, and a position-sensitive detector.  
The position of the mirror is found from the position of the optical 
beam on the PSD.   

 

AFM tip

Single mode 
fiber 

 
 

Figure 12.2 The distance from the optical fiber facet to the AFM cantilever is 
measured by observing the back-reflected light on the fiber.  The 
back-reflected light consists of two parts: the reflection from the fi-
ber end and the reflection from the cantilever.  The interference be-
tween these two parts gives the fiber interferometer its sensitivity to 
position of the cantilever. 

 
The literature describes a large number of different interferometer designs and ap-
plications [1].  We will concentrate on a few types that are well suited to chip-
scale integration.  Large scale interferometers are typically creating a spatial pat-
tern of fringes, i.e. alternating band of constructive and destructive interference 
that is called an interferogram.  An interferogram resembles a topographical map 
of a surface with the fringe period corresponding to a height difference of one half 
of a wavelength (in reflection).  Most microscopical interferometers do not pro-
duce spatial interferograms, but rather have only a single output channel with a 
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temporal “fringe pattern”, i.e. a time varying signal that reflects changes in phase 
between two or more signal paths.  We will study several such interferometers, in-
cluding Fabry-Perot interferometers and Michelson interferometers in this chapter.    
 
Another effect that can be used to construct optical position sensors is photon tun-
neling, i.e. transmission mediated by evanescent fields.  The sensitivity of such 
sensors arises from the exponential decay of the evanescent fields and the corre-
sponding exponential reduction in transmission with tunneling distance.  An ex-
ample of such a sensor is shown in Fig. 12.3, where Total Internal Reflection 
(TIR) of the incident optical beam sets of evanescent fields in the tunneling gap.  
The resulting transmission through the tunneling gap is a strong function of the 
width of the tunneling gap (see section 3.5.3).   
 

Evanescent 
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Figure 12.3 Optical-tunneling displacement sensors based on frustrated Total 
Internal Reflection (TIR).  The ratio of transmitted to reflected opti-
cal power is exponentially dependent on the width of the tunneling 
gap.   

 
The sensor of Fig. 12.3 is only one of many possible architectures that utilize pho-
ton tunneling.  Other configurations include optical tweezers used for ultrasensi-
tive displacement and force measurement, and tunneling between coupled states in 
Photonic Crystals.  The former requires large laser systems and it does not lend it-
self to miniaturization, so we won’t consider it further.  PC tunneling sensors are 
covered in Chapter 15.   
 
Any measurement is fundamentally limited by noise, so we must consider noise to 
give a comprehensive account of optical displacement sensors.  An important part 
of this chapter is therefore devoted to the description of noise in optical sensor 
systems.  Armed with models for noise contributions, we compare the fundamen-
tal limits of optical and other displacement sensors and draw conclusions about 
their relative strengths and weaknesses.  
 
Both the optical lever and several interferometers will be described in detail in this 
chapter, but the emphasis is on interferometers because they function well on the 
chip scale and therefore in MEMS implementations. 
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12.2 Interferometers as Displacement Sensors 

12.2.1 The Michelson Interferometer 

Optical interferometry is a traditional technique that is used in a number of high-
accuracy position measurements.  The output of an interferometer depends 
strongly on the relative distance between two (or more) reflectors that create inter-
fering optical fields.  When used as a sensor, the interferometer is set up such that 
the quantity we want to measure, e.g. pressure or acceleration, displaces one re-
flector with respect to the other.  By measuring the output of the interferometer, 
we can deduce the separation between the two reflectors, and from that the magni-
tude of the measurand.  Optical interferometry is a very versatile technique; any 
signal that we somehow can make influence the position of a mirror can be meas-
ured.   
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Figure 12.4  The Michelson interferometer consists of a beam splitter and two 
mirrors; one fixed reference mirror and one movable target mirror.  
The incident light is split into the fixed and variable arms of the in-
terferometer and recombined in the beam splitter after reflecting off 
the mirrors.  The phase difference between the two beams upon re-
combination determines how much light is transferred to the output 
and how much is coupled to the backwards propagating beam. 

 
To understand the basics and develop design equations for interferometric dis-
placement sensors, we will first consider the basic Michelson interferometer of 
Fig. 12.4.  The incident optical beam is split into two beams in the (non-
polarizing) beam splitter.  One beam is directed to a stationary reference mirror 
and the other to a moving target mirror.  The two beams are then reflected back 
from the two mirrors and recombined in the beam splitter so that some of the light 
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is sent back towards the input and the rest of the light is deflected down to the 
output.   
 
Let us now consider the idealized case, i.e. we assume that the monochromatic op-
tical field behaves like a plane wave, and that mirrors are perfectly reflecting and 
perfectly parallel to the phase fronts of the plane wave.  Further we assume that 
the beam splitter divides the incident light into two identical beams, each with ex-
actly half of the incident optical power.  The power1 transfer function of the 
Michelson interferometer is then:  
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where Pout and Pin are the output and input optical powers, λ is the wavelength, 
and ( )movingfixed LLL −=Δ 22  is the total path length difference for the light re-
flected from the fixed and moving mirrors.  (The factor of 2 results from the fact 
that the beams propagate back AND forth over the distances from the beam split-
ter to the mirrors.)  The transfer function of the Michelson interferometer is shown 
in Fig. 12.5. 
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Figure 12.5  The optical power transfer (solid curve) through a Michelson inter-

ferometer as a function of the length difference between the inter-
ferometer arms (ΔL) normalized to the wavelength.  The dot-dashed 
line intersects the transfer functions at its highest-slope points, and 
the dashed curve shows the slope at one of these points. 

 

                                                           
1  Our modeling is based on plane waves, but in practical systems all beams have 

finite cross sections and finite power, so we use power rather than intensity 
(power per area), because power is what we actually measure, and this usage 
simplifies the noise calculation in later sections of this chapter.   

ΔL/λ 
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The power that isn’t transferred to the input in the beam splitter2 will have to 
propagate back towards the source, so the transfer function into the backwards 
propagating beam is the complement of the transfer function to the output:   
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We should note here that in practice most Michelson interferometers are not oper-
ated with their mirrors perfectly normal to the optical axes.  In fact, it is often 
beneficial to tilt one or both mirrors, because that means that the path-length dif-
ference is spatially varying over the output beam.  This creates a spatially varying 
pattern of alternating bright and dark lines in the output.  These are the well-know 
interference fringes that are very useful for observing aberrations on the surface of 
the target mirror.  Also neglected are a number of other effects discussed in Chap-
ter 4.  These include additional phase shift due to focusing and changes associated 
with spatial mode filtering.  
 
The periodicity of the interferometer transfer function leads to ambiguity in the 
measurements of mirror separation if the range over which the target mirror moves 
is larger than half a wavelength.  This ambiguity has led to three very different 
ways of using an interferometer.  For very sensitive measurements, the reflectors 
are positioned such that the arm-length difference nominally equals an odd integer 
number of eights of a wavelength (ΔL=(2n-1)λ/8 where n is an integer).  These 
are the points, marked in Fig. 12.5, where the transfer function has its maximum 
slope and therefore its maximum sensitivity to displacement.  There will be no 
ambiguity in the measurement as long as the target mirror moves less than ±λ/8.    
 
Another common way to use an interferometer is to “count fringes”.  While the 
mirror is moving, we determine how many maxima we see in the output.  The 
number of maxima is then multiplied by half the wavelength to get a measure of 
the mirror motion with an accuracy on the order of the wavelength.   
 
The third mode of operation is to combine accurate power measurements with 
fringe counting to lift the ambiguity caused by the periodicity.  This method gives 
both good accuracy and extended dynamic range, but it requires automatic fringe 
counting, which in turn requires a mechanism for determining the direction the 
                                                           
2 We will not consider the detailed operation of the beam splitter here, but note 
that the description of the interferometer indicates that it must have a π/2 radians 
phase difference between the transmitted and the deflected light, just like the fiber 
directional coupler discussed in Chapter 6.  The key insight is that the transmitted 
and back reflected optical fields must be exactly π radians out of phase at the 
beam splitter.  To reach the output, each beam must undergo one transmission and 
one deflection in the beam splitter, so the total phase difference between transmis-
sion and deflection must be π/2 radians.    
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mirror moves.  Many different techniques involving multiple wavelengths (either 
simultaneously by having a broad band source or multiple sources, or sequentially 
by tuning the wavelength of the source) have been developed for a wide variety of 
applications [2]. 
 
A very useful consequence of the periodic transfer function of optical interferome-
ters is that the sensitivity to displacement is independent of the length of the arms 
and of the difference in arm length.  In other word, it does not matter if the inter-
ferometer is 10 um long or 10 km long provided that we operate at a maximum-
sensitivity point.  This means that optical interferometers are extremely well suited 
for measurements of phenomena that accumulate displacement over a long dis-
tance.  A good example is gravity wave detection.  In the LIGO project [3], optical 
interferometers are used to try to detect displacement of mirrors that are spaced 
tens of km apart.  Gravity waves, that stretch the whole arm of the interferometer 
(hopefully), have a chance of being detected, even though the relative elongation 
of the interferometer arm is very low. 
 
Another type of application that benefit from the periodic transfer function of op-
tical interferometers is measurements of small deflections that might take place 
over a relatively short distance, but at an unknown location.  We can then put the 
reflectors far apart and deduce from measurements that a small displacement took 
place somewhere between the mirrors.  This is very useful in seismic studies 
where accurate displacements are important, but their exact location is not.   
 
So optical interferometers are good for measurements of small differential dis-
placements that take place over long distances, but those are of course not typical 
MEMS or microsystem applications.  As we will see, however, the excellent dis-
placement sensitivity of optical interferometers also makes them very useful for 
chip-scale sensing.  That is particularly true for applications that benefit from re-
mote measurements of displacements.  

12.2.2 Displacement Sensitivity 

To find a mathematical expression for the sensitivity of an interferometer, we take 
the derivative of the power transfer function with respect to the interferometer arm 
length difference: 
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This expression achieves its maximum absolute value when  
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These points are marked as the intersections between the transfer function (blue 
curve) and the straight line at 5.0=inout II .  The absolute value of the slope at 
these maximum points is: 

( )
( ) λ

π2
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=
ΔLd

IId inout  (12.5)

We will use this expression later to determine the minimum detectable displace-
ment (Noise-Equivalent-Displacement) and dynamic range of the interferometer.  

12.2.3 Implementations of Interferometric Displacement Sensors 

The Michelson is much used in spectroscopy where it forms the basis of tradi-
tional Transform spectrometers described in Chapter 13.  Another popular applica-
tion is biomedical imaging where the Michelson interferometer is used in Optical 
Coherence Tomography.  A variation of the Michelson is the Mach-Zehnder inter-
ferometer shown in Fig. 12.6.   
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Figure 12.6  The Mach-Zehnder Interferometer is conceptually very similar to 
the Michelson interferometer.  It consists of two beam splitters and 
two turning mirrors.  The first beam splitter separates the incident 
optical beam into two parts that travel through the two arms of the 
interferometer before they are recombined in the second beam 
splitter.  As in the Michelson, the phase difference between the two 
beams upon recombination determines how much light is trans-
ferred to each output.  The electrooptic phase modulator allows us 
to change the phase in one arm of the interferometer.  This phase 
modulation is converted to amplitude modulation during recombi-
nation in the second beam splitter. 
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The figure makes it clear that the Mach-Zehnder can be viewed as an “unfolded” 
Michelson.  Instead of sending the light back to be recombined in the first beam 
splitter, the turning mirrors relay the optical beams to a second beam splitter 
where the two parts are recombined.  The transfer function and the sensitivity to 
path-length differences is the same in the Mach-Zehnder as in the Michelson inter-
ferometer, and like the Michelson, the Mach-Zehnder is used in a number of ap-
plications.   
 
The Mach-Zehnder lends itself particularly well to optical fiber and optical 
waveguide implementations, and is therefore the structure of choice for interfer-
ometeric amplitude modulators.  The basic principle of interferometeric amplitude 
modulation is illustrated in Fig. 12.6.  By inserting an electrooptic phase modula-
tor in one arm of the interferometer, the relative phase of the two recombining 
beams can be controlled, and therefore the transfer of optical power to the two 
outputs.   
 
The Michelson and Mach-Zehnder interferometers are very flexible devices that 
can be implemented in a variety of ways and successfully be applied in a larger 
number of systems for spectroscopy, optical-phase sensing, and optical modula-
tion.  For chip-scale displacement sensing, however, the Michelson and Mach-
Zehnder are too complex.  A much simpler displacement sensor is the grating in-
terferometer of Fig. 12.7.   
 

Part of the incident 
light is reflected 

Reflective 
diffraction grating 

+1st order 
diffraction mode 

-1st order 
diffraction 

d

Δh 

One part of each unit cell is free to 
move in response to an applied signal    

 
Figure 12.7  Conceptual drawing of the operation and structure of a grating-

interferometer displacement sensor.  The output of the interferome-
ter is a function of the offset, or height difference (Δh), between the 
fixed (grey) and movable (white) sets of reflectors.  By measuring 
the distribution of diffracted and reflected light from the grating, 
the offset can be found with interferometric precision.  This type of 
interferometer can be implemented in a single thin film and is well 
suited for MEMS implementations.   
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As the Michelson and Mach-Zehnder, the grating interferometer has a collimated 
optical beam as its input.  The input beam is incident on and reflected off a binary 
phase grating, i.e. a grating that has a unit cell consisting of two offset reflectors.  
The incident light is partly reflected and partly diffracted, with the ratio of re-
flected to diffracted power depending on the lateral offset between the reflectors in 
the unit cell of the grating.  The reflected and diffracted optical fields constitute 
the two outputs of the interferometer.  These fields radiate from the grating in dif-
ferent directions, so they are easily separated.    
 
Figure 12.8 shows a variation of the grating interferometer.  In this structure, the 
reflections are coming from two planes that are defined by different layers of the 
MEMS structure.  This variation is useful for applications where it is beneficial 
that one of the reflecting surfaces is part of a continuous solid body, e.g. a dia-
phragm in a pressure sensor or a proof mass in an accelerometer.  The operation 
and sensitivity of this interferometer is the same as the single-layer grating of Fig. 
12.7, but the wavelength dependence is larger, because the static height difference 
between the reflectors is larger.   
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Figure 12.8  Grating-interferometer used for pressure sensors or accelerome-

ters.  In these applications it is beneficial that one reflecting sur-
face is a continuous body, so the two reflectors are placed on two 
different layers.  The operation and sensitivity of this sensor is the 
same as the basic grating interferometer of Fig. 12.7, but it is typi-
cally more sensitive to variations in wavelength, because the nomi-
nal height difference (Δh), between the fixed grating and the mov-
able underlying substrate is larger.   

 
The two-layer-grating implementation of Fig. 12.8 puts less demand on the resolu-
tion, or minimum feature size, that the lithography technology must provide.  In 
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this structure, the upper grating can be pattern to have openings with dimensions 
down to the minimum feature size, because the underlying reflector is solid so that 
there are no gaps in the overall grating.  This feature of the two-layer grating is 
particularly useful for applications where the light that penetrates the grating can 
be detrimental to the operation of underlying MEMS structures or electronic cir-
cuitry.   
 
From the explanation of the operation of the grating interferometer, we see that the 
grating interferometer is indeed very similar to the Michelson and Mach-Zehnder.  
All these interferometers have a single input3 that is split into two parts and then 
recombined to create the two outputs.  The difference is that in the Michelson and 
Mach-Zehnder there is a clearly identifiable initial beam splitter, followed by 
propagation paths for the two beams, and finally a beam recombiner (or recombin-
ing beam splitter).  In the grating interferometer, all these functions are combined 
into a single element; the grating itself.  It performs the initial beam splitting and 
propagation-path differentiation by having the beam spatially be separated into 
two parts that hits the two parts of the grating unit cells.  The recombination also 
happens right at the grating where the two parts interfere to create the two outputs.    
 
In deriving the mathematical description of the grating interferometer, we will for 
simplicity neglect any gaps between the reflectors of the grating.  From Chapter 
10 we know that the power of the reflection (or zero-order diffraction) from a bi-
nary diffraction grating can be expressed  

( )θcos1
2
00 +⋅= PD  (12.6)

where P0 is the power of the incident beam, and θ is the total phase shift differ-
ence between the optical fields that are reflected from the two parts of binary unit 
cell of the grating.  In reflection, this total phase shift difference can be expressed 
as 

λ
πθ hΔ⋅= 22  (12.7)

where Δh is the height difference or offset between the two parts of the unit cell, 
and λ is the wavelength of the light.  The power transfer function of the grating in-
terferometer is then  
                                                           
3  Each of these interferometers are linear systems with two outputs, so we 
know from Chapter 2 they also must have two inputs.  The unused input of the 
Michelson is simply a beam that enters the device on the output port, and for the 
Mach-Zehnder the extra input enters the first beam splitter vertically from below.  
In the grating interferometer, the extra input is the reverse of the diffracted field.  
In practice we sometimes use the Michelson and Mach-Zehnder with two inputs, 
but not the grating interferometer, because setting up the reverse of the diffracted 
field is cumbersome.  



12.  Optical Displacement Sensors            459 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ Δ⋅+⋅=

λ
π h

I
I

in

reflection 22cos15.0  (12.8)

where Iout and Iin are the output and input optical intensities of the interferometer.  
Similarly, we find for the power transfer into the nth order diffraction mode, where 
n is larger than zero: 
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We also showed in Chapter 10 that the total diffraction, i.e. the sum over all dif-
fraction orders larger than the 0th, is the complement of the reflection, so the trans-
fer into all diffraction modes is:  
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We see from Eqs. 12.8 and 12.10 that the transfer functions of the grating interfer-
ometer are the same as the for the Michelson and Mach-Zehnder.  This is of 
course what we expect given the similarities between these types of interferome-
ters.  In fact, all interferometers with exactly two interfering fields have a har-
monic response of the form give by Eq. 12.1, provided that ΔL is correctly inter-
preted.  All these types of interferometers therefore have the same sensitivity to 
displacements, given by Eqs. 12.3 and 12.5. 
 
The grating interferometers of Figs. 12.7 and 12.8 are very simple.  They can be 
made in a single layer or single thin film, yet they achieve the same displacements 
sensitivity as much more complex interferometers that contain many more optical 
components.  This simplicity makes the grating interferometer well suited for sin-
gle-chip integration.  Using IC deposition and etching technology together with li-
thography, we can make on-chip grating interferometers with a few simple fabri-
cation steps.  One of the very useful features of IC technology for this purpose is 
that is allows very accurate thickness control of deposited films and of material 
removed by etching.  It is therefore straightforward to create the static offset of λ/8 
shown in Fig. 12.7.  The purpose of this static offset is to operate the interferome-
ter at a point of maximum displacement sensitivity as indicated in Fig. 12.5.   
 
A short coming of the grating interferometer is that it has a limited measurement 
range, over which it will give unambiguous results.  If we are considering only a 
single measurement point, then the periodicity of the response means that dis-
placements that are different by an integer number of half wavelengths cannot be 
distinguished.  There are several different methods to lift this ambiguity.  One way 
is to continuously record and digitize the optical signal and do a signal-vs-time to 
position-vs-time conversion during post-processing of the interferometer data.  
This is unfortunately not as simple as it sounds and may lead to erroneous results 
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on adverse input data.  Another method is the simultaneous use of multiple wave-
lengths to read out the displacement.  Combined with post processing, this method 
yields good results, but the hardware and software are complicated, so it’s used 
mostly in high-end systems applied to critical applications that can justify the high 
complexity and cost.   

12.2.4 Improved Sensitivity of High-Finesse Interferometers 

The interferometers we have studied so far are all two-beam interferometers, i.e. 
the output is created by the interference of exactly two optical beams.  As we have 
seen, all these interferometers have an output with a harmonic dependence on 
some characteristic path-length difference.  Another class of interferometers is 
based on recirculating beams and their outputs can be viewed as resulting from in-
terference between a large or even infinite (at least in theory), number of optical 
beams.  One such device is the Fabry-Perot interferometer of Fig. 12.9.   
 

 

The recirculating 
field creates an 
output field  

A recirculating field is 
built up inside the F-P 

The incident light is 
partly reflected and 
partly transmitted  

1st mirror 2nd mirror 

 
Figure 12.9  Schematic drawing of a Fabry-Perot interferometer with a plane 

wave incident from the left.  The incident light is partially transmit-
ted through the first mirror.  The part that is transmitted is reflected 
back and forth between the two mirrors to build up a recirculating 
field between the mirrors.  If the wavelength of the incident field is 
chosen so that the total round trip between the mirrors equals an 
integer number of wavelength, then the recirculating field builds up 
to a maximum value, and the transmission through the F-P is unity. 

 
In the Fabry-Perot interferometer, like the Michelson and Mach-Zehnder, we have 
one input4 and two outputs; the transmitted light and the reflected light.  For sim-
plicity, we model the input as a plane wave at normal incidence from the left on 
the left mirror.  Some of the incident light is transmitted through the first mirror 
and is reflected back and forth between the two mirrors to build up a recirculating 
field in the resonator.  The steady-state transmitted field is simply the recirculating 
field multiplied by the field-transmission of the right mirror, while the reflected 

                                                           
4 As for two-beam interferometers, the F-P also has in principle two inputs.  Here 
the two inputs are incident fields from the left and right.  In our treatment we are 
only considering the incident field from the left.  
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field is created as an interference between the portion of the recirculating field that 
escapes through the left mirror and the part of the incident field that is directly re-
flected from the same mirror.    
 
The reflected field can be calculated by summing up the field that is reflected from 
the first mirror with all the field components that have been transmitted through 
the first mirror and then passed back and forth through the cavity for a number of 
times before it is transmitted back trough the first mirror 
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where Ei is the incident field on the first mirror, t is the field transmission trough 
the first mirror, and r1 and r2 are the field reflectivities seen from inside the F-P.  
The minus sign before the summation is due to the fact that the reflectivities from 
opposite sides of a mirror when referred to the same reference plane are of oppo-
site signs (see chapter 2).   
 
For simplicity we now assume that the mirrors are lossless, which means that 
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Likewise we can find the recirculating field right inside the first mirror by sum-
ming all field contributing components at this point in the cavity: 
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The transmitted field through the cavity is then  
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From these field relationships, we can calculate the reflectance and transmittance 
spectra of the Fabry-Perot.  We start with the reflectance 
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where we have used the geometrical identity ( )2sin21cos 2 θθ −= .  Similarly we 
find the transmittance 
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We see that the reflectance and transmittance add up to unity, as they should given 
that we have made the assumption that the mirrors are lossless.   
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The reflectance and transmittance of the F-P are shown in Fig. 12.10.  We see that 
the response have many similarities to the response of a two-beam interferometer 
shown in Fig. 12.5.  As for the two-beam interferometer, the response as a func-
tion of L is periodic with a period of λ/2.  In contrast to the harmonic response of 
the two-beam interferometer, the F-P response exhibits sharp maxima in the 
transmittance and sharp minima in the reflectance.  These “resonant” peaks occur 
at wavelengths given by 

L
n πλ 2⋅=  (12.18)

where n is an integer.   
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The graphs show that as the mirror reflectivities are increased, the transmittance 
peaks and the reflectance minima become narrower with increasingly steep slopes.  
This means that by increasing the mirror reflectivities, we increase the sensitivity 
of the F-P to length changes.  By setting up and using a F-P correctly we will 
therefore be able to create a more sensitive displacement sensor than what we get 
with a two-beam interferometer.    
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Figure 12.10  Reflectance (a) and Transmittance (b) of a Fabry-Perot interfer-

ometer with identical mirrors with a reflectivity of 0.3 (solid), 0.6 
(dashed), and 0.9 (dot-dashed).  As the two-beam interferometer of 
Fig. 12.5, the Fabry-Perot has a periodic response as a function of 
the characteristic length L.  One important difference is that the re-
sponse of Fabry-Perots with high reflectivities has a much larger 
maximum slope with respect to length, and therefore can be made 
into more sensitive displacement sensors. 
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To quantify the increase in sensitivity, we simplify the formulas and derive ana-
lytical expressions.  We have already seen that the reflectance and transmittance 
are complementary for loss-less mirrors, so we will carry out the derivations for 
transmittance only.  If we make the simplifying assumption that the F-P is sym-
metric, i.e. the two mirrors have the same reflectivity r=r1=r2, we find the follow-
ing expression for the transmittance: 
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where the parameter ( )22

2

1
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=  is the coefficient of finesse for the F-P.  This 

simple formula shows that the transmittance of symmetric F-Ps is unity at the 
resonant wavelengths.   
 
Based on Eq. 12.19, we find a simple expression for the full-width-at-half-
maximum of the transmittance peaks of symmetric F-Ps: 
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The Finesse5 of a F-P, or other optical device with a periodic transmittance func-
tion, is defined as the ratio of the period to the FWHM of the transmittance peak: 
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The Finesse and coefficient of finesse are typically only used for F-P with high 

mirror reflectivities, so 
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5 The related quantities of Finesse and coefficient of finesse should not be con-
fused. 
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We see that the Finesse, just like the coefficient of finesse, is a function of the mir-
ror reflectivities and nothing else.   
 
The sensitivity of the F-P transmitted power can now be found by differentiating 
Eq. 12.19 with respect to the cavity length:  
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In many situations, the most practical way to operate a F-P displacement sensor is 
to position the mirrors such that the transmittance is close to 0.5 with no signal 
applied.  This is not the point of maximum sensitivity for all values of the Fin-
nesse, but it is close, so we can write: 
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Compared to the sensitivity of 2π/λ of the two-beam interferometer given in Eq. 
12.5, the sensitivity of a F-P is higher by a factor of F/π6.    
 
Equation 12.24 shows that the sensitivity of a F-P displacement sensor is only de-
pendent on the finesse, i.e. the mirror reflectivities, and not on the cavity length.  
This seems somewhat counter intuitive, because the transmission peaks when plot-
ted vs. wavelength or optical frequency becomes narrower as the cavity length in-
creases.  It is therefore natural to assume that a longer cavity with narrower trans-
mission peaks will be more sensitive to displacement of one of the mirrors.  This 
is, however, not the case, because in the longer cavity, the same absolute change 
in cavity length leads to a smaller shift of the position of the transmission peak.  
The narrower peak and the smaller shift exactly cancel so that the sensitivity stays 
the same.   
 
This is illustrated in Fig. 12.11 that shows plots of Eq. 12.19 for different F-P cav-
ity lengths.  The coefficient of finesse is 89.75 (corresponding to mirror reflectivi-
ties of 0.9) for both cavities, but the resonator represented by three narrow peaks is 
four times longer than the other.  As expected, the longer cavity has much sharper 
transmittance peaks.  It is also much less sensitive to absolute changes in the cav-
ity length as illustrated by the dashed lines.  The net effect is that the sensitivity to 

                                                           
6 Finesse is not usually used to describe the two-beam interferometer, but accord-
ing to the definition its finesse is 2, so we see that even though Eq. 12.24 does not 
give the exact value for the sensitivity of the two-beam interferometer, it is close. 
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cavity length changes is independent of the cavity length7, as predicted by Eq. 
12.24.  
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Figure 12.11  Comparison of transmittance, and variations in transmittance, 

through symmetric Fabry-Perot interferometers of different lengths, 
but identical field reflectivities (r1=r2=0.9).  The solid line with 
broader transmittance peaks represents a cavity of length L1, and 
the line with narrower peaks represents a four times longer cavity.  
The dashed lines shows the transmittance after the mirrors are 
moved apart by the same distance ΔL=0.04·L1.  The broader 
transmittance peaks of the shorter F-P translate four times further 
in response to the change in the cavity length.  The net effect is that 
the sensitivity to changes in the cavity length is the same for the two 
F-Ps.  

 
The independence of F-P sensitivity on cavity length is significant for MEMS im-
plementations.  In MEMS it is most often advantageous to scale devices down to 
the smallest sizes, over which we have sufficient dimensional control.  Equation 
12.24 tells us that we don’t have to sacrifice sensitivity when scaling the lengths 
of F-Ps down to dimensions that are practical for MEMS.  

12.2.5 Effect of Apertures in Interferometers 

In the preceding discussions, we have been mostly concerned with the length of F-
P resonators.  Practical MEMS devices must be small in all dimensions, however, 
                                                           
7 The reader might ask that if the sensitivity of the interferometer is independent of 
its length, then what is the reason for the long lengths of many high-precision in-
terferometers?  The answer is that long interferometers are very good at picking 
up distributed displacements that accumulate over long distances.  For measure-
ments of phenomena of that type, long-arm interferometers are clearly superior to 
short cavities.   
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so we must now ask the question of how the transverse dimensions influence the 
characteristics of interferometers.  Specifically, we need to know what the limits 
on scaling of transversal dimensions are, and what penalties, if any, we pay when 
we scale interferometers to smaller transversal dimensions.   
 
Reducing the transverse dimensions of optical devices means that the optical 
beams must be focused or collimated to smaller sizes.  We know from diffraction 
theory that smaller beam cross sections lead to more rapid divergence of the 
beams, so the required length of the optical beams within the device sets hard lim-
its on how tightly the beams can be focused.  This is discussed at length in Chap-
ter 4 that covers the basics of diffraction theory and Gaussian Beam propagation, 
and Chapters 7 and 8 that describe the optimization of longitudinal and transverse 
dimensions of microscanners and fiber-optical switches. 
 
These same considerations discussed in Chapters 4, 7, and 8 are also valid for in-
terferometers, but in addition there are subtle phase effects associated with focus-
ing that must be taken into account under certain conditions.  To see how, we start 
by considering the mathematical description of the field of a fundamental Gaus-
sian beam:    
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where k=2π/λ is the wavevector, r is the transversal coordinate, ω is the beam ra-
dius, ω0 is the beam radius at the waist, and R is the radius of curvature.  This 
equation shows that the fundamental Gaussian has an extra phase shift in addition 
to the well-known 2πz/λ of a plane wave.  The extra phase delay, called the Gouy 
phase, is given by:   
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where  

λ
ωπ 2

0⋅
=Rz  (12.27)

is the Rayleigh length.   
 
The Gouy phase shift φ is plotted in Fig. 12.12, showing that the fundamental 
Gaussian has an extra phase shift of π radians over a distance of about 10 Rayleigh 
lengths around the beam waist.  Over this same propagation distance, the standard 
plane wave phase shift is:   
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We see that the contribution of the Gouy phase to the overall phase shift through 
focus is less than 1% for even the most tightly focused beams, and much smaller 
for typical collimated beams.  In two-beam and other low-Finesse interferometers, 
the Gouy phase therefore has but a small effect on measurement calibration, and 
can be ignored in most practical situations.   
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Figure 12.12  Extra phase shift due to focusing of a fundamental Gaussian plotted 

against the Rayleigh length of the beam.  Over a distance of about 
10 Rayleigh lengths around focus, there is an extra π phase shift.   

 
In high-Finesse optical resonators, on the other hand, the situation is more com-
plex.  In a Fabry-Perot interferometer with high finesse, the optical field bounces 
back and forth between the mirrors for a number of times that essentially equals 
the Finesse to create very sharp peaks in the transmittance spectrum.  The effect of 
the Gouy phase therefore accumulates over many bounces and becomes signifi-
cant.   
 
It should be noted that the Gouy phase can be ignored in the analysis of almost all 
MEMS interferometers that have been implemented to date.  The reason is that it 
is difficult to create miniaturized, high-Finesse optical resonators using traditional 
optical MEMS technologies.  This is so because both high-reflectivity mirrors and 
stable resonators are difficult to create in MEMS technology.  MEMS interferome-
ters have therefore either been low Finesse or relatively large.  In either case the 
Gouy phase is of little importance.     

z/zR 

φ 
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12.3 Optical Lever  

In the introduction to this chapter we described and compared the optical lever and 
the optical interferometer as displacement sensors in AFMs.  Now we will make 
the comparison more quantitative by deriving an expression for the sensitivity of 
the optical lever and compare to the formulas we have found for interferometers.  
We start the derivation by considering a Gaussian beam on a detector of finite size 
as shown in Fig. 12.13.   
 

 
Figure 12.13  Illustration of a Gaussian beam incident on a photodetector.  The 

bell-shaped form of the Gaussian and the finite size of the detector 
make the set-up sensitive to the position of the beam.  If the beam is 
centered on the detector (x0=0), the detected signal is optimized.  
Any offset for the centered position is detected as a reduction in the 
received optical power. 

 
The fact that the Gaussian has a bell shaped distribution of optical power com-
bined with the finite size of the detector makes this simple set-up an optical posi-
tion sensor.  The detector will measure the maximum optical power when the 
beam is centered, and any deviation from the center position will lead to a corre-
sponding reduction in the measured optical power.  In the figure, the Gaussian 
beam under fills the detector, but in the derivations we will not be making any as-
sumption about the relative sizes of the beam and the detector. 
 
The optical power received by the optical detector is given by: 
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where the origin of the x-axis is at the center of the detector, and the Gaussian 
beam of beam radius, ω, is centered at x0.  We want to measure how the received 
power varies with the position of the beam, so we take the derivative of this ex-
pression with respect to x0:  
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d 
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x0 
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When the detector size is larger than the beam diameter (d>2ω), we can ignore the 
first part of the sum in Eq. 12.30.  The expression therefore has its maximum 

magnitude value of approximately ( ) 1−
⋅ πω  close to the points x0=±d/2.  In other 

words, the maximum sensitivity is obtained when the beam is centered at the edge 
of the detector.   
 
The maximum sensitivity is inversely proportional to the beam radius.  To achieve 
good accuracy in the measurements of the beam position, we therefore have to fo-
cus the beam tightly on the detector.  This is what we would have guessed; the 
smaller the beam radius, the more precisely we can determine the location of the 
beam.   
 
Due the fact that the sensitivity attains its maximum value when the beam is at the 
edge of the photodiode, the preferred set-up is to use two adjacent detectors with 
the nominal beam position at the dividing line between them as shown in Fig. 
12.14.  Here the beam is nominally centered at the dividing line between the two 
detectors so that each detector measures the position of the Gaussian beam with 
maximum sensitivity.  
 

 
Figure 12.14  Preferred set-up of optical position sensor for the optical lever with 

a split photodiode.  The optical beam is nominally centered on the 
dividing line between to adjacent photodiodes that make up the po-
sition sensitive detector.  Each photodiode is then measuring the 
beam position with optimum sensitivity and the total received 
power is very close to constant when the detectors are larger than 
the beam radius. 
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Split photo diode 
for position sensing 
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By subtracting the signal from the two photo diodes, we obtain a measured signal 
that is zero for the nominal beam position and has positive values for positive dis-
placement and negative values for negative displacement:   
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The derivative of this expression with respect to x0 gives us the sensitivity 
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The approximation is valid when the detector size is larger than the beam diameter 
(d>2ω).   
 
The maximum magnitude of the expression is then ( )πω ⋅2  for the nominal 
beam position (x0=0).  The maximum sensitivity is twice that of the single detec-
tor.  This is of course expected because the maximum sensitivity is obtained with 
the beam is centered at the edge of each detector.   

12.3.1 Displacement and Angle Sensitivity of the Optical Lever 

In the geometry of Fig. 12.1, the vertical displacement (ΔL) of the cantilever is re-
lated to the beam displacement (Δx0) on the PSD as 

α
α
α sin2

cos
2sin

0 ⋅Δ=⋅Δ=Δ LLx  (12.33)

where α is the incident angle on the cantilever.  This expression is valid when the 
optical beam is at normal incidence on the photodetector as we assumed in the 
preceding section.   
 
The maximum position sensitivity of the cantilever is then 
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The incident angle takes values between 0 and π/2, so the ratio Δx/ΔL has its 
maximum value of 2 at α=π/2.  Grazing incidence is, however, not very practical, 
so a more typical value is 2=ΔΔ Lx , which appears at α=π/4.   
 

Comparing the maximum fractional sensitivity of the lever ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅ωπ
αsin4  to that of 

the two-beam interferometer (2π/λ – Eq. 12.5), we see that the fundamental limit 
on the sensitivity of the two measurement principles are not that different.  We can 
make the beam radius on the order of half a wavelength, but not much smaller.  
The best sensitivity we can get from the optical lever is therefore ( )πλαsin8 , 
which is only marginally smaller than the maximum sensitivity of the two-beam 
interferometer.  
 
The optical lever is more often used to detect angle variation than displacement.  
The beam position on the PSD is related to angle variation as 

zx ⋅Δ=Δ α20  (12.35)

where z is the distance from the cantilever to the PSD.  The maximum angular 
sensitivity of the cantilever is then 
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where we have used the approximation 
0ωπ

λω
⋅
⋅= z , which is valid in the far field 

(see Chapter 4).  The expression shows that once we are in the far field, further in-
crease of the cantilever-PSD separation does not increase the angular sensitivity, 
because the beam size on the PSD increases linearly with distance in the far-field 
regime.    

12.3.2 Grating Optical Lever 

An optical lever with a very sharply focused beam is not useful in most situations.  
When focused to its smallest possible radius, the optical beam diffracts rapidly, 
which means that the working distance, i.e. the distance from the reflector that de-
flects the beam to the detector, must be very short.  This puts restrictions on the 
design of systems with tightly focused beams, so most optical levers have sensitiv-
ity far less than the theoretical limit.  In practice, the optical lever is therefore 
much less sensitive than optical interferometers.  
 
As for the interferometer, which can be made more sensitive by using a high-
finesse resonator, the optical lever can also be improved.  One method for increas-
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ing the sensitivity is to use a grating as shown in Fig. 12.15.  Diffraction from the 
grating sets up an output beam at an angle Ψo in response to incident light at the 
angle Ψi, thereby enhancing the scan angle of the optical beam over that of the 
standard cantilever.   
 

Position Sensitive 
Detector (PSD) 

Lever with grating 

Ψo

Ψi 

 
 

Figure 12.15 Optical lever with grating for sensitivity enhancement. 
To analyze the scan angle enhancement, we start with the grating equation 

Λ
−Ψ≈Ψ⇒

Λ
=Ψ−Ψ= λλ

oo iip sinsinsin  (12.37)

that shows that the sensitivity of the grating lever is increased by the factor 
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Unfortunately, the diffracted beam radius is decreased by the same factor, so the 
fundamental sensitivity of the grating lever is identical to that of the standard opti-
cal lever.  Nevertheless, the grating lever is a very practical device, because it al-
lows us to shrink the beam size of the outgoing beam without sacrificing sensitiv-
ity.  This means that we can place the position sensitive detector closer to the 
lever, so that the size of the overall system is reduced. 

12.4 Sources of Noise in Displacement Measurements 

The ultimate limitation on any measurement system is noise, so we start our 
treatment of measurement accuracy by modeling the noise sources that are present 
in all optical systems.  Figure 12.16 shows how shot noise, thermal noise, and 
Relative Intensity Noise (RIN) of the light source are added to the signal in a ge-
neric optical detection system.  The shot noise and RIN are carried by the optical 
beam, while the thermal noise is a function of the dissipation in the photodetector 
circuit.  In addition to these noise sources there is also added noise, often ex-



474      Photonic Microsystems 

pressed in terms of a noise figure, of the amplifier stage that follows the detection, 
and 1/f noise of various origins.  

 

Signal+Shot+thermal+RIN 

RL 

Amplifier 

Output 
 

 
Figure 12.16 Signal and noise in optical detection systems.  The optical signal 

carries shot noise and Relative Intensity Noise (RIN), and the input 
resistor (RL) of the receiver adds thermal noise.  The amplifier is 
also at a finite temperature and adds thermal noise, often charac-
terized by noise figure or noise temperature. 

12.4.1 Thermal Noise  

Thermal Noise, also called Johnson noise or Nyquist noise, is present in all dissi-
pative elements, including electrical resistors, where thermal noise is caused by 
the thermal motion of the charge carriers (electrons).  Real resistors can be mod-
eled as ideal (noise less) resistors in parallel with noise current sources as shown 
in Fig. 12.17. 
 

Real resistor: Resistor model: 

RL 
L

NT R
fkTi Δ⋅= 42

RL 

 
 

Figure 12.17  A real resistor can be modeled as an ideal (noiseless) resistor in 
parallel with a thermal-noise current source. 

 
The noise current is given by 

L
NT R

fkTi Δ⋅= 42  (12.39)

where k is the Bolzmann constant, T is the absolute temperature, Δf is the electri-
cal bandwidth of the detector, and RL is the resistance value.  The bandwidth is 
typically equal to the information bandwidth, but in some cases the detector 
bandwidth must be twice the information bandwidth.  The thermal noise spectrum 
is uniform (white noise) up to about 10 GHz.      
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12.4.2 Shot Noise 

Shot Noise is caused by the quantization of the optical field and the finite value of 
the electrical charge carriers.  All photodetectors (photo multipliers, photodiodes, 
photoresistors) exhibit signal degradation due to shot noise.  As for thermal noise, 
we can model shot noise in detection circuits as an additive noise current source as 
shown in Fig. 12.18.  The noise current is given by: 

( ) fIiqi DsNS Δ⋅+= 22  (12.40) 

where q is the electron charge, si  is the average photocurrent, and ID is the dark 
current 
 

( ) fIiqi DsNS Δ⋅+= 22

 
Figure 12.18 Shot noise model. 

12.4.3 Relative Intensity Noise 

Most lasers and other light sources generate excess noise, called Relative Intensity 
Noise (RIN), beyond the minimum quantization (or shot) noise.  The noise is often 
higher close to the relaxation oscillation frequency of the laser, so RIN is more 
damaging at higher frequencies.  For lasers, the absolute noise level typically 
peaks at threshold and stays constant as the output power is increased, so that RIN 
goes down as the laser is driven harder.  As shown in Fig. 12.19, laser RIN can be 
modeled as a noise current source given by 

fiRINi sNL Δ⋅⋅= 22  (12.41)

where RIN is the laser noise normalized to a one Hz bandwidth 
 

fiRINi sNL Δ⋅⋅= 22

 
Figure 12.19 Relative Intensity Noise. 
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In addition to the fundamental noise sources of the optical detection process, noise 
is also added in the amplifiers.  Amplification and the associated noise character-
ized in terms of the noise figure or noise temperature, is an integral part of any 
measurement system, and the challenges of designing good amplifiers are deter-
mined by the nature of the signal, so the relative ease or difficulty of amplification 
is important to consider when comparing measurement technologies.   

12.5 Signal-to-Noise Ratio 

The signal from an optical sensor can take many forms.  It may be amplitude 
modulated, phase modulated, or have some more complex modulation format, e.g. 
pulse-width modulation.  At some point the optical signal will be converted to an 
electrical signal in a square-law photodetector, i.e. an optical detector that is sensi-
tive to the optical power, but not to the optical phase.   
 
We will consider detectors that can be characterized by their responsivity, which is 
defined as the ratio of the output photo current produced by the detector to input 
optical power on the detector: 

incP
i=ρ  (12.42)

The responsivity has the units of Ampere/Watt and it is the most important speci-
fication of most commonly used photodetectors, including semiconductor diodes 
(photo diodes) and Photon Multiplier Tubes (PMTs).   
 
When a measurand affects an optical sensor, then it produces, directly or indi-
rectly, a signal that can be expressed in terms of a change in optical power, ΔP, 
received by the photodetector.  The change in optical power leads to a change in 
photocurrent according to Eq. 12.42.  The optical power signal may take the form 
of a static offset or a harmonic power variation.   
 
In the latter case, it is useful to introduce the modulation index, defined here as the 
ratio of the Root-Mean-Square (RMS) to the average of the optical power: 

P
P

P
Pm rms Δ=≡  (12.43)

This definition is illustrated in Fig. 12.20.   
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Figure 12.20 The modulation index of an optical signal is defined as ratio of the 

variation (RMS for harmonic signals) to the average of the optical 
power. 

 
With this definition of modulation index combined with the expressions for noise 
(Eq. 12.39-12.41), we can write the signal-to-noise ratio of the electrical power of 
the detector as  
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where i  is the average photocurrent, ID is the dark current produced by the 
photodetector, and Δf is the bandwidth of the detection circuit.  In terms of the op-
tical power this becomes 
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where P  is the average power and ΔP is the power variation caused by the meas-
urement.  In these expressions, we have pulled the common factor Δf out of the 
denominators to emphasize the bandwidth dependence.   
 
Figure 12.21 shows schematically how the Signal-to-Noise ratio depends on re-
ceived electrical power.  At low electrical powers, the noise is dominated by ther-
mal noise, and the S/N increases linearly with electrical power.  In this regime the 
S/N is proportional to the receiver input resistance.   
 
As the electrical power is increased, the shot noise and RIN becomes more pro-
nounced.  If the receiver resistance is large enough, we enter a regime where shot 
noise is dominant.  Here the S/N increases as the square-root of the electrical 
power.   
 
As we increase the electrical power still further, the RIN finally becomes domi-
nant.  At this level the S/N no longer increases with electrical power.  We have 
reached the highest S/N possible for the given light source.      
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Figure 12.21 Conceptual illustration of the dependence of Signal-to-Noise ratio 
(logarithmic scale) on received electrical power in optical detec-
tion circuits.  As the electrical power is increased, the S/N goes 
from being limited by thermal noise, to shot noise, and finally to 
RIN.    

 
Figure 12.21 shows that to get the ultimate S/N in our measurements, we must op-
erate at a power level where RIN is dominant, or in other words, we must make 
sure we have enough optical power at the receiver that shot noise and thermal 
noise can be neglected.  This is of course not always practical.  In many systems 
we wish to reduce the received power as much as possible.  For example in long-
haul fiber optic communication, it is economical to have the longest possible dis-
tance between detection circuits.  In such systems the optical signals are severely 
attenuated by fiber loss by the time they arrive at the detectors, and the S/N is 
therefore limited by thermal noise of the detector8.   
 
In sensor systems we would like to be in the RIN limited regime to get the best 
possible data from our sensors.  The high optical powers that are required are, 
however, not always practical.  In some systems we might be limited by the high 
cost of high-power sources, and in other the measurement system itself may limit 
the optical power that can be applied before damage thresholds are reached.   

12.5.1 Noise Equivalent Power 

The sensitivity of an optical detector is often expressed in terms of its Noise-
Equivalent-Power (NEP).  The NEP is defined as the signal power required to 
provide a unity S/N ratio in a 1 Hz bandwidth.  These choices of bandwidth and 

                                                           
8  In the days before practical optical amplifiers this was the universal standard of 

operation, but now an increasing number of systems employ optical amplifiers 
on the receiving end.   
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S/N level are of course arbitrary, but they result in a well-defined figure of merit 
for comparison of different detector technologies, in addition to giving a useful in-
tuitive sense of detector resolution.   
 
Noise-Equivalent-Power is therefore a common specification used to describe the 
resolution of optical detectors.  In such specifications, only the noise originating 
with the detector, i.e. the thermal noise9, is considered.  Here we extend the NEP 
concept to include all sources of noise in the system.  Based on Eq. 12.45 we find 
the following expression for NEP in the presence of thermal noise, shot noise, and  
RIN  

( ) ( )2min 2411 PRINIPq
R
kTNEP

f
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N
S
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⋅⋅++⋅+==
Δ

Δ
⇒= ρρ

ρ
 (12.46)

Note that the units for NEP is HzW .  This may seem mysterious when NEP 
specifications are first encountered, but we see that it follows straightforwardly 
from the fact that NEP is defined in terms of optical power.  

12.6 Detection Limits in Displacement Measurements 

Optical displacement sensors face competition from a number of other displace-
ment measurement technologies, including capacitive, piezoresistive, tunneling, 
and other sensor systems.  In this section we will compare these technologies to 
understand their relative strengths and weaknesses, particularly for differential 
displacement measurements on the chip scale.  We will use the concepts of Noise-
Equivalent-Power and dynamic range to quantify the comparisons.  The goal is to 
gain the perspective necessary to make good system-design choices.   

12.6.1 Resolution of Optical Interferometers 

Interferometric position sensors are fundamentally limited by the same noise 
sources that limit the capacity of optical communication and other optical systems, 
i.e. thermal noise, shot noise, and Laser Relative Intensity Noise (RIN).  We com-
bine this with our knowledge of the sensitivity of the interferometer to define a 
Noise-Equivalent-Displacement in units of HzW .   
 
By rewriting Eq. 12.5, we can relate the minimum resolvable deflection to the 
minimum resolvable reflected power 

                                                           
9  Other noise sources, e.g. 1/f noise that we don’t consider here, will of course 

also be included in the measured NEP specified by photodetector vendors.   
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where P  is the average power, i.e. 2inPP = .  Combining Eqs. 12.46 and 12.47, 
we find the following expression for the Noise-Equivalent-Displacement of a two-
beam interferometer 

( ) ( )   124
4 22

min RIN
P

I
P

q
PR

kT
f

L D

L

+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⋅
+

⋅
+

⋅
⋅=

Δ
Δ

ρρρπ
λ  (12.48)

where again ρ is the receiver responsivity, RL is the photo detector load resistor, 
P  is the average received optical power, ID is the dark current, and RIN is the 
relative-intensity-noise of the optical source.   
 
As expected, we find that the Noise-Equivalent-Displacement of the interferome-
ter is inversely proportional to average power in the thermal-noise limit, inversely 
proportional to the square root of average power in the shot-noise limit, and inde-
pendent of power in the RIN limit.  For a RIN limited system with a RIN of 10-14, 
Eq. 12.48 evaluates to approximately 10-14 m/Hz0.5 at a wavelength of 1 um, in 
good agreement with experimental observations [4].  A low-noise laser with an 
RIN of 10-16 and a wavelength of 500 nm improves the Noise-Equivalent-
Displacement to approximately 4·10-16 m/Hz0.5.   
 
We define the dynamic range of a sensor as the ratio of the maximum signal that 
can be measured to the Noise-Equivalent signal.  For a two-beam interferometer, 
the maximum displacement that can be determined without ambiguity is one quar-
ter of the wavelength, so the dynamic range is   
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We saw in section 12.2.4 that we can improve the sensitivity by using a high-
finesse interferometer.  Equation 12.24 shows that the improvement factor is F/π.  
The Noise-Equivalent-Displacement of an interferometer with a finesse F, is then 
given by 
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The maximum displacement is reduced by the same factor, so the dynamic range 
is the same as for a simple two-beam interferometer.  
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12.6.2 Resolution of Optical Levers 

The sensitivity of the Optical Lever is expressed by Eq. 12.34.  Rewritten, it gives 
the following relationship between displacement and power  

P
PL min

min sin4
Δ⋅=Δ

α
πω  (12.51)

where inPP =  is the average power.  Combining Eqs. 12.46 and 12.50, we find 
the Noise-Equivalent-Displacement of the optical lever 
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The maximum displacement that can be measured is not so well defined.  In prin-
ciple we can make the PSD as wide as we want, and measure very large displace-
ments.  Off-center measurements have significantly worse resolution as expressed 
by the exponential in Eq. 12.32, however, so we set the maximum range equal to 
the beam radius.   
 
With that definition, we see that the fundamental limits on minimum detectable 
displacement, Noise-Equivalent-Displacement, and dynamic range for the optical 
lever are very similar to those of optical interferometers.  As pointed out in section 
12.3.1, it is, however, practically impossible to achieve optimum performance in 
optical levers, because that requires that the beam is focused to its minimum beam 
radius, which again leads to impractically short working distances.  In practice, the 
optical lever has worse Noise-Equivalent-Displacement than interferometers.  The 
dynamic range is, however, the same, so the loss of resolution is accompanied by 
an increase in the maximum displacement that can be measured.  

12.6.3 Resolution of Capacitive Sensors 

Consider the capacitive sensor system shown in Fig. 12.22.  The signal from the 
sensor is proportional to the bias voltage (VS) and to the ratio of a sensing capaci-
tor and a reference capacitor.  This simple signal model covers most practical ca-
pacitive sensors.  After demodulation, the capacitive signal is sent to a preampli-
fier.  The electrical resistance in the circuit contributes thermal noise that degrades 
the signal-to-noise. 
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Figure 12.22. Model of signal and noise in capacitive sensor systems.   
 
The thermal noise power is 
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where Δν is the bandwidth of the sensor system.  If it is determined by the RC(x) 
product, the RMS noise voltage becomes:  
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In most practical cases, however, the bandwidth is not determined by the RC time 
constant of the sensor, but by the preamplifier, so we will treat the bandwidth as 
an independent variable.  The signal-to-noise is then  
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We now set the signal–to-noise ratio to unity to find the Noise-Equivalent Capaci-
tance 
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To proceed we assume a gap-closing parallel-plate capacitor with area A, gap g0, 
and a capacitor-plate spacing x.  The capacitance value is then  

( )
x
AxC ⋅= ε  (12.57)

This gives us the displacement sensitivity of the capacitance  
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The Noise-Equivalent-Displacement is  
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where we assumed that the values of the sensing capacitor and the fixed capacitor 
are of the order of magnitude.  To improve the capacitive sensor, we can increase 
the voltage and/or decrease the input impedance of the amplifier.  The nominal 
gap (x) determines the maximum deflection, so it should be thought of as a pa-
rameter set by the application.   
 
The Noise-Equivalent-Displacement is proportional to the capacitor-plate separa-
tion, x, which represent the upper limit on measurable displacement, so the dy-
namic range is    

S
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Δ
Δ 4

min

max ν  (12.60) 

 
At room temperature with x=1 um, VS=10 V, and RL=100 ohms, the Noise-
Equivalent-Displacement evaluates to about 10-16 m/Hz0.5.  In practice it is very 
hard to achieve the theoretical performance of a capacitive sensor.  The ADXL150 
from Analog Devices have a RMS position error of 130·10-12 m in a 1,000 Hz 
bandwidth.  That corresponds to a Noise-Equivalent-Displacement of 4.3·10-12 
mHz-0.5, with a voltage of 5 V and a gap of 1.3 um. [5] This is far from the theo-
retical limits, but still close to the thermo-mechanical noise floor.  Capacitive sen-
sors used for ultrasonic imaging are designed for detection of very small dis-
placements, and get much closer to the theoretical limits.   

12.6.4 Resolution of Piezoresistive Sensors 

Piezoresistors were among the first MEMS sensor principles to be exploited in re-
search and in commercial settings.  The principle is illustrated in Fig. 12.23.  A 
silicon resistor is subject to strain, typically by bending as shown in Fig, 12.23a.  
In response to the strain, the resistor changes its value, and the resistance change is 
converted to a signal voltage in a Wheatstone bridge as shown in Fig. 12.23b.   
 
When the Wheatstone bridge is built with piezoresistors that are subject to oppo-
site strains so that their resistance changes have opposite signs as in Fig. 12.23b, 
then the signal voltage is given by 

SV
R
RV Δ=Δ  (12.61)

where VS is the bias voltage on the Wheatstone bridge, R is the nominal resistivity 
of the bridge resistors, and ΔR is the resistance change.   
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Figure 12.23 Piezoresistive sensor 
 
The signal-to-noise ratio is then   
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Setting the signal-to-noise ratio to unity, we find the Noise-Equivalent-Resistance 
of the piezoresistive sensor  

SV
RkTRR

N
S ⋅=

Δ
Δ

⇒= 41 min

ν
 (12.63) 

 
Piezoresistors and strain gages can be made in many different materials.  In most 
materials the change in resistance is dominated by the geometrical effect, i.e. the 
resistance value changes as if the resistivity of the material is unchanged.  Typi-
cally, the change in cross section can be neglected, so that the relative resistance 
change is equal to the relative length change, i.e. 
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=Δ+ ρρ  (12.64) 

where ρ is the material resistivity, L is the resistor length, and A is the uniform re-
sistor cross section.  
 
Silicon, as opposed to most other materials, has a very strong piezoresistive effect.  
A correctly oriented silicon piezoresistor achieves a resistance change that is 10 
times larger than the value given by the geometrical effect alone.  For silicon we 
can then write  

L
L

R
R Δ=Δ 10  (12.65)
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It follows that the Noise-Equivalent-Displacement can be expressed as 
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Comparing this equation directly to the Noise-Equivalent-Displacement of capaci-
tive sensors (Eq. 12.59) it seems that the piezoresistor has about an order of mag-
nitude better displacement sensitivity.  This is not entirely correct, however, be-
cause the resistance values that are used in piezoresistive sensors typically are an 
order of magnitude higher or more, mitigating much of the difference.  More im-
portantly, the dynamic range of the piezoresistor is substantially less than that of 
capacitive and optical sensors.  Silicon, like most other materials, cannot safely be 
strained to much more than 1%, so the dynamic range of piezoresistors is about 
one to two orders of magnitude lower than that of capacitive displacement sensors.   
 
Piezoresistors are also difficult to utilize directly as displacement sensors.  Typi-
cally we must use some kind of leverage to extend the travel.  The bending arm of 
Fig. 12.23 is a good example.  Here the motion of the end of the bending arm is 
much larger than the elongation of the piezoresistor.  This extended travel leads to 
an equally large increase in the Noise-Equivalent-Displacement.   
 
As noted above, however, the theoretical limits are very hard to achieve in any 
system, so practical considerations are often more important.  The simplicity of 
the electronic interface (the Wheatstone bridge of Fig. 12.23b) makes the piezore-
sistor the sensor of choice in many applications.   

12.6.5 Comparison of Displacement Sensors 

The derivations and discussions of the preceding three sections make it clear that 
no one sensing concept is superior for all applications.  Piezoresisitive sensors do 
not have the dynamic range of capacitive or optical sensors.  In practices, this also 
means that they are not as sensitive.  Still they are often preferred because of their 
simple fabrication and straight-forward integration with electronics.   
 
Comparing capacitive and optical sensors, we have found that there are only small 
differences in terms of Noise-Equivalent-Displacement and dynamic range.  The 
capacitive sensor can be made more sensitive by increasing the bias voltage (VS in 
Eq. 12.59).  In applications that can tolerate high bias voltages, i.e. ultrasonic 
pressure sensors with relatively small and stiff membranes, capacitive sensors are 
often the right choice.  The counter point is low-frequency, highly-sensitive pres-
sure sensors, e.g. microphones and Golay cells.  These require very compliant 
pressure-sensing diaphragms that collapse under large bias voltages, so optical 
sensors have advantages over capacitive.  In general, we can say that stiffer struc-
tures favor capacitive sensors, while optical sensors are preferred for compliant 
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constructions.  Optical interferometers also have the advantage that their dynamic 
range can be vastly extended by lifting the ambiguity of the interferometric re-
sponse (see Fig. 12.5).  This adds complexity, however, and is therefore more 
common in macroscopic measurement systems than in chip-scale designs.  
 
Optical, capasitive, and piezoelectric sensors account for the majority of MEMS 
and chip-scale measurement systems, but there are other technologies that find use 
in niche applications.  Electron-tunneling sensors offer the ultimate in position 
sensing, having about 20 times better sensitivity than capacitive sensors under 
similar operations constraints (except maximum displacement).  Unfortunately, 
their limited range restricts their use to sensor systems with feedback stabilization.  
Optical near-field, or photon tunneling, sensors do not have as good sensitivity as 
electron tunneling, but they have better dynamic range, and represent a very good 
choice for many miniaturized systems.  A special class of photon-tunneling sen-
sors based on Photonic Crystals is described in Chapter 15.   
 
The conclusion is that comparisons between different types of displacement sen-
sors based on their basic characteristics alone are difficult.  When choosing be-
tween different measurement technologies, the systems designer should use the 
fundamental limitations outlined in this chapter as a guide, but as important are 
considerations of the practically achievable sensor properties.  Those depend on 
the application, on environmental constraints, and on various aspects of the im-
plementation including design, architecture, fabrication technology, tolerances, 
electronics, packaging, and, ultimately, cost.   

12.7 Summary of Optical Displacement Sensors 

Optical interferometers come in a bewildering array of architectures and imple-
mentations, but we show in Chapter 12.2 that their sensitivity to displacement de-
pends only on the wavelength of light and the finesse of the interferometer.  Fur-
ther we show in 12.3 that the fundamental limits of the optical lever are similar to 
those of interferometers.  This somewhat counterintuitive10 finding allows us a 
compact description of the displacement sensitivity of all types of traveling-wave 
optical displacement sensors.   
 
Sensitivity alone cannot predict resolution limits.  For that we need the noise mod-
els that are developed in 12.4 and 12.5.  Armed with these models, we investigate 
the limits on resolution and dynamic range of optical displacement sensors in 12.5, 
and compare them to the limits of capacitive and piezoresistive sensors.  The sur-

                                                           
10  Or maybe not so counterintuitive when we consider the fact that optical-

beam focusing, which is what determines the resolution of the optical lever, is 
limited by wave interference, i.e. the effect that gives interferometers their posi-
tion sensitivity.  
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prising conclusion is that the fundamental limits are very similar, and that the best 
choice of measurement technology for a given system depends on the details of 
the application and the implementation.   

Exercises 

Problem 12.1 - Interferometric Displacement Sensing 

You are designing an optical interferometer for distance measurements and you 
have the choice between two lasers: one at 500 nm wavelength with a RIN of 10-

14, and one at 1,550 nm wavelength with a RIN of 10-16.  Assume that the interfer-
ometer will be limited by thermal noise.   
 
Which laser would you use?  Explain your answer.   

Problem 12.2 - Sensor Design  

a. Calculate the maximum sensitivity of the fiber displacement sensor shown 
below.  How should the fiber be designed to get maximum sensitivity?   

 Δx 

Input Fiber Output Fiber 

 
Displacement sensor based on transmission between identical fibers that are offset 
laterally (ignore axial offset and reflections from the fiber ends. 

 
The figure below shows another position sensor, in which the position of the beam 
block is measured by detecting the transmitted light between two perfectly-aligned 
fibers.   
 

Input Fiber Output Fiber 
 

Displacement sensor based on partial blocking of transmission between identical, 
perfectly-aligned fibers. 
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b. Calculate the maximum sensitivity for this fiber displacement sensor.     
c. How can you extend the range of the sensors?  What figure of merit stays 

constant as you extend the range? 
d. Compare the two sensors.  What are the advantages and disadvantages of 

each of the two principles? 

Problem 12.3 - Fiber Interferometer 

Consider a fiber interferometer as shown below.   
 

 

3-dB directional 
coupler 

1550 nm semiconductor 
laser  

Fiber terminated in index 
matching fluid or angle-
polished connector Photodetector  

Single-mode fiber

Fiber interferometer 
consisting of cleaved fiber 
and reflector on a 
piezoelectric actuator 

Function 
Generator 

 
 

Interferometric fiber optic displacement sensor at 1.55 μm wavelength. 
 

a. What is the optimum distance from the fiber to the mirror?  Explain your 
reasoning. 

b. Plot the back-coupled power as a function of distance over the range 
L=Lopt ±5 micron.  Include the effects of both the phase shift and the 
displacement dependence of the reflection from the transducer back into 
the fiber. 

c. Repeat the plot in b) for a wavelength of 1550nm+1nm.  What conclusion 
can you draw from this plot about the required line width of the laser?  

d. In this experiment we may simply use an uncoated fiber, so the reflection 
from the fiber end is fixed at 4%.  We can change the reflections by 
applying a (multi-layer) coating.  What is the optimum reflectivity from the 
fiber end?  Explain your reasoning. 

Problem 12.4 - Reading a CD with a Single-Mode Fiber at 1.55 μμμμm 
Wavelength 

A fiber is brought to within 10 microns of a spinning CD, and the backcoupled 
light is detected as shown below.   
 

a. What kind of signal do you expect to observe if you were to send the signal 
from the detector to an oscilloscope?  Explain your reasoning. 
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b. How would the observed signal change if we were to focus the fiber output 
to the smallest possible spot on the CD?  

3-dB directional 
coupler 

1550 nm semiconductor 
laser  

Fiber 
terminated in 
index 
matching fluid Photodetector  

Anti-reflection coated fiber end 

Spinning 
CD 

Single-mode fiber

 
Reading CDs with a standard single mode fiber at 1.55 μm wavelength. 

 

Problem 12.5 - Optical Lever 

In Section 12.3 we claimed to have optimized the optical lever when we maxi-
mized the differential with respect to displacement of the ratio of the detected op-
tical power to the incident power. 

a. Under what conditions is this figure of merit (differential with respect to 
displacement of the detected optical power relative to the incident power) 
the one that should be used for optimization? 

b. If we are thermal noise-limited, what should be the figure of merit? 
c. Is there a set of circumstances, and a corresponding figure of merit, that 

will change the basic conclusion that the maximum intensity point should 
be at the edge of the detector?  If so, how should a split photo diode be de-
signed for operation under these circumstances? 
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13:  Micro-Optical Filters 

13.1 Introduction to Micro-Optical Filters 

Optical wavelength control is critical to the operation of many optical systems for 
communication, imaging, and measurement.  Wavelength Division Multiplexed 
(WDM) communication systems require sources, (de)multiplexers, dispersion 
compensators, channel monitors, and receivers with accurate center wavelengths 
and bandwidths.  Two-photon and other non-linear microscopy techniques use 
spectral filters to separate out the desired frequency components for imaging.  Op-
tical sensors depend on well-calibrated, wavelength-stabilized sources and filters 
for accurate and repeatable measurements.  In the field of femto-second lasers, 
controlling the spectral phase is necessary for pulse shaping and diagnostics. 
 
The Optical Microsystems we have described, i.e. scanners, mirror arrays, and mi-
crogratings, provide building blocks for wavelength tunable optical filters and 
spectrometers.  This wavelength agility adds much-needed flexibility to wave-
length control.  Combined with the advantages of miniaturization, integration and 
parallel processing, it also enables systems with better performance and lower 
cost.     
 
This chapter introduces the basic principles and architectures used in Optical 
MEMS filters and spectrometers.  The field of optical filters is large and well de-
veloped.  A comprehensive treatment would require a whole book, so in the inter-
est of saving space, the chapter is focused on conceptual descriptions and on case 
studies of some of the most successful MEMS implementations.  For the rich 
mathematical description of optical filtering, the reader is referred to the extensive 
bibliography of this chapter.  
 
Optical filtering is traditionally done either by selective absorption or by interfer-
ence as in Fabry-Perot and grating filters.  Absorptive filters are bulky and diffi-
cult to tune, so our treatment is focused exclusively on filter concepts based on in-
terference.  We start by considering the filter properties of the Fabry-Perot 
interferometer and the waveguide ring resonator that were first introduced in 
Chapter 6.  These are both examples of amplitude filters, although their operation 
and tuning are based on phase control.   
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We then turn our attention to filters that control spectral phase for dispersion com-
pensation and pulse shaping.  We find that these devices are simpler to implement, 
because, unlike amplitude filters, they do not require extreme out-of-band rejec-
tion.  Optical spectrometers are treated next.  The flexibility of optical MEMS en-
ables a large variety of spectrometer architectures.  We will concentrate on a few 
that illuminate the underlying principles.  In particular, we will focus on the prin-
ciples and implementations of dispersed-spectrum architectures.  The chapter 
wraps up with a section on tunable lasers, which is an important application of 
MEMS tunable filters. 

13.2 Amplitude Filters 

13.2.1 Fabry-Perot Filters 

Fabry-Perot resonators, or etalons, are among the simplest tunable optical MEMS 
filters.  All that is required are two parallel mirrors with a distance between them 
that can be adjusted by a MEMS actuator.  A typical implementation is shown in 
Fig. 13.1.   

Bragg mirrors 

AR coatings 

Substrate 

F-P resonator with 
recirculating optical field 

Incident optical beam 

Transmitted optical beam 

MEMS 
chip 

MEMS flexure 

 
 

Figure 13.1. Typical implementation of a MEMS tunable Fabry-Perot filter.  The F-
P resonator is formed between two high-reflectivity Bragg mirrors.  
High reflectivity mirrors are needed to achieve good out-of-band rejec-
tion.  The length of the resonator is adjusted by applying a voltage be-
tween the upper MEMS chip and the substrate.  Anti-reflection coatings 
are used to suppress reflections from the other surfaces of the MEMS 
chip and substrate.  
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In this device a MEMS chip is bonded to a substrate such that their surfaces are 
parallel.  A Fabry-Perot resonator is formed between the two facing surfaces that 
both have Bragg mirrors to enhance reflectivity.  The other surfaces of the MEMS 
chip and substrate have Anti-Reflection (AR) coatings to avoid spurious reflec-
tions that would create additional interference effects.  The MEMS chip is de-
signed to have a stiff center region that supports the Bragg mirror.  The stiff center 
region is suspended on compliant flexures such that the length of the Fabry-Perot 
cavity can be adjusted by applying a voltage between the MEMS chip and the sub-
strate.     
 
Fabry-Perot resonators are simple and versatile optical devices that are used in a 
wide range of applications.  We looked at Fabry-Perot resonators as modulators in 
Chapter 6.7.6 and as displacement sensors in Chapter 12.2.4.  In those applications 
the slopes of the transmittance or reflectance spectra that are most important, be-
cause they determine the modulation efficiency and measurement sensitivity.  Fil-
ter applications are more demanding in that several other characteristic features, in 
addition to slope, must be precisely controlled.  High-quality filters must meet 
stringent specifications on pass-band loss, out-of-band rejection, transition band 
width, and free spectral range (FSR).   
 
To see how these qualities are related in F-P filters, we recall the F-P transmission 
spectrum derived in Chapter 12.2.4 (Eq. 12.16) 
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where r1 is the field reflectivity of the first F-P mirror, r2 is the field reflectivity of 
the second F-P mirror, L is the F-P resonator length, and λ is the optical wave-
length.  In this description the Bragg mirrors are modeled as wavelength inde-
pendent over the wavelength range of operation of the F-P.  In other words, we as-
sume that the filter is operated in the Bragg mirror’s flat band where the 
reflectivity is uniform.  That can only be valid if the length of the F-P cavity is 
much larger than the thickness of the Bragg stack, so we are making the implicit 
assumption that the F-P length is much longer than a wavelength.  If this assump-
tion is not fulfilled, then the dispersion of the Bragg mirrors much be considered 
in the modeling of the reflection and transmission spectra.  
 
In the case of a symmetric F-P (r1=r2=r), Eq. 13.1 simplifies to (Eq. 12.19) 
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where the parameter  
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is the Finesse, which is defined as the ratio of the period to the FWHM of the 
transmittance peak.  The F-P transmission is plotted on a dB scale (i.e. 
10·Log10[T]) in Fig. 13.2.  This is essentially the same plot as in Figs. 6.30 and 
12.10, but the dB scale emphasizes and clarifies the characteristics of the F-P that 
are important for filter applications.  
 
The first thing to note about the filter characteristics is that it is periodic and that 
the positions of the pass bands are dependent on the length of the resonator.  The 
pass-band wavelength can therefore be tuned by controlling the resonator length 
with MEMS actuators, as described in the caption of Fig. 13.1.  The periodic na-
ture of the transmission limits the useful tuning range to one period, or one FSR.   
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Figure 13.2. Transmission spectrum of symmetric a Fabry-Perot as a function of 
normalized length with mirror power reflectivities of R=r2=0.99 (solid), 
R=0.97 (dashed), R=0.90 (dot-dashed), and R=0.80 (dotted).   

 
Figure 13.2 demonstrates that high mirror reflectivities are required to make good 
F-P filters.  The transmission spectrum of the symmetric F-P with power reflec-
tions of R=0.8 gives a maximum out-of-band rejection of less than 20dB, which is 
not sufficient for many applications.  A related problem is that the filter cannot 
separate more than a few channels across its FSR.  Even if a 10dB rejection is suf-
ficient, the F-P with R=0.8 can only distinguish about 10 channels.  As the mirror 
reflectivity is increased, the filter become progressively better and at R≥0.97, the 
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filter has excellent out-of-band rejection.  We conclude that F-P filters need high-
reflectivity mirrors, preferably with power reflectance above 0.95, to be useful for 
most applicationsa.    
 
High-reflectivity mirrors present difficulties in MEMS implementations.  Metal 
mirrors that are the standard of optical MEMS, have too much transmission loss, 
or, if they are configured as thin films to lower the transmission loss, too low re-
flectivity.  Until the arrival of Photonic Crystals, which is the subject of Chapter 
14 and 15, high-reflectivity F-Ps were realized using multilayer dielectric mirrors.  
These multilayer dielectric mirrors require rigid substrates to avoid temperature 
dependent mirror curvature caused by the thermal stresses that build up in the mir-
rors stacks.  This presents challenges for miniaturization that have been met 
through a variety of approaches.   
 
Early work on silicon MEMS F-P filters used the full thickness of silicon wafer to 
provide a solid substrate [1].  These devices were fabricated by wafer bonding and 
were relatively bulky.  Smaller devices have been created by using free-standing 
Si-SiO2 mirror stacks, but these mirrors have some problems with curvature [2].  
By careful compensation of the material stress in the dielectric stack, silicon-
compatible, free-standing, dielectric mirrors with better than 99% power reflectiv-
ity have been demonstrated [3].   
 
An approach that avoids the complications of bending due to thermal stress in 
free-standing dielectric stacks is to tune the filters thermally, rather than by me-
chanical motion.  In such thermally-tuned devices the dielectric mirrors are depos-
ited directly on a silicon substrate with an intermediate film of thermo-optical ma-
terial.  The temperature, and therefore the effective optical thickness, of the 
material between the dielectric mirrors, is controlled by thermal dissipation in in-
tegrated resistors.  This approach has been used to create tunable channel-
dropping WMD filters with narrow transition bands [4].   
 
In contrast to silicon, the AlGaAs system enables growth of lattice-matched, thin 
film stacks with sufficiently large index variations to enable high reflectivity 
Bragg mirrors.  Early work on this technology [5,6] has led to rapid development 
[7,8,9], and to the creation of MEMS tunable Vertical Cavity Surface Emitting 
Semiconductor Lasers (VCSELs) (For an excellent, in-depth description of 
MEMS tunable VCSELs see [10]).  This type of fabrication process results in ex-
cellent mirrors, but the process is not compatible with silicon MEMS technology.   

                                                           
a  We are talking exclusively about filter applications here.  We have seen earlier 

that lower reflectivity mirrors can make excellent F-P sensors. 
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13.2.2 Bragg Filters 

Fabry-Perot filters with high-reflectivity mirrors have good out-of-band rejection 
and narrow pass bands, as shown in Fig. 13.2.  These F-P filters also have some 
undesirable features, however.  The pass band, although it has low insertion loss at 
its center, is not flat.  This means that signals that pass through the filter will see 
wavelength dependent loss.  This is an undesirable trait both in communication 
and sensor applications.   
 
One filter structure that has better pass-band flatness and narrower transition 
bands is the Bragg filter that we first discussed in Chapter 3.4.2 and again in 6.6 
(where the focus is on waveguide implementations).  This is clearly demonstrated 
in Fig. 3.11 that shows that we can get a flat passband and steep transitions bands 
with as little as three pairs of alternating layers of silicon and air.   
 
The problem with this approach is that high-index contrast Bragg mirrors have 
large sidebands.  This is shown in Fig. 3.11 where the transmission in the first set 
of sidebands reaches as high as 0.6.  The passbands can be reduced by using more 
complex structures than the perfectly periodic mirror of Fig. 3.10, but high-index-
contrast Bragg filters are nevertheless not well suited for applications where nar-
row transition bands and good out-of-band rejection are important figures of merit.    

13.2.3 Microresonator Filters 

The problems of MEMS implementations of high-Finesse Fabry-Perot filters are 
due to the bulky structures required to support high reflectivity mirrors.  This dif-
ficulty is avoided in microresonator filters that are based on resonant waveguide 
coupling (see Chapter 6.7.7).  Waveguide microrings, and other types of optical 
resonators, can be made in silicon waveguide technology.  They can also be en-
hanced by MEMS actuators that provide tunability, but, as we will see shortly, the 
tuning functionality is different than that of tunable F-P filters.  A generic imple-
mentation of a microresonator filter or switch is shown in Fig. 13.3.  Here the mi-
croresonator is a disk, but the discussion is valid for any directional resonator, e.g. 
rings or spheresb.   
 
In microresonator filters the optical field on Input 1 couples to and sets up a field 
in the resonator.  If the circumference of the ring is an integer number of wave-
lengths, then the field in the ring builds up in phase.  At wavelengths fulfilling this 
condition, we say that the ring is phase matched to the input field.  The build up 
continues until the losses (intrinsic losses plus coupling to Output 2) matches the 
input coupling.  At that point of steady-state operation, we say that we have im-

                                                           
b  Note that the characteristics of the filter are different if the modes of the resona-

tor are non-directional, i.e. they couple equally to waves traveling in opposite 
directions on the waveguides. 
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pedance matching of the input coupling and resonator losses.  Under simultaneous 
phase matching and impedance matching, we have maximum transfer of optical 
energy from Input 1 to Output 2.  If the resonator is also intrinsically lossless (i.e. 
the only loss is though coupling to the two waveguides), then all the power on In-
put 1 is coupled into Output 2. 
 

Disk 
resonator 

Input 1 

Output 1 Input 2 

Coupling 
region 

Output 2 
 

 
Figure 13.3. MEMS implementation of a waveguide microresonator filter.  Part of 

Input 1 is transmitted to Output 1, and the rest is coupled into the disk 
resonator and from there to Output 2.  The ratio of transmitted (Output 
1) to reflected (Output 2) light is determined by the resonances of the 
disk and by the coupling from the waveguides to the disk.  The effective 
optical circumference of the ring can be adjusted by thermal tuning or 
bychange-injection tuning, and the coupling can be adjusted by a 
MEMS actuator that controls the distance from the waveguides to the 
resonator.  

 
The operation of the ring filter is conceptually similar to that of the Fabry-Perot:  
In the F-P, the input field couples into the cavity through the front mirror.  If the 
round-trip length of the F-P is an integer number of wavelengths, then the input is 
phase matched and the recirculating field builds up until the total losses (i.e. inter-
nal losses plus output coupling through the mirrors) equal the input coupling.  If 
the mirrors are equal and there is no internal loss in the cavity, then the transmis-
sion through the F-P is complete.  Under these conditions, all the out-coupling 
(losses) from the cavity is through the back mirror.  The part of the recirculating 
field that is coupled out through the front mirror is exactly equal in magnitude and 
exactly out of phase with the incoming light that is reflected from the front mirror, 
so these two fields interfere destructively and cancel each other exactly.  This 
same explanation is correct for ring and disk resonators also as long as we substi-
tute in and output couplers for front and back mirrors.   
 
In Chapter 6.7.7 we show that the transmittance through a microring filter can be 
expressed as 
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where r1,2 are the coefficients of forward couplingc in each of the two coupling re-
gions, α represents the internal losses of the ring mode, R is the radius of the ring 

mode, 
R

R λ
πβ 2=  is the propagation constant of the ring mode, and λR is the wave-

length of the ring mode.  The waveguide-to-ring field coupling coefficients (t1,2) 
are related to the forward coupling coefficients as     

2
2,1

2
2,1 1 rt −=  (13.6)

 
When the ring losses are negligible (α=0), the transmission expression becomes 
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which in a symmetric ring (r1=r2=r) filter further simplifies to 
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Comparing Eq. 13.8 to the transmission through a Fabry-Perot filter given by Eq. 
13.2, we see that the expressions are identical assuming the following substitution 

LRR
R

R λ
ππ

λ
ππβ 22 →⋅=⋅  (13.9)

which simply says that the optical circumference of the ring corresponds to twice 
the optical thickness of the etalon.  This is what we would expect, given the con-
ceptual similarities between the operation of the F-P and the microresonator filter. 
 
Comparison of Figs. 13.1 and 13.3 makes it clear that using MEMS technology, 
ring filters are simpler to fabricate than Fabry-Perot filters.  The ring filter of Fig. 
13.3 can be made with a few etch steps in a SOI wafer and large numbers of dif-
ferent designs and large arrays can easily be integrated in a relatively small area.  
The F-P of Fig. 13.1, on the other hand, require wafer bonding and include bulky 
support structures that make it difficult to integrate large number of devices on a 
common substrate.   
 

                                                           
c  In principle there will also be coupling to the backward going wave and to radia-

tion modes, but these can be neglected in well-designed waveguide couplers. 
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Practical ring filters do not have the same tunability as F-P filters.  Comparing 
Eqs. 13.2 and 13.6, we see that to change the position of the pass band of a ring or 
disk filter as we would a F-P filter, we need to control the optical mode radius of 
the microresonator mode.  This can be done by changing the effective refractive 
index of the mode by thermal tuning or by charge injection, but it is difficult to get 
the large tuning ranges that can be achieve in F-P filters tuned by MEMS actua-
tors.   
 
It is straight forward, however, to change the coupling from the waveguides to the 
ring by using MEMS actuators to control the separation of the resonator from the 
waveguides.  This type of tuning does not lead to a change in the position of the 
pass bands, but enables switching [11]: Referring to Fig. 13.3, we see that the op-
tical power on Input 1 can be directed to either Output 1 (no coupling from the 
waveguide to the disk) or Output 2 (complete coupling from the waveguide to the 
disk), depending on the waveguide-disk separation.  
 
Just as for Fabry-Perot interferometers, we usually want the losses of ring filters to 
be as low as possible.  In practical situation, the losses are often dominated by 
scattering from roughness on the side walls of the ring waveguide.  Good pattern-
ing and etching technologies are therefore very important for successful imple-
mentations of ring filters.   

13.3 Dispersion Compensators  

In almost all applications of amplitude filter it is important to be able to substan-
tially suppress out-of-band signals and to have an abrupt transition between the 
pass bands and rejection bands.  These required abrupt transitions between high 
transmission and very low transmission makes amplitude filters hard to realize.  
Filters that are primarily applied to phase corrections are less challenging, because 
they do not require high out-of-band suppression.   
 
Dispersion compensation in Wavelength Division Multiplexed (WDM) fiber optic 
systems are good examples.  For such systems, low-Finesse F-Ps provide a con-
venient means of dispersion compensation.  To avoid unwanted amplitude varia-
tions, dispersion compensation is preferably carried out with Gires-Tournois (G-T) 
interferometers [12], which is a variation of the F-P filter.  In the G-T interferome-
ter the back mirror is highly reflective.  Ideally it has 100% reflection, so the ideal 
G-T is an all-pass filter with a strong phase variation around resonance.   
 
Figure 13.4 shows a MEMS implementation of a G-T interferometer.  It is based 
on the mechanical antireflection switch (MARS) device [13].  In spite of the fact 
that the back mirror has close to 100% reflectance, the MARS device is a low-
Finesse resonator, because the front mirror is a single, free-standing, λ/4 silicon-
nitride film as shown in Fig. 13.4.  The MARS phase filter performs very well as a 
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dispersion-slope compensator.  A linear dispersion tunable from -100 ps/nm to 
100 ps/nm over 50 GHz in C-band has been experimentally demonstrated [14], 
verifying that high Finesse is not required for this function. 
 

 
 

Figure 13.4.  MEMS implementation of a Gires-Tournois all-pass filter designed for 
dispersion compensation.  The back mirror is a high-reflectivity, multi-
layer Bragg mirror, while the front mirror is a simple l/4 film.  The 
length of the cavity is controlled by pulling the nitride mirror towards 
the substrate using electrostatic actuation.  Reprinted from [13] with 
permission. 

 
The G-T interferometer can also be operated on oblique incidence so that the opti-
cal beam follows a zigzag pattern as shown in Fig. 13.5.  In this set-up, the reflec-
tions from the back mirror are spatially separated, and the output is the interfer-
ence pattern of the beams coming off the front mirror.  This geometry allows 
individual phase modulation of the beam that creates the output interference pat-
tern.  The G-T interferometer at oblique incidence therefore operates more like a 
grating than a standard F-P or G-T at normal incidence.  This grating-like opera-
tion, combined with phase modulation of the individual the reflections, enables a 
variety of filter and switching applications, including tunable (de)interleavers [15], 
amplitude filters [16], and dispersion compensators [17].   
 
The G-T interferometer at oblique incidence is, however, not an all-pass filter, 
even with an ideal, 100% reflectivity mirror.  This is due to the fact that the inter-
ference of the reflected beams creates a number of higher-order diffraction modes 
on the output.  Careful attention must therefore be paid to avoiding parasitic am-
plitude modulation as the phase is tuned.    
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Figure 13.5.  Schematic diagram of the MEMS Gires-Tournois interferometer.  The 
back mirror is replaced with a MEMS micromirror array, in which the 
individual mirrors are electrostatically actuated in piston motion so 
that the reflections are phase modulated. The output is formed by the 
interference of multiple spatially separated beams coming off the beam 
splitter.     

13.4 MEMS Spectrometers  

In the preceding sections we emphasized the use of filters to manipulate the opti-
cal spectrum.  In section 13.2 the focus was on separating different parts of the 
spectrum into pass bands and rejection bands and in section 13.3 we briefly looked 
at controlling and adjusting the spectral phase.  Now we will turn our attention to 
spectroscopy, where the objective is to measure the optical spectrum.   
 
Figure 13.6 show two commonly used spectrometer architectures.  The first uses a 
tunable filter with a pass band that is swept across the spectrum of interest and a 
single detector that measures the transmitted optical power for each setting of the 
filter.  Its simple and compact design makes it well suited for miniaturization, par-
ticularly when the tunable filter is implemented as a compact MEMS device.   
 
The diffractive spectrometer of Fig. 13.6b uses a diffractive element to disperse 
the spectrum onto a detector array.  The dispersive element is shown as a grating 
here, but could take other forms.  This spectrometer architecture has the advan-
tages that it measures the whole spectrum all the time, i.e. it is not wasting pho-
tons.  It is, however, more complex and requires more components and more space 
than the swept-filter spectrometer, so it is more difficult to miniaturize.   
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a    b 
Figure 13.6. Commonly used spectrometer designs.  The tunable-filter spectrometer 

(a) uses only a single detector combined with a filter that must be tuned 
over a set of transfer functions that allows the reconstruction of the in-
put spectrum. In the diffractive spectrometer (b) the incident light is 
dispersed by a diffractive element (e.g. a grating) onto a detector array 
that measures the spectrum without the need for tuning of any sort 

 
The basic geometry shown here does not require tunable elements, but there are a 
number of variations that utilize MEMS actuators to enhance the functionality 
and/or simplify the overall system.  Examples include the use of MEMS gratings 
that tune the diffraction of the incident light, and the replacement of the detector 
array with a reflective MEMS modulator array that enables individual modulation 
of the spectral components of the incident light.  Both these two types of systems 
are discussed below.   

13.4.1 Swept Pass Band Spectrometers 

The conceptually simplest way to create a MEMS spectrometer is to sweep a nar-
row pass-band, tunable filter across the spectral range of interest and thereby ob-
tain the spectral distribution of optical power of the incident light.  The Fabry-
Perot filter described in section 13.2.1 works well in this capacity.  Unambiguous 
data can only be obtained over one Free Spectral Range (FSR) of the F-P filter, 
and the spectral resolution is determined by the width of the pass band.  The num-
ber of independent spectral bands that can be recorded is therefore equal to the Fi-
nesse.  (Remember that the Finesse is defined as the ratio of the period to the 
FWHM of the transmittance peak).   
 
We therefore want high-Finesse F-P to get good resolution, but for that we pay the 
price of reduced optical efficiency.  At any given time the tunable F-P filter only 
lets through a fraction of the total spectrum equal to the inverse of the Finesse.  
This low optical efficiency is a serious limitation of the swept-passband, F-P spec-
trometer, and the major motivation for finding alternatives with higher throughput. 
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13.4.2 Generalized Transform Spectrometers 

To make the spectrometer of Fig. 13.6a more efficient, i.e. less wasteful of pho-
tons, we have to give up on the idea of a narrow pass band surrounded by rejection 
bands with very low transmission.  Good rejection is important in WDM channel 
filters and other signal-processing applications, but there is no need for strong re-
jection bands in spectroscopy.  What we need is a set of sampling functions, or ba-
sis functions, that each is used to capture part of the spectrum such that the com-
pleted spectrum can be reconstructed from the measurement data.   
 
To see how a spectrum can be captured with a set of non-orthogonal sampling 
functions, consider a digitizede spectrum of N spectral measurements.  To capture 
these N values we need N sampling functions.  The measured optical power is re-
lated to the power spectrum by the following expression 
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where an is the optical power in the spectrum at wavelength n, bn is the total meas-
ured power using sampling function n, and snm is the transfer function at wave-
length m of the nth sampling vector.  The sampled spectrum is then found from the 
interferogram by inverting the matrix 

bSa ⋅= −1  (13.11) 

The measurement matrix is invertible, so that the power-spectrum vector can be 
found if the sampling vectors are linearly independent.  This is of course a much 
less stringent requirement than that they be orthogonal.  We will use the term 
Generalized Transform Spectrometer for devices that use the approach described 
by Eq. 13.11.   
 
The measurement matrix is particularly simple if we use a swept narrow band fil-
ter.  In the ideal case it is simply diagonal with ones on the diagonal and zeros 
everywhere else.  That matrix is its own inverse, so using it simplifies the post 
processing of the spectral data, but post processing by matrix multiplication (note 
that the inversion of the matrix only have to be done once as a part of the pro-
gramming of the spectrometer) is an inexpensive operation so in practical MEMS 

                                                           
d  No finite set of basis functions allows perfect reconstruction of the spectrum.  

Any realizable set will impose restrictions on spectral resolution and range. 
e  The fact that the spectrum is digitized does not represent any kind of practical 

limitation.  Any modern MEMS spectrometer has a digitized representation of 
the measured spectrum as its output. 



13:  Micro-Optical Filters            503 

implementations it is more important to simplify the hardware and to design more 
efficient (less wasteful) sampling functions. 
 
Up to now, the conventional wisdom in spectrometer design has been to create 
hardware that makes the digital signal processing simple.  There is an increasing 
trend towards a design philosophy that says that the hardware should be designed 
to gather the most complete data about the spectrum, irrespective of how compli-
cated the post processing has to be.  Examples of such designs are described in 
section 13.4.4. 

13.4.3 Fourier Transform Spectrometers 

One highly-efficient spectrometer that is well suited to MEMS implementations, 
and requires only relatively simple post processing, is the Fourier Transform 
Spectrometer.  It is based on the Michelson interferometer (described in Chapter 
12.2.1) as shown in Fig. 13.7.  The moving mirror of the Michelson interferometer 
is oscillated back and forth in a periodic manner.  Harmonic motion is common, 
because it simplifies the mechanical design and control, but other time waveforms 
are sometimes used to simplify the signal processing (although this is typically not 
of great concern in modern systems).   
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Figure 13.7  Fourier transform spectrometer based on a Michelson interferometer.  

The output of the Michelson interferometer varies as a function of time 
as the moving mirror goes through its periodic motion.  This time se-
quence is the inverse Fourier transformed to recreate the input spec-
trum.  

 
The motion of the mirror creates a time dependent output of the optical detector.  
The time sequence is first converted to a power-vs.-position function, which is 
then inverse-Fourier-Transformed to yield an estimate of the input spectrum.  Due 
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to the efficiency of Fast-Fourier-Transform algorithms, this is less computation-
ally intensive than matrix multiplication.    
 
From Eq. 12.1 we know that the power transfer function for monochromatic light 
through the Michelson interferometer is  
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where Pout and Pin are the output and input optical powers, λ is the wavelength, 
and ( )movingfixed LLL −=Δ= 22δ  is the total path length difference for the light 
reflected from the fixed and moving mirrors.  Equation 13.12 shows that the Fou-
rier-Transform spectrometer measures spectra by sampling with harmonic func-
tions.  
 
The part of the measured power that varies with the path length is called the inter-
ferogram, B(δ).  For reasons that will become obvious, we prefer to use the wave 

number, 
λ

ν 1= , in these calculations.  The expression for the monochromatic in-

terferogram is then  

( ) ( )δνπδ ⋅⋅= 2cosB  (13.13) 

 
For a spectrally extended source with a power spectral density I(ν), we must inte-
grate over the wave numbers to find the interferogram  

( ) ( )∫
+∞

∞−

⋅⋅− ⋅⋅= ννδ δνπ deIB 2  (13.14) 

We recognize this as the Fourier Transform, so it follows that  

( ) ( )∫
+∞

∞−

⋅⋅ ⋅⋅= δδν δνπ deBI 2  (13.15) 

We conclude that we can find the spectrum by inverse Fourier transform of the in-
terferogram.   
 
Perfect reconstruction of the spectrum requires that we scan the path difference 
from minus to plus infinity.  In practical systems we scan from zero up to a maxi-
mum path length difference δmax.  (Note that since B(δ) is symmetric in δ, we need 
not include negative path-length differences.  It is important to include δ=0, how-
ever.)  The imperfectly reconstructed spectrum is then 
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( ) ( ) ( ) ( )∫
+∞
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where ( )maxδδΠ  is the Rectangular functionf, defined as 
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Note that the values at the discontinuities are sometimes defined differently than 
in Eq. 13.17. 
 
The inverse Fourier transform of the Rectangular function is [18]  

( ) ( ) ( )maxmax
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2
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⋅
⋅=h  (13.18) 

The reconstructed spectrum is the convolution of the true spectrum with this sinc 
function 

( ) ( ) ( ) ( ) ( )∫
+∞

∞−

⋅−⋅′=⊗=′ duuhuPhPP νννν  (13.19) 

This is exactly what we would expect:  The measured, or reconstructed, spectrum 
is the true spectrum convolved with, or broadened by, the response function of the 
spectrometer. 
 
Equation 13.19 illustrates the main problem with Fourier-Transform spectroscopy 
in its most basic form:  The sinc function that is convolved with the spectrum has 
large side lobes, and these side lobes create errors in the reconstructed spectrum.  
The solution is to apodize the inteferogram.  Apodization refers to the technique of 
differentially weighting the interferogram such that the multiplying function in Eq. 
13.16 is not the Rectangular function, but some other function with less abrupt 
transitions and therefore less prominent side lobes in its Fourier Transform.   
 
The design of apodization functions is complex and the optimum choice depends 
on the application.  Reference 19 gives a good introduction to apodization in Fou-
rier-Transform spectroscopy.  Here we will just quote the results most relevant to 
our discussion.     
 
Popular apodizations include triangular functions and truncated harmonics and 
Gaussians.  The truncated harmonic apodization function of the form 
                                                           
f  The Rectangular function is also known as the rectangle function, rect function, 

unit pulse, boxcar function, or the top-hat function.   
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has a Fourier Transform with side lobes that have maxima that are -2.7% of the 
central lobe maximum.  The Gaussian apodization function   
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does even better.  The maximum side lobes of its Fourier Transform are only -
0.45% of the central-lobe value.  These ratios are substantially smaller than the 
side-lobe-to-central-lobe ratio of -21% of the sinc function.   
 
This reduction in side-lobe strength, and the associated reduction in errors caused 
by their presence, come at the cost of reduced spectral sensitivity.  The sinc func-
tion has its first zeros for max21 δν ±= , so the full width of the central lobe is 

max1 δ , and its Full Width at Half Maximum (FWHM) is approximately 

max6.0 δ .  The Fourier Transform of the truncated harmonic function has a 
FWHM of exactly max1 δ  and the value for the truncated Gaussian is only insig-
nificantly larger ( max02.1~ δ ).   
 
In practical applications, the reduction in errors caused by side lobes is well worth 
the increase in resolution, so apodization is commonly used.  We will therefore 
say, somewhat arbitrarily, that the resolutiong of the transform spectrometer is 
given by 

max

1
δ

ν =Δ  (13.22) 

Expressed in terms of wavelength, this becomes 

max

2

2 δ
λλ

ν
νλ =Δ⇒

Δ=Δ  (13.23) 

These equations point out a hard limit on scaling Fourier Transform spectrome-
ters; the application-specific resolution determines a minimum acceptable mirror 
translation.  

                                                           
g  What is the best measure of resolution in spectroscopy is a much debated ques-

tion.  It is definitively application dependent.  Our choice of FWHM is some-
what conservative and it simplifies the mathematical expressions.   
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13.4.4 MEMS Implementations of Transform Spectrometers 

There are many considerations other than resolution that go into the design of 
Fourier Transform spectrometers.  One is the minimum measurable wave number 
that can be measured.  It is determined by the minimum-resolvable path-length 
difference, which is typically limited by the sampling speed.  Another important 
issue for traditional designs is the variable losses incurred as the path length is 
changed.  Typically this is not a difficulty for MEMS implementations, due to the 
relatively short path-length variations that can be sustained by MEMS actuators.  
The resolution as expressed in Eq. 13.23 therefore highlights the main challenge 
of MEMS implementations of transform spectrometers.   
 
The spectral resolution is inversely proportional to the maximum actuation dis-
tance, so long-travel actuators are required.  As an example, let’s say we want to 
construct a transform spectrometer for channel monitoring in a WDM system with 
100 GHz channel spacing at 1.55um wavelength.  A channel spacing of 100 GHz 
corresponds to 0.8 nm at 1.55um wavelength, so we find 

( ) mmL
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−
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Δ⋅
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λ
λδ  (13.24)

 
Motion in excess of millimeters is difficult, if not impossible, to achieve in 
MEMS.  The calculation demonstrates that the micron-scale displacements that 
are sufficient for many MEMS applications are not useful in transform spectrome-
ters, and that even long-range MEMS actuators, e.g. electrostatic combdrives with 
several tens of microns of motion, achieve only modest resolution.   
 
The Michelson interferometer is the building block of the traditional Fourier 
Transform spectrometer, but many other configurations using other types of inter-
ferometers can be used.  In MEMS implementations it is often beneficial to use 
non-traditional architectures that are designed to fit into the MEMS-fabrication 
environment and to facilitate miniaturization.  It is important to find architectures 
that minimize both the size and number of components.  The optimum design de-
pends on the available manufacturing methods, so many different structures have 
been demonstrated as MEMS have been extended and refined.  Here we will give 
a few typical examples to illustrate how different MEMS technology leads to dif-
ferent solutions.  
 
Figure 13.8 [20] illustrates a classic design based on a Michelson interferometer in 
its most traditional implementation.  The optical beam to be analyzed is split in 
two by a beam splitter and the two parts are reflected from two different mirrors.  
One of the mirrors is actuated by an electrostatic combdrive to create a variable 
path length.  After reflection, the two parts of the optical beam recombine on the 
beam splitter, and interfere on the detector to give a detected power that is har-
monically dependent on the path-length difference as described above. 
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Figure 13.8. Schematic of a Michelson interferometer used as a Fourier Transform 
spectrometer.  The movable mirror of the F-T spectrometer is con-
trolled by a MEMS electrostatic actuator.  Reprinted from [20] with 
permission.  

 
Figure 13.9 shows a variation of the traditional transform spectrometer design 
[21].  Here the geometry is changed to allow more of the components of the spec-
trometer to be fabricated in the MEMS technology directly, as opposed to being 
manufactured separately and positioned on the chip using some type of hybrid in-
tegration approach.  The structure shown in Fig. 13.9 is implemented on a single 
chip through a combination of anisotropic etching and Deep Reactive Ion Etching 
(DRIE).   
 
The starting point for the MEMS fabrication is a SOI wafer with a <110> device 
layer.  The device layer is shaped by a combination of anisotropic etching and 
DRIE (Deep Reactive Ion Etching).  Anisotropic etchants, e.g. KOH, etches the 
<111> planes of silicon at much lower speeds than other crystalline planes.  These 
etchants can therefore be used to create very smooth, vertical surfaces that can be 
used as mirrors and beam splitters for optical beams that propagate in the plane of 
the device layer.  The <111> planes that are perpendicular to the chosen <110> 
surface intersect at angles of 70.6 and 109.4 degrees as shown in Fig. 13.10.  
These angles dictate the geometry of the spectrometer shown in Fig. 13.9.  Note in 
Fig. 13.10 that there are other <111> planes that are not perpendicular to the cho-
sen <110> surface that will interfere with the formation of vertical surfaces during 
anisotropic etching. 
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Figure 13.9. Schematic of single-chip integrated transform spectrometer based on 
vertical micromirrors with integrated MEMS actuators.  The non-
normal incidence on the beam splitter is due to the restrictions of the 
surfaces that can be defined by anisotropic etching of Si. 

 
The specific orientations of the <111> planes limit the type of geometries that can 
be created by anisotropic etching alone, so DRIE is used to add flexibility to the 
design.  Electrostatic actuators and fiber grooves that do not need atomically 
smooth surfaces are therefore created by DRIE.  In the spectrometer of Fig. 13.9, 
the beam splitter and the movable mirror are defined using anisotropic etching, 
while the fixed mirror is defined by DRIE.   
 

 
 

Figure 13.10. The intersections between a specific <110> plane (going from the up-
per to the lower corner on the front surface) and the <111> that are 
perpendicular to it are shown as dashed lines.  These lines intersect at 
70.6 degrees in the corners and at 109.4 degrees at the mid points of 
the front and back surfaces.     
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The two transform spectrometers shown in Fig. 13.8 and 13.9 are both of the tradi-
tional design based on the Michelson interferometer.  The characteristic advan-
tages and challenges of MEMS technology have inspired non-traditional solutions 
of different kinds.  One such architecture uses the variable-amplitude grating 
shown in Fig. 13.11 [22].   
 
As described in Chapter 10, the reflected optical power from the grating has a 
harmonic dependence on the grating amplitude.  This matches the harmonic de-
pendence on the optical path-length difference of the output of traditional Fourier 
transform spectrometers.  With variation in grating amplitude playing the role of 
path length difference, the grating-transform spectrometer maps readily onto the 
traditional design.  The main advantage of this solution from a MEMS point of 
view is that the grating acts both as a beam splitter and as a two-beam interfer-
ometer with a variable path-length difference. 
 

 
 

Figure 13.11. Transform spectrometer based on a diffraction phase grating with tun-
able grating amplitude.  The grating consists of alternating fixed (light) 
and movable (dark) mirror elements.  The movable mirrors are dis-
placed by an electrostatic actuator to create a variable path length dif-
ference. Reprinted from [22] with permission.     

 
The spectrometer shown in Fig. 13.12 [23] represents a more drastic departure 
form traditional transform-spectrometer design.  Here the incident optical field 
forms a standing wave between the semitransparent front mirror and the highly re-
flecting back mirror.  The standing wave is sampled by a semi-transparent detector 
in a fixed location, and the period of the standing wave pattern is varied by mov-
ing the rear mirror of the standing-wave cavity.  As in other transform spectrome-
ters, the response is a harmonic function of the mirror position, so the resolution 
has the same dependence on maximum mirror displacement given by Eq. 13.22.   
 
The non-traditional implementations of transform spectrometers of Figs. 13.11 
and 13.12 show how the flexibility of MEMS technology enables non-traditional 
solutions.  Both spectrometer designs are compact and require few components, so 
they are well-suited for miniaturization and integration with electronics.  The 
drawback of these geometries is that they only achieve modest resolution due to 
the limited maximum displacement of their actuators.  
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Figure 13.12. Transform spectrometer using a semitransparent detector in a standing 
wave cavity. The back mirror is moved to change the period of the 
standing wave and create an output that is a harmonic function of mir-
ror position.  Reprinted from [23] with permission.     

13.5 Diffractive Spectrometers  

13.5.1 Spectral Synthesis 

The filters we have studied so far are simple devices with only one or at most a 
few (in the case of the oblique-incidence Gires-Tournois interferometer) degrees 
of freedom of mechanical motion.  This simplicity enables compact and low cost 
MEMS implementations, but it also limits the range of spectral manipulations that 
are supported by the filters.  Much more flexible and functional optical filters and 
optical synthesizers can be created if the spectrum is first spread by a dispersive 
element and then the spectral components are individually modulated before re-
combination.  This device, called the Heritage-Weiner optical synthesizer after its 
inventors [24], was first described in Chapter 5.6.3 and is shown conceptually in 
Fig. 13.13.  This optical synthesizer is similar to the grating spectrometer of Fig. 
13.5b, but instead of a detector array in the spectral plane, we use a MEMS Spatial 
Light Modulator (SLM).   
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Figure 13.13. Basic optical system for manipulation and synthesis of optical spectra.  

The incident light is collimated onto a diffraction grating and dispersed 
on a Spatial Light Modulator (SLM) through a lens placed one focal 
length away from the grating.  The spectral components are modulated 
by the reflective SLM and then recombined on the grating, before the 
output is focused onto an optical fiber, detector, detector array, or 
other output device.  This flexible system has many applications, includ-
ing pulse shaping as shown here. 

 
In the optical synthesizer of Fig. 13.13, the spectral components of the incident 
light are dispersed by the grating and modulated by the MEMS SLM.  Depending 
on the application, the SLM is constructed to modulate the amplitude or phase, or 
both, of the dispersed light.  The synthesizer of Fig. 13.13 employs a reflective 
SLM and a folded geometry, in which the same grating-lens combination is used 
both to disperse the incoming light and to recombine the output light.  The reflec-
tive SLM is slightly tilted with respect to the optical axis so that the input and out-
put beams are spatially separated.  Transmissive modulators work just as well, but 
require a separate lens and grating for the recombination of the output.  The reflec-
tive geometry is preferred in microsystems, because this configuration requires 
fewer components and less space, and because reflective SLMs are easier to im-
plement using MEMS technology. 
 
The versatility of the optical synthesizer of Fig. 13.13 makes it a favored design.  
The flexibility in size, form, and function of Optical MEMS has made it the tech-
nology of choice for a large number of applications.  Channel-extraction filters for 
Wavelength-Division-Multiplexed optical fiber networks are good examples.  This 
application require a flat pass band to avoid signal distortion, combined with 
strong (> 40 dB) side band rejection and narrow transitions between the pass band 
and rejection bands to suppress cross talk between channels.   
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Such a filter can be realized using the optical synthesizer configuration with a 
simple MEMS SLM as shown in Fig. 13.14.  The SLM used here is an adjustable 
aperture created by two beam blocks that are each positioned by MEMS actuators.  
In this configuration the center wavelength of the filter is tuned by moving the 
beam blocks in common mode and the pass band width is adjusted by moving the 
beam blocks differentially.  The width of the transition bands between the pass 
bands and the rejection bands are determined by the spot size on the SLM.  Filters 
with better than 50 dB sideband rejection and 1 GHz 1dB to 40 dB transition 
bands in a 1 by 1mm footprint have been demonstrated using this design [25].  
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MEMS 
SLM 

 
 

Figure 13.14. MEMS implementation of an optical synthesizer set up with an adjust-
able aperture in the spectral plane.  The two beam blocks that form the 
adjustable aperture can be independently positioned to tune the pass 
band width and center frequency.   

 
The simple SLM used in the filter of Fig. 13.14 controls the spectral amplitude of 
the optical output field.  Changing the relative phase of the spectral components 
has the effect of changing the temporal shape of the input.  This effect is much 
used in femto-second optical pulse shaping [26] and spectral phase measurements 
[27].  The same effect is also used to create adjustable time delays [28,29,30] in 
Optical Coherence Tomography systems.  In the latter application, the SLM is 
simply a scanning mirror that rotates around an axis perpendicular to the direction 
of spectral dispersion.  Tilt of the mirror around this axis results in a variable, lin-
ear gradient of the spectral phase, which translates into a variable time delay in the 
temporal regime.    
 
Variations of the geometry of Fig. 13.13 are also used to interchange wavelength 
channels between fibers in Wavelength-Division-Multiplexed optical fiber sys-
tems.  The SLM then consists of arrays of rotating micromirrors that are config-
ured to switch signals between different fibers as shown in Fig. 8.6 in Chapter 8.3.  
Both wavelength selective optical WDM switches [31] and WDM add-drop filters 
[32] based on this principle have been demonstrated.   
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The optical synthesizer is also very well suited to spectroscopy.  The SLM can be 
used to set up a large variety of sampling functions that can be used to optimize 
spectral measurements for specific applications.  This has lead to the development 
of a rich field of mathematics and practice, generally referred to as Hadamard 
spectroscopy [33].  

13.5.2 Diffractive MEMS Spectrometers  

For as powerful as the general optical synthesizer of Fig. 13.13 is, it is also com-
plex and contains many optical components that must be accurately aligned.  It is 
therefore not easy to miniaturize and integrate, so it is practical to find simpler al-
ternatives wherever possible.  A variation of the grating spectrometer that uses op-
tical MEMS, not as a SLM to modulate dispersed light, but as a tunable dispersing 
element, is shown in Fig. 13.15.  The point of this design is to reduce the number 
of components in the system by combining the grating and the SLM.  This archi-
tecture is neither as powerful, nor as efficient as the optical synthesizer, but it re-
quires fewer components and less space, so it preferable for miniaturized systems 
and has been demonstrated as a viable geometry for implementation of a variety of 
applications, including spectral synthesis [34], optical filters [35] and pulse shap-
ers [36].   
 

Lens 
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SLM Output

 
 

Figure 13.15. Optical synthesizer that combines the functions of the dispersive ele-
ment and SLM into one component.  The MEMS SLM is set up to dif-
fract the desired spectral components of the incident light onto the out-
put, which in this case is a simple aperture. 

 
The objective of the simplified synthesizer of Fig. 13.15 is to create a MEMS 
SLM that can be set up such that any desired part of the input spectrum is dif-
fracted onto the output.  Ideally this should be done with no loss and perfect rec-
reation of the desired spectrum, but in practice there will be limitations on both 
throughput and spectral control.   
 
To understand these limitations, consider the impulse response of the filter synthe-
sizer.  The output is an impulse train that contains impulses that each are delayed 
and attenuated replicas of the input pulse as shown in Fig. 13.16.  The delay for 
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each impulse on the output is given by the total path length from the input to the 
diffractive surface and back for that particular pulse.  The delays therefore corre-
spond to the height distribution of the individual reflectors of the diffractive sur-
face.  Likewise will the attenuation of each pulse correspond to the area of the re-
flective surface that creates it.  The impulse response is therefore determined by 
the height distribution of the diffractive surface.  Neglecting weak wavelength de-
pendencies in diffraction efficiency and output coupling, the transmission of the 
filter is then given by the Fourier transform of the height distribution of the reflec-
tors [37].    
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Figure 13.16. The impulse response of a diffractive MEMS element is a train of im-
pulses with amplitudes determined by the areas of the reflectors and 
spacing determined by the height difference between the reflectors.  

 
The impulse-response picture of Fig. 13.16 gives us a powerful tool for analysis 
and design of diffractive filters.  For details of the underlying mathematical and 
computational details the reader is referred to [38].  Here we will focus on the 
conceptual insight necessary for MEMS design and implementation.   
 
The first observation we make is that the transfer function of the diffractive filter 
is the Fourier transform of a non-negative sequence.  The diffractive filter can 
therefore in principle synthesize any transfer function to within a constant.  In 
terms of spectral synthesis, the diffractive filter is just as powerful as the synthe-
sizer of Fig. 13.13.   
 
In perfect analogy with the Fourier Transform spectrometer, the resolution of the 
diffractive filter is the inverse of the total path length difference between the lead-
ing and trailing impulses in the output pulse train.  This maximum path difference 
is equal to the distance, hmax, along the optical axis between the first and last re-
flector.  The resolution of the diffractive filter is then given by   

max2
1

hdf ≈Δν  (13.25) 

which in terms of wavelength becomes 
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max

2

2h
λλ ≈Δ  (13.26) 

We have expressed these relations as approximations to reflect the fact that the 
exact values depend on the apodization. 
 
Equations 13.25 and 13.26 demonstrate that the spectral resolution of the diffrac-
tive filter of Fig. 13.16 is inversely proportional to the height difference of the dif-
fractive element along the optical axis.  This is also true for the grating used in the 
spectrum synthesizer of Fig. 13.13.  The conclusion is that the synthesizer and the 
diffractive filter have similar resolution provided that their diffractive elements 
have the same size and incident angle.  
 
Diffractive filters and synthesizers have similar resolution and synthesizing capa-
bilities, but there are large differences in optical efficiency.  In the synthesizer the 
losses at different wavelengths are independent, so the loss in each spectral band 
can be optimized to give the desired synthetic spectrum with the minimum re-
quired loss.  In the diffractive filter, on the other hand, the losses at one wave-
length will in general depend on losses at other wavelengths in a complex manner.  
The consequence is that, even though any spectrum can be synthesized to within a 
constant, the losses are larger than the minimum required to replicate the desired 
spectral distribution.   
 
To understand the origin of the extra loss, we model the diffractive surface as a 
beam splitter that separates the incident light into N spatially separate channels, 
and then recombines them into a single output channel after having imparted a 
phase shift on each channel.  To simplify the argument we assume that the chan-
nels are of equal strength.  We learned in Chapter 2 that such recombination onto a 
single output leads to 1/N loss on average over all frequencies (or over one FSR of 
a periodic spectrum).  Therefore only wavelengths that are reflected in phase from 
all N reflectors of the diffractive element are completely transmitted by the filter.  
In other words, we can synthesize a spectrum with one perfectly-transmitted peak 
within the FSR of the filter.  (Note that this leads to the prescribed 1/N loss on av-
erage across the FSR.)   
 
Now consider what happens if we try to synthesize a spectrum with M peaks 
within the FSR.  The input is first split into N channels.  The best we can do is to 
group the N channels into M subsections that each creates one spectral peak.  Each 
of these M subsections only handles 1/M of the input power and each has a 1/M 
coupling loss due to mode mismatch.  The maximum value of each peak is then 
1/M2.  If we interleave the sub sections so that the total path length difference, and 
therefore the resolution, is close to the same as for the whole diffractive element, 
then the total loss averaged over the FSR is 1/(M2N). 
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It is the extra loss of 1/M2 caused by power splitting and mode-mismatch loss that 
separates the diffractive filter from the spectral synthesizer.  This extra loss be-
comes prohibitive when the number of peaks in the desired spectrum is large.  The 
synthesizer geometry should therefore be used for applications that require com-
plex spectra, while the diffractive filter is a simpler, and therefore better, alterna-
tive in applications where the synthesized spectrum has only one , or at most a 
few, peaks.   
 
The resolution, given by Eqs. 13.25 and 13.26, and the extra loss have important 
implications for the MEMS implementation of diffractive spectrometers/filters.  
Spatial light modulators designed for normal incidence are only useful for low-
resolution applications [39].  Most spectroscopy applications require better resolu-
tion than what we get from the height of practical MEMS structures by them-
selves, so gracing incidence and large diffraction angles are necessary.  One way 
to achieve high-diffraction efficiency at gracing incidence is shown conceptually 
in Fig. 13.15.  In this implementation the MEMS diffractive element behave much 
like a tunable blazed grating.  It consists of a series of tilted reflectors so that the 
diffraction angle is high, and it is operated such that all reflections are in-phase in 
the optical pass band.  Such MEMS structures can be fabricated by a combination 
of anisotropic etching and DRIE [40], and have been demonstrated as amplitude 
filters and tunable WDM interleavers [41].  Alternatively, each reflector can be 
replaced by a diffractive structure with high diffraction angle [42].   

13.6 Tunable Lasers 

We have seen in this chapter that miniaturization and microfabrication enable 
compact and functional optical filters that cannot practically be created using tra-
ditional technologies.  In addition, MEMS technology provides not only the means 
for fabricating optical components, but also a substrate for system integration and 
packaging.  A compelling approach is therefore to create complete systems-on-a-
chip solutions that include both MEMS optical filters and MEMS alignment and 
integration structures.   
 
One application that benefit from such an approach is the tunable semiconductor 
laser.  In this section we will consider the two most common MEMS tunable la-
sers geometries: (1) Vertical Cavity Surface Emitting Lasers with a built-in 
MEMS Fabry-Perot filter for direct tuning of the cavity modes, and (2) External 
Cavity Semiconductor Diode Laser (ECSDL) with MEMS optical filters.   
 
In addition to these common designs, MEMS enable a number of simpler solu-
tions with less general tuning characteristics.  One such design with intermediate 
complexity and proven market potential is to use an array of fixed-wavelength 
semiconductor lasers and select the output of the one with the most appropriate 
wavelength, using a MEMS mirror like the ones described in Chapter 7 for the se-
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lection.  If the laser selection is combined with temperature tuning of the individ-
ual lasers, this approach achieves continuous tuning [43]. 

13.6.1 MEMS Vertical Cavity Surface Emitting Lasers 

Perhaps the simplest and most elegant way to make a tunable laser is to place the 
laser gain medium in a very short F-P cavity that can be tuned by moving one mir-
ror with respect to the other.  This is the approach that is taken in the MEMS tun-
able Vertical Cavity Surface Emitting Laser (VCSEL) shown schematically in Fig. 
13.17.   
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Figure 13.17. Cross section of MEMS tunable VCSEL.  The laser cavity is formed by 
two high-reflectivity Bragg mirrors.  Between the mirrors is a thin gain 
region with one or more quantum wells, and an air-gap that allows the 
upper Bragg mirror to be moved to tune the wavelength of the cavity 
mode(s).  The structures supporting current injection and MEMS actua-
tion are not included in the schematic.  

 
The fabrication of the tunable VCSEL starts with the growth of a Bragg mirror on 
a III-V semiconductor substrate.  Following the formation of the bottom mirror, 
the gain medium, consisting of one or more quantum wells, a spacer layer, and fi-
nally the top Bragg mirror are grown.  The spacer layer is then sacrificially etched 
to allow the upper mirror to move vertically under the control of a MEMS actua-
tor.   
 
The Bragg reflectors are lattice-matched semiconductor mirrors, most typically 
fabricated using Molecular Beam Epitaxy (MBE).  Tunable F-P filters based on 
MBE-grown reflectors have been demonstrated in AlGaAs for the 850 nm wave-
length [44,45], and in InP-based materials for the 1550 nm wavelength band 
[46,47,48].  Excellent mirrors can be made in both bands, but it is challenging to 
integrate the air gap and MEMS actuators with the current-injection and mode-
profile-control structures required in VCSELs, and the laser cavity has to be de-
signed with care to avoid detrimental effects from internal reflections from the 
semiconductor-airgap interfaces.  A good historical account and in-depth descrip-
tion of MEMS tunable VCSELs are given in ref. [49]. 
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13.6.2 MEMS External Cavity Semiconductor Diode Lasers 

A F-P cavity laser with a movable mirror can only be tuned over a wavelength 
range that is less or equal to the spacing of the cavity modes, given by the Free 
Spectral Range (FSR) of the cavity.  These modes coincide with the transmission 
peaks of the cavity.  (We leave it to the reader to prove that the internal field in the 
cavity is maximized at the wavelengths of the transmission maxima, thus making 
these the cavity-mode wavelengths.)  From Eq. 13.2 we know that the wave-
lengths of the transmission maxima are given by  

m
L

C
2=λ  (13.27) 

where m is an integer.  The cavity mode spacing is then 
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Good semiconductor lasers have broad-band gain of as much as 2% relative 
bandwidth in the 1550 nm wavelength band.  To achieve mode-hop free tuning 
over such a broad band, we must restrict the laser cavity length to values fulfilling 
the inequality  
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(13.29) 

Practical VCSELs have cavity lengths that are substantially shorter than this, so 
they can indeed be tuned over their full gain bandwidth by simply moving one 
cavity mirror.  Edge emitting semiconductor lasers, on the other hand, are almost 
always much longer than the values given by Eq. 13.29, so tunable edge emitters 
must be designed to not only have tunable cavity modes, but must also include op-
tical filters that suppress all but one of these cavity modes, so that single-mode 
operation over a broad optical wavelength band can be achieved.  Tunable edge 
emitters are therefore substantially more complex than the simple tunable VCSEL, 
but they also achieve higher power and better wavelength stability due to their 
longer gain regions and cavities.  
 
Two different ECSDL geometries capable of broad-band tuning are shown in Figs. 
13.18 and 13.19.  The traditional Littrow configuration of Fig. 13.18 consists of a 
semiconductor gain medium with a single-mode wave guide, a collimating lens, 
and a grating that acts as a wavelength filter.  The front facet of the gain medium 
is Anti-Reflection (AR) coated to establish an optical cavity between the back mir-
ror of the semiconductor diode and the diffraction grating and to prevent spurious 
lasing of the semiconductor diode by itself.  The output of the single-mode 
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waveguide is collimated onto a diffraction grating that retro-reflects the mode 
back into the waveguide.    
 
The combination of the grating and the back mirror of the semiconductor diode 
creates two interacting filters.  The grating itself is a wavelength filter that only 
diffracts light in a narrow wavelength band back into the semiconductor 
waveguide.  The second filter is the cavity formed by the grating and the diode 
back mirror.  Both these filters will be tuned when the grating is moved.  The cen-
ter passband wavelength of the grating filter depends on the angle of the grating, 
so it is tuned by rotation.  The cavity modes are determined by the length of the 
cavity, so their center wavelengths are tuned by translation of the grating along the 
optical axish.   
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Figure 13.18. Schematic diagram of the traditional Littrow configuration for tunable 
external cavity lasers.  The optical field of the single-mode waveguide 
in the gain medium is collimated onto a grating that acts as a filter and 
diffracts a narrow band of wavelengths back into the gain medium.  All 
but one cavity mode is then suppressed and prevented from lasing.  The 
wavelength of the lasing mode is controlled by controlling the angle of 
the grating with respect to the optical axis.  If the grating is rotated 
around the correct pivot point, then the cavity wavelength and the grat-
ing-filter wavelength are tuned equally, so that continuous wavelength 
tuning is achieved. 

 

                                                           
h  It seems counterintuitive that translation of the grating perpendicularly to the 

optical axis does not change the lasing wavelength, but it is nevertheless true to 
first order.  To understand how, consider light at the center wavelength of the 
grating.  If the grating is moved perpendicularly to the axis, the individual re-
flectors of the grating are still in phase and the wavelength is not changed. 
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The length of the cavity is many times larger than the spacing of the reflecting sur-
faces of the grating, and the FSR of the cavity filter is correspondingly smaller.  
The function of the grating filter is then to pick out one specific cavity mode and 
suppress all others, so that only the desired mode achieves lasing without an ex-
cessively high pumping threshold.  In other words, the two filters must be aligned 
in wavelength, which means that the cavity length has to be controlled with sub-
wavelength accuracy.  Accurate alignment and cavity length control are therefore 
necessary and motivates the use of MEMS.   
 
The key to continuous, wide-range, mode-hop-free wavelength tuning, is to simul-
taneously rotate and translate the grating so that the cavity modes and the grating 
filter are tuned the same amount, i.e. so that the desired cavity mode stays aligned 
with the grating filter.  It is well known that if the grating is rotated around a pivot 
point located at the intersection of the plane through the grating surface and the 
normal to the optical axis at a point that is a distance n·λvac from the rotating ele-
ment along the optical axis, where n is the number of wavelengths in the cavity 
and λvac is the vacuum wavelength, then the cavity mode and grating filter stays 
aligned during rotation [50,51].   
 
An alternative design, dubbed the Littman configuration, is shown in Fig. 13.19.  
This laser architecture also uses a grating filter, but instead of sending the light di-
rectly back into the semiconductor diode, the grating diffracts the light onto a mir-
ror.  Only the narrow wavelength band that hits the mirror at normal incidence is 
reflected back into the semiconductor diode via the grating.  An optical cavity is 
now established between the external mirror and the back facet of the diode.   
 

 

Fixed 
Grating 

Semiconductor 
Gain Medium 

Rotating 
mirror 

Pivot point  
 

Figure 13.19. The Littman tunable laser is similar to the Littrow configuration, except 
that the optical mode is diffracted onto a mirror.  The cavity modes are 
then established between the rotating mirror and the back facet of the 
diode, while the grating filter picks out the narrow wavelength band 
that is diffracted perpendicularly onto the rotating mirror.  
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Again we have two interacting filters; the grating filter that is tuned by rotating the 
mirror, and the cavity filter that is tuned by translating the mirror.  Continuous 
tuning requires that the mirror is rotated around a pivot point at the intersection of 
the plane through the mirror surface and the normal to the optical axis at a point 
that is a distance n·λvac from the rotating element along the optical axis, where 
again n is the number of wavelengths in the cavity and λvac is the vacuum wave-
length.   
 
The advantage of the Littman configuration is that the light is diffracted from the 
grating twice per round trip of the cavity.  The two passes through the grating lead 
to a shaper transmission function with better side-mode suppression.  Lasers in the 
Littman configuration therefore have a cleaner lasing mode and achieve better co-
herence, and it is therefore the architecture of choice in industrial developments.  
 
Both the Littman and the Littrow architectures have a fixed pivot point that in 
principle allows the grating filter and the cavity modes to be tuned together with a 
single degree of freedom of motion.  This compellingly simple solution does not 
work in practical MEMS implementations, where we need at least one extra de-
gree of freedom for alignment of the cavity mode and grating filter and for com-
pensation of the dispersion in the optical components.   
 
Still it is practical to have one major degree of motion that does most of the tun-
ing, while a second control is used for adjustments.  One school of thought in 
MEMS implementations of Littrow [52,53] and Littman [54] ECSDLs has there-
fore been to focus on actuator design, with the goal to develop accurate, one-
degree-of freedom actuators that can provide stable, mode-hop-free tuning after 
initial alignment.  In practice the one-degree-of-motion actuator has been aug-
mented by a second degree of freedom of motion for initial alignment and disper-
sion compensation [55,56].  These types of lasers have excellent stability and opti-
cal characteristics.   

13.6.3 Tunable External Cavity Semiconductor Diode Lasers with 
Diffractive Filters 

The drawback of using a rotating grating or mirror to tune an ECSDL as in Fig. 
13.18 and 13.19 is that the required total range of motion is large.  Typically the 
widths of the rotating elements are in the mm range, leading to motion of several 
hundred micron.  Motion on this scale is difficult to support in MEMS actuators, 
and for that reason, the tunable laser has been a driver in the development of long-
range MEMS actuators.   
 
MEMS diffractive filters represent a compelling alternative to traditional designs.  
As shown in Chapter 13.5.2, MEMS diffractive filters achieve separate control of 
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the phase and amplitude response of the filteri.  Therefore when a diffractive filter 
is used instead of the grating in the ECSDLs of Fig. 13.18, no macroscopic motion 
of the diffractive element is required for tuning.  Tunable lasers based on this 
principle have been demonstrated both with commercial MEMS SLMs [57] and 
with diffractive elements design especially for the purpose [58].   
 
The diffractive filter requires only sub-wavelength motion, as opposed to the mac-
roscopic motion of rotating gratings and mirrors.  This advantage is somewhat off-
set by the added complexity of control.  Typically a diffractive filter designed for 
ECSDL tuning requires several dozen reflectors to cover the gain band width of 
semiconductor diode.  Each of these reflectors must be individually controlled to 
fully utilize the tuning range of the diffractive element.  The simple designs with 
one (in practice two) degree of freedom of Fig. 13.18 and 13.19 are therefore re-
placed by systems with several dozen degrees of freedom.  This means that com-
plexity is moved from the mechanical domain in traditional designs to the digital-
electronics domain for the diffractive filters.  This is usually a worthwhile trade-
off, and it is only getting better as digital electronics improves.   

13.7 Summary of Microoptical Filters 

This Chapter describes MEMS implementations of traditional filter and spec-
trometer architectures, as well as several designs that rely for their operation on 
the characteristics of MEMS technology.  The field of optical MEMS filters is too 
large for a comprehensive coverage, so the emphasis is on the basic principles, as 
well as the unique advantages and challenges of optical filters implemented in 
MEMS technology.   
 
Traditional resonant filters like Bragg gratings, Fabry-Perots, and other optical 
resonators are not conceptually different in MEMS implementations.  These struc-
tures have one, or at most a few, degrees of freedom of motion, so they do not 
make use of the potential for complexity that MEMS technology provides.  How-
ever, both amplitude filters and phase filters (dispersion compensators) benefit 
from MEMS actuation that provides tunability and from the miniaturization and 
integration inherent to MEMS fabrication technology.   
 
MEMS spectrometers and spectral synthesizers, on the other hand, take more full 
advantages of the unique characteristics of MEMS technology.  Section 13.4 de-
scribes several transform-spectrometer architectures that are designed specifically 

                                                           
i  This fact follows from the math, but is also simple to understand in physical 

terms: If the individual microreflectors are all moved in common mode, then 
only the phase of the reflected light is affected.  If the reflectors are moved dif-
ferentially, then both the amplitude and the phase are changed, but the phase can 
be corrected by an associated common-mode actuation.  
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for MEMS implementations.  A common trend of these spectrometers is non-
traditional signal processing, where the emphasis is on adapting the data handling 
to the hardware, rather than the other way around.   
 
Optical spectral synthesizers must by definition have large numbers of degrees of 
freedom to support the generation of general spectra.  In section 13.5 we describe 
two different general filters/synthesizers: The Heritage-Weiner frequency synthe-
sizer and the MEMS diffractive filter.  Each of these can make use of MEMS Spa-
tial Light Modulators with many degrees of freedom to perform near-arbitrary 
spectral phase and amplitude filtering.   
 
The last section of the Chapter is devoted to tunable lasers.  The VCSEL with one 
MEMS actuated mirror is the simplest conceivable, broad-band tunable laser.  It is 
a one-degree-of-freedom device with a F-P tuning filter.  MEMS implementations 
of the traditional Litthrows and Littman external-cavity designs are also in princi-
ple simple to control, needing only one degree of freedom in theory (two in prac-
tice).  The problem with these architectures is that the long range of travel re-
quired by the rotating tuning elements is difficult to achieve with standard MEMS 
devices.  The MEMS diffractive filter represents an alternative that requires only 
sub-wavelength motion of the mechanical elements, at the cost of a sharply in-
creased number of degrees of motion that must be accurately controlled.     

Exercises 

Problem 13.1 - Asymmetric Fabry-Perot 

Loss less Fabry-Perot filters have symmetric pass bands, but the symmetry can be 
broken if we use lossy mirrors. 
 

a. Use the formalism of Chapter 3 together with the metal data of Chapter 7 
(Table 7.1) to design a F-P with an asymmetric pass band.   

b. How can an asymmetric passband be used?  Optimize the asymmetry for a 
specific application. 

Problem 13.2 - Grating Demultiplexer 

You are designing a WDM demultiplexer at a center wavelength of 1.55 um.  The 
dispersive element of the demultiplexer is a reflective blazed grating, on which 
you collimate the output of the WDM fiber as shown in the figure.  Assume that 
the incident angle is zero, and the diffraction angle of the center wavelength is 60 
degrees.    
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Grating-based WDM multiplexer. 

 
a. What is the periodicity of the grating?  (Hint:  There might be more than 

one correct answer.  Make sure to list all possibilities.) 
b. How large do you have to make the spot on the grating to be able to sepa-

rate 160 wavelengths with –40 dB cross talk between channels?   
c. How can you design a smaller demultiplexer, i.e. what parameters would 

you change to be able to shrink the size of the beam on the grating? 

Problem 13.3 - Time Delay 

If we use a scanning mirror as the SLM in Fig. 13.13, we create a variable time 
delay.  This can be understood by noting the fact that the Fourier Transform of a 
linear function (tilted mirror) in the frequency domain is a temporal shift in the 
time domain.   
 

a. Explore this effect by drawing the path of a pulse through the synthesizer 
with a tilted mirror as the SLM.  Assume that the beam is retro reflected 
after it has passed the grating for a second time, and that it therefore makes 
a third and fourth pass before it propagates back in the direction of the 
incident beam. 

b. Derive an expression for the time delay in this double pass configuration.  
Express your answer in terms of the design parameters of the synthesizer 
(size and relative position of the components, period and order of operation 
of the grating), as well as the characteristics of the input beam. 

Problem 13.4 - Hybrid Spectrometer 

a. Design a Fourier-Transform spectrometer based on the time delay of 
Problem 13.3.   

b. The grating in this F-T spectrometer determines the time delay and 
therefore the resolution of the spectrometer.  Compare the F-T resolution to 
what you would get by using the same grating in a grating spectrometer.  
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Problem 13.5 - MEMS GT Interferometer 

The figure below shows a cross section of a MEMS Gires-Tournois interferome-
ter.  The output of the GTI is created by interference of the partially-transmitted 
beams coming off the beam splitter.  The phases of these beams are controlled by 
the MEMS mirror that can move vertically.   
 

 

s MEMS 
Mirrors

αin 

αin 

αout 

Beam 
Splitter 

d

 
MEMS GT interferometer.  We assume that the micromirrorarray has unity fill factor, 
i.e. that the mirror size is equal to the mirror spacing.  This is only approximately true 
in practical devices. 

 
We would like to design the GTI to have as many MEMS mirrors as possible to 
have the best possible control of the optical output field.  The maximum number 
of mirrors will be limited by diffraction of the input beam.  Assume that the input 
beam is Gaussian and focused at the halfway point through the interferometer and 
that all the mirrors of the arrays are identical.  The minimum mirror size is then 

in
ks

α
ω

cos
⋅=  

where ω is the Gaussian beam radius at the first mirror, and k is a constant that has 
to be on the order of 3 to avoid excessive cross talk between consecutive reflec-
tions.   
 

a. Using standard formulas for Gaussian beam propagation, express the 
mirror size in terms of the total length of propagation through the GTI. 

b. Solve for the total length and maximize.  
c. Find the maximum number of mirrors in terms of the input angle, the 

mirror size, the wavelength, and the factor k.   
d. What input angle maximizes the number of mirrors?  (You will find that 

the maximizing angle is one that is also important in a very different area 
of MEMS.) 
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Problem 13.6 - ECL Pivot Point 

a. Prove the assertion made in section 13.6.2 that an External Cavity Laser 
can exhibit mode-hop-free tuning if the pivot point of the grating is chosen 
correctly. 

b. Design a compact MEMS actuator that mimics the rotation around the 
ideal pivot without having to extend all the way to that pivot point. 

c. Show that the grating, and therefore also the pivot point, may slide 
perpendicularly to the optical axis without causing mode hops. 

d. Can you design a MEMS actuator that takes advantage of this extra degree 
of freedom (translation perpendicularly to the optical axis) to simplify the 
implementation of the ECL?  
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14:  Photonic Crystal Fundamentals 

14.1 Introduction to Photonic Crystals 

Photons are very hard to manipulate and control, because most materials either ab-
sorba the photon or interact with it only weakly.  In earlier chapters of this book 
we have seen how transparent, weakly-interacting materials can be used to build 
lenses and waveguides, and we have learned how to use absorptive, strongly-
interacting materials (metals) as mirrors and gratings.  A third method for control-
ling optical fields is to use many weak interactions that combine coherently to a 
strong interaction.  This approach to control of electromagnetic radiation is the ba-
sis for Photonic Crystals (PCs). 
 
We have already looked at one simple type of Photonic Crystal.  The Bragg reflec-
tors covered in Chapters 3.4.2 and 6.6, and briefly in Chapter 13.2.2, are one-
dimensional PCs.  These Bragg gratings consist of periodic layers of alternating 
high and low refractive index.  The periodicity is on the order of the wavelength of 
the light (half the wave length to be exact).  This concept can be generalized to 
two and three dimensions, so we may loosely define Photonic Crystals as periodic 
structures in one, two, or three dimensions with periodicities on the order of the 
wavelength of electromagnetic radiation.  Photonic Crystals can therefore take any 
size depending on the wavelength.   
 
In current practice, Photonic-Crystal technology has been developed for Radio 
Frequencies with wavelengths up to tens of centimeter, and for visible and near-
infrared light with wavelengths from 0.4 μm to 2 μm.  It is a fortuitous fact that 
the size range of PCs for visible and near-IR radiation is compatible with standard 
MEMS fabrication and packaging.  This creates opportunities for integration of 
MEMS and Photonic Crystals, enabling new and improved photonic devices, 
some of which are described in Chapter 15.   
 
In this chapter we introduce the fundamentals of Photonic-Crystal theory and 
practice.  The field is very large and well documented [1,2,3,4,5], so our goal is 

                                                           
a  Electronic buffs will maintain that the best way to control a photon is to absorb 

it and convert it to an electronic excitation! 
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not a comprehensive overview, but rather a focused introduction with emphasis on 
concepts and technologies that are most important and exciting to designers of 
microoptical systems and optical MEMS.   
 
We start by describing at the band structure of PCs and how their band-gaps can 
be used to create very compact waveguides and resonators for integrated photon-
ics.  Then we switch our attention to the use of one and two-dimensional PCs that 
are of special interest because of their relatively simple fabrication.  We cover the 
concept of Guided Resonance, and describe a simple, analytical theory for how it 
changes the flow of light through 2-D PCs.  With the help of the theory, we show 
how PCs can be used to create a variety of optical components for miniaturized, 
free-space optics.  We finish the Chapter with a brief section that compares and 
contrast Photonic Crystals and their role in optics, to natural crystals and their role 
in electronics. 

14.2 Photonic Crystal Basics 

The examples in Fig. 14.1 illustrate the variety of Photonic Crystals.  Structures of 
one, two, or three dimensions have very different characteristics, and also present 
very different design and fabrication challenges.  All the crystal structures of Fig. 
14.1 are important in microphotonics, some directly and some in supporting roles.   
 
One-dimensional Bragg reflectors are used as high-quality mirrors in sophisticated 
Optical MEMS, but represent a fabrication challenge due to the thermal stresses 
caused by different thermal expansion coefficients of the layers of the stack.  
These fabrication challenges can be overcome, but it complicates and increases the 
cost of manufacture, so Bragg Mirrors are used sparingly in microphotonics.  The 
exceptions are VCSELs (Chapter 13.6.1) and other III-V devices.  Bragg mirrors 
are important components in the supporting structures that interface the micro-
photonics to the external world, however.  The same is true for another techno-
logically important 1-D Photonic Crystal, the Fiber Bragg Filter or Fiber Bragg 
Sensor (not shown in Fig. 14.1 – see Chapter 6.6).  
 
One-dimensional, planar gratings and two-dimensional PC slabs are straight-
forward to integrate with ICs and MEMS, because of their planar geometry and 
size compatibility.  These structures therefore form the basis of most experimental 
demonstrations and product developments of PC microphotonics.  One of their 
compelling properties is that they can be designed to have many of the desirable 
characteristics of Bragg reflectors, and may therefore be used as replacements for 
multilayer-stacks in integrated optics and microphotonics.  
 
The Holey Fiber [6,7] is a low-dispersion medium that allows practical delivery of 
femto-second laser pulses to microphotonic components and subsystems.  It is fab-
ricated by stacking quartz tubes in a hexagonal, or other configuration, and draw-
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ing the stack in a fiber-drawing tower to achieve the correct dimensions.  In the 
low-dispersion Holey Fiber shown in Fig. 14.1, the center tube is removed from 
the stack to produce a center void that supports one or more guided modes due to 
the surrounding photonic-bandgap material.  Photonic Crystal fibers with solid 
centers can also be made for various applications, but they don’t have the low dis-
persion of the Holey Fiber.  
 

Bragg reflector 

1-D planar grating     PC Slab 

Holey 
Fiber  

      Artificial Opal  

Log Pile  

 
 

a   b   c 
 

Figure 14.1 Photonic Crystals of one (a), two (b), and three (c) dimensions.  The 
Bragg reflector and Holey fiber play important supporting roles in 
many microphotonics systems.  The 1-D planar grating and the 2-D PC 
slab are simple to fabricate and integrate with electronics and MEMS.  
They are the building blocks of most of the PC MEMS devices de-
scribed in Chapter 15.  The log pile, artificial opal and other 3-D 
Photonic Crystals hold high promise, but are difficult and expensive to 
fabricate with the accuracy required by typical optics applications.   

 
Three-dimensional Photonic Crystals represent the ultimate in photon control.  
Their structure enable the formation of complete (i.e. omni-directional) band gaps, 
for complete photon confinement.  The difficulty is to fabricate 3-D PCs with suf-
ficient uniformity and dimensional control.  The artificial opal of Fig. 14.1 is one 
promising approach.  It is made by self-assembly [8,9] of monodisperse spheres.  
After assembly the opal may be “inverted” by filling the voids between the 
spheres by a high-index material.  Another approach is to build the photonic crys-
tal layer by layer, either by sequential deposition and patterning [10,11] or by self-
aligned etching [12,13].  Alignment and uniformity are difficult to control, how-
ever, so these techniques typically cannot make large enough number of layers to 
take full advantage of the omni-directional bandgap.  As fabrication technology is 
improved by conceptual breakthrough and improved practice, this is likely to 
change and we’ll see an increased use of optical devices based on 3-D PCs. 
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14.2.1 1-D Photonic Crystals 

Photonic Crystals of one, two, and three dimensions have very different character-
istics and uses, but many of the underlying concepts are the same, so it is useful to 
consider the simplest case; the 1-D photonic crystal.  We will modify the results of 
Chapter 6.6, where we used coupled-mode theory to model a periodic wave guide, 
to find the propagating electromagnetic waves at normal incidence on the Bragg 
Grating of Fig. 14.2.   
 
This simple 1-D Photonic Crystal is fully described by its average refractive index 
(n), its index difference (Δn), and its period (Λ).  We are only considering normal 
incidence, so there will be no dependence on the directions of the fields as re-
quired by the scalar theory of Chapter 6.6.  (In 6.6 we considered only TE wave 
guide modes, but the treatment is readily modified to cover TM.) 
 

Λ 

n+Δn/2 
n+Δn/2 

z 

x 

y 

 
 

Figure 14.2 1-D Photonic Crystal of period Λ and index variation Δn.  
 
We assume that the corrugation has a square-wave shape that can be expressed as 
a series  

∑ Λ
⋅

−Δ=Δ
m

zmj
e

m
jnzn

π

π

2
22 )(  (14.1) 

where the summation is over all odd-integer values of m.  Only modes that are 
close to phase matched will experience significant coupling, so we may ignore all 
terms of the series other than the one that has a period close to half the wave 
length.   
 
As in Chapter 6.6, we will explore solutions of the form  

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]ztjyxuzBztjyxuzAE yx ⋅+⋅+⋅−⋅= βωβω exp,exp,,  (14.2) 

where A and B are the amplitudes of the forward and backward propagating 
waves, and u(x) is the mode profile.  The direction of the e-field is in the plane of 
the layers of the Bragg grating.  Because of symmetry, it is immaterial if we con-
sider the x or the y component.  Using coupled-mode theory we can write the ex-
pressions    
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These equations are of the form  

zj
mBeK

dz
dA ⋅Δ= β2*  (14.5) 

zj
m AeK

dz
dB ⋅Δ−= β2  (14.6) 

where 

( )∫
∞

∞−

⋅⋅Δ⋅= dxxun
m

Km
220

4 π
εω  (14.7) 

Λ
−=Δ πββ m  (14.8) 

Note that the parameter Km, which we will call the coupling coefficient, depends 
on the harmonic number m, such that higher-order harmonics are more weakly 
coupled.  
 
The solutions to Eqs. 14.5 and 14.6 are the amplitudes of the forward and back-
ward propagating waves of the general Bragg grating at normal incidence.  The 
propagation constants of these waves are  

2
222 ⎟

⎠
⎞

⎜
⎝
⎛

Λ
−−±

Λ
=Δ−±Δ−= πβπββββ mKjmKj mmbragg  (14.9)

The real and imaginary parts of this expression are plotted in Fig. 6.20.  Here we 
want to emphasize the band gap in photon energy, so we solve the expression for 
β, which is the propagation constant of the unperturbed wave and therefore pro-
portional to the photon energy  

2
2

mbragg Kmm +⎟
⎠
⎞

⎜
⎝
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Λ
−±

Λ
= πβπβ  (14.10) 
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This expression is plotted in Fig. 14.3 for m=1.  We see that at wavelengths far 

from resonance ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
>>⎟

⎠
⎞

⎜
⎝
⎛

Λ
− 1Kbragg

πβ , we have braggββ ≈ , i.e. waves propagate 

through the Bragg reflector as if it was a homogeneous medium with an average 
refractive index.  In this range of wavelengths the layered structure does not lead 
to coherent interference of multiple reflections.  
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band cannot propagate in the Photonic Crystal and are therefore totally reflected. 
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Figure 14.3. Normalized propagation constant of modes at normal incidence in a 

Bragg reflector (solid lines).  Far from resonance, the propagation 
constant approaches that of the unperturbed modes (dashed line), but 
close to resonance there is a forbidden range of values, a band gap.   

 
Equation 14.9 is strictly-speaking only valid in a range of wave vectors around 

Λ
π2m , but, as pointed out above, at wavelengths far from each resonance, we 

have braggββ ≈ .  In other words, away from the resonances, all the equations give 
the same propagation constant.  That means that we can piece together the com-

βBraggΛ/π 

βΛ/π 
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plete solution by simply using the appropriate harmonic number m in Eq. 14.9 in 
the vicinity of the resonances and set braggββ ≈  in between.   

14.2.2 Bloch States 

The solutions to the wave equation in Bragg gratings can be expressed in terms of 
forward and backward propagating waves with amplitudes A and B as in Eq. 14.2.  
The solutions can of course equally well be presented as any other linear and in-
dependent combination of the forward and backward propagating waves.  It is par-
ticularly useful to write the solutions in terms of combinations that are eigen 
modes, i.e. modes with well-defined wave vectors just as plane waves.  We used 
the eigen-mode picture in Chapter 6.4.2 and 6.4.3 to describe propagation in side-
coupled waveguides.   
 
We will adopt the same approach here and represent the waves in the 1-D 
Photonic Crystal in terms of eigen modes.  The famous and very useful Bloch 
theorem [4,14,15] states that the eigen-modes, or Bloch states (ψ(z)), can be ex-
pressed as the product of a plane wave and a periodic function  

( ) ( )zez zj Φ⋅= βψ  (14.11) 

These eigen states are called Bloch waves or Bloch states, and the periodic func-
tion, ( )zΦ , is called the Bloch function.  It is periodic with the periodicity of the 
grating, i.e. 

( ) ( )znz Φ=Λ⋅+Φ  (14.12) 

where n is any integer.   
 
Adding an integer multiple of 2π/Λ to the propagation constant of the Bloch states 
only changes the solution by an insignificant phase factor.  It is therefore custom-
ary to add and subtract multiples of 2π/Λ  so that the full set of solutions can be 
graphed within the first Brillouin zone, which is the range of propagation-constant 
values from -2π/Λ to 2π/Λ  .  We have used this convention to plot the allowed 
values of the propagation constant of the Bragg-reflector modes in Fig. 14.4, 
where we have used a higher coupling constant (K1 Λ/π= 0.2) to make the higher-
order bandgaps easier to observe.     
 
The graph shows bandgaps at odd integer values of Λ/π.  Note that the bandgaps 
are progressively smaller for increasing values of β as prescribed by Eq. 14.7.  
The lack of a band gap at βΛ/π=2 is due to the square-wave shape of the index 
variations as given by Eq. 14.1.  A more general index corrugation with a non-
zero second-harmonic spatial frequency term will give bandgaps at even integer 
values of βΛ/π.   
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Figure 14.4. Normalized propagation constant of modes at normal incidence in a 

Bragg reflector over an extended range that includes two band gaps.  
Integer values of 2π/Λ have been added to βBragg to move the solutions 
inside the first Brillouin zone.  Note the lack of a band gap at βΛ/π=2.   

Scaling of Photonic Crystals 

Figure 14.4 reveals a very useful fact about Photonic Crystals; everything scales 
with the lattice constant.  In other words, PCs do not have any absolute length 
scales, which means that a PC device that operates at a given wavelength can in 
principle be scaled to any other wavelength by simply scaling the lattice constant 
of the PC by the same ratio as the wavelength.  This is very convenient, because 
normalized calculations of band structure can be used over a wide range of fre-
quencies, and successful device designs can be “reused” in other parts of the spec-
trum.  Of course, we have to be careful when applying this principle.  We must 
take into consideration the facts that material constants change as a function of 
wavelength, and that diffraction characteristics that are determined by device aper-
tures will not scale the same way.   

14.2.3 Band Structure of 2-D and 3-D Photonic Crystals 

The conclusion of our treatment of the 1-D PC in the preceding section is that the 
periodic nature of Photonic Crystals modifies the propagation of electromagnetic 
waves, and may create a forbidden energy bands for photons.  The situation we 
have analyzed is the simplest possible; propagation in a fixed direction in a trans-
versally homogeneous medium so that polarization effects can be ignored.  The 
general concept, however, also holds true for 2-D and 3-D Photonic Crystals, al-
though the structure of the energy bands and energy gaps are considerably more 
complex than those of Fig. 14.4.  Just as for the 1-D PC we have analyzed, there 

βΛ/π 

βBraggΛ/π 
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will in general be allowed and forbidden photon energies for propagation in all di-
rections within 2-D and 3-D PCs.  If a particular range of energies is forbidden for 
all propagation directions (in the case of 2-D, all means all directions in the plane 
of the crystal) and both polarizations, then we say that the PC has a complete band 
gap. 
 
A typical 2-D PC is shown Fig. 14.5.  It is a plate made of a high-dielectric con-
stant material with a 2-D periodic array of cylindrical holes on a square lattice.  
The practical implementations of such 2-D PC are described in Chapter 15.  This 
simple structure is fully described by four parameters; the dielectric constant, the 
lattice constant, the plate thickness, and the hole radius.  To calculate the modes of 
the 2-D PC we must also specify the dielectric constant of the surrounding me-
dium.  In many cases the surrounding medium is air (or vacuum) with unity di-
electric constant.  As described in the previous section, all length scales can be 
normalized to the lattice constant, so the calculations have a total of four degrees 
of freedom.  
 

a0.5a  

r=0.2a

 
 

Figure 14.5 A two-dimensional Photonic Crystal of lattice constant a defined in a 
high-index plate with a dielectric constant of 12 and a thickness of 0.5a.  
The plate has a square lattice of holes of radius 0.2a.   

 
The energy bands of a 2-D, square-lattice PC with a dielectric constant of ε=12, 
hole radii of r=0.2a, and thickness of t=0.5a, in air is shown in Fig. 14.6 [16].  
The even and odd modes of the PC are shown separately in Fig. 14.6 a and b for 
clarity.  The calculations of these bands rely on a period boundary condition for 
the unit cell of the crystal, which means that the results are for a crystal of infinite 
extent, and that all unit cells of the crystal are the same, i.e. the crystal is perfect.  
The vertical axes in these plots give frequency in units of the ratio of the speed of 
light to the lattice constant.  The horizontal axes give the direction of the wave 
vector, with Γ indicating the direction normal to the plane of the crystal, X the in-
plane direction along the holes, and M the in-plane diagonal direction as shown in 
the inset in Fig. 14.6bb.  
 
                                                           
b  These directions are really referring to directions in the reciprocal lattice, which 

for a square unit cell (or cubic unit cell for the 3-D case) has the same shape as 
the real lattice.  For a lucid introduction to the concept of the reciprocal lattice 
see reference [13]. 
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Figure 14.6 Band structure for the PC of Fig. 14.5.  The diagrams show the bands 

of modes of even (a) and odd (b) symmetry with respect to the center 
plane of the plate.  The shaded regions extending from the Γ point 
(normal incidence) are above the light line and support a continuum of 
radiation modes.  The solid lines in the unshaded regions represent 
guided modes of the crystal, while the solid lines in the shaded regions 
represent guided resonances.  (Courtesy Professor Shanhui Fan, Stan-
ford University) 

 
The band diagrams of Fig. 14.6a and b are divided into shaded and unshaded re-
gions.  The dividing line between the regions is called the light line and is given 
by  

π2
kcnf ⋅⋅=  (14.13) 

where c is the speed of light in vacuum, k is the wave vector, and n is the effective 
refractive index of the PC.  In the shaded regions above this light line, the crystal 
supports a continuum of modes, and these modes are phase matched to plane 
waves outside the crystal.  In other words, for wave vectors in the shaded regions, 
the PC permits propagation of plane waves that couple to plane waves outside the 
crystal.   
 
It is tempting to conclude that for photon energies and wave vectors that corre-
spond to the shaded regions of the band diagrams, the PC behaves just like a uni-
form dielectric plate of the same effective refractive index.  This is, however, not 
correct.  The presence of the PC modes above the light line, shown as solid lines 
in the shaded regions of Fig. 14.6a and b, substantially changes the transmission 
and reflection of the 2-D PC, as explained and explored in the next section.  These 
PC modes that exist above the light line and that are unique to 2-D PCs, are called 
guided resonances, due to their similarity to guided modes of uniform dielectric 
plates. 
 
The band diagrams show that the crystal of Fig. 14.5 does not have a complete 
band gap, i.e. there is no band of energies for which there are no modes in any di-
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rection of the crystal.  Due to the modes above the light line, this is true for all 2-D 
PCs, irrespective of their specific crystalline structure.  However, 2-D PC, includ-
ing the one shown in Figs. 14. 4 and 14.5, have partial bandgaps for waves propa-
gating in, or close to, the plane.  These incomplete band gaps can be used to create 
waveguides that rely on PC confinement of the light in the plane and Total-
Internal-Reflection (TIR) confinement perpendicularly to the plane.  The impor-
tant consideration in the design of such wave guides is that the surrounding mate-
rial must have a bad gap that extends to all wave vectors that are present in the 
guided mode. 
 
The lack of a complete band gap in 2-D PCs limits their use in integrated optics, 
so since the early days of Photonic Crystal research, the search was on for a 3-D 
crystal that supports a complete band gap.  The first such structure to be discov-
ered was a PC constructed from dielectric spheres surrounded by air (vacuum) in a 
diamond lattice [17].  The calculated band diagram of such a crystal with dielec-
tric spheres of index 3.6 filling 34% of the crystal volume, is shown in Fig. 14.7.  
This crystal has a complete band gap at the frequency c/a=0.5.   
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Figure 14.7 Calculated photonic band structure of a 3-dimensional Photonic Crys-
tal made of dielectric spheres in a diamond lattice.  The spheres have a 
refractive index of 3.6 and fills 34% of the volume of the crystal.  This 
crystal supports a large band gap around a frequency of c/a=0.5, 
where a is the cubic lattice constant of the diamond structure.  Re-
printed with permission from [18].    

 
The PC of Fig. 14.7 has had little direct practical impact, because it is difficult to 
fabricate for operation at visible and near IR wavelengths of the optical spectrum.  
The fill factor of 34% means that the spheres are overlapping, and not just touch-
ing as in an artificial opal (see Fig. 141c).  Beside, spheres tend to aggregate into a 
Face-Centered-Cubic lattice, and not a diamond structure.  However, the realiza-
tion that the dielectric-sphere diamond has a complete bandgap, has led to the dis-
covery of several related crystals, also with complete band gaps, but with struc-
tures that are simpler to fabricate.  The most promising for practical applications 
include Yablonovite [19], the wood pile [20,21], and diamond-like structures 
made of patterned, offset dielectric layers [11]. 
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Numerical Calculations 

The complexity of 2-D and 3-D PCs makes calculations analytically intractable.  
The band structure, transmission, and other optical properties of 2-D and 3-D 
Photonic Crystals are therefore found numerically.  A number of software systems 
have been developed by academic and commercial institutions for different types 
of PC simulations.  A very useful package is the Photonic Crystal t-Software de-
veloped at MIT.  It is based on a Finite Difference Time Domain [22,23] approach 
and enables calculations of transmitted and reflected signals in the temporal and 
spectral domains, as well as band diagrams.  Another system, the MIT Photonic-
Bands (MPB) software [24], is designed for calculations of field distributions of 
PC modes.  It computes eigen modes of Maxwell’s equations in 3-D periodic di-
electric structures. 

14.3 Guided Resonances 

It is intuitively obvious how materials with complete band gaps, as the 3-D PC of 
Fig. 14.7, can be used to advantage in the construction optical waveguides and op-
tical resonators.  By simply surrounding a core (in the case of a wave guide) or 
small volume (in the case of a resonator) by a photonic band-gap material, we 
concentrate the electromagnetic energy to the regions where we want it.  One of 
the main advantages of PCs is therefore precisely that we can that confine the ra-
diation to small volumes and miniaturize optics beyond the limits of other tech-
nologies.   
 
Not quite so obvious is how to take advantage of the states above the light line, the 
guided resonances, but the fact is that they can be used to create useful effects.  It 
has been shown theoretically and experimentally that broad band mirrors with 
high reflectivity can be made from free-standing 2-D PCs [25,26,27,28,29,30] and 
from PCs placed on a thin dielectric film on a silicon substrate[31,32,33,34,35].  
This effect can be exploited to design a number of very compact optical devices, 
including mirrors, filters, lasers, and optical sensors. 
 
To understand the effect of guided resonances on free-space optical beam propa-
gation, consider what happens when a plane wave at near-normal incidence (Γ 
point in Fig. 14.6) interacts with the PC at a photon energy (frequency) that corre-
sponds to a guided resonance.  When the optical field is incident on the crystal 
plate, some of the light is reflected from the plate surfaces and some is propagat-
ing through the plate as a plane wave.  We will call this the direct path way 
through the PC.   
 
So far the PC behaves just like a homogeneous dielectric plate, but in addition, the 
incident optical field can also excite the guided resonances.  An excited guided 
resonance will then couple to a plane wave on the far side of the PC (this will al-
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ways be the case when the PC is surrounded by the same material on both sides) 
and thereby provide a second path way through the PC.  If there are multiple 
guided resonances at the frequency of the incident plane wave, then there will be a 
third (and possibly a fourth and a fifth so on) pathway through the plate.  We will 
call these the indirect path ways through the PC. 
 
The direct pathway, created by plane waves inside the PC, and the indirect path-
way(s), created by guided resonances, will interfere and thereby fundamentally 
change the transmission and reflection of the PC.  This is illustrated in Fig. 14.8 
that shows a 2-D Photonic Crystal designed to operate as the most basic of optical 
MEMS devices; a high-reflectivity mirror.  In this 2-D PC, the direct and indirect 
pathways are set up to interfere destructively on transmission and constructively 
on reflection.  Consequently, the crystal becomes highly reflective.  This type of 
mirror opens up for more compact devices with better temperature characteristics 
and more robust surfaces than can be achieved by devices with the metal mirrors 
used in most Optical MEMS applications.   
 

Incident 
plane 
wave 

Direct and indirect paths 
interfere destructively in 
transmission 

Direct and indirect paths 
interfere constructively in 
reflection 

2-D Photonic Crystal 

 
Figure 14.8  High-reflectivity 2-D PC slab.  The incident optical plane wave excites 

two different types of modes in the crystal; plane waves and guided 
resonances.  These two types of modes set up two (or more if there are 
more than one guided resonance) pathways through the plate. In a 
crystal that is designed for high reflectivity, these two pathways inter-
fere destructively in transmission over the wavelength band of interest.  
These modes then interfere constructively in reflection and establish 
high reflection from the single-layer crystal.   

 

14.3.1 Reflection and Transmission through 2-D Photonic Crystals 

Our phenomenological explanation of interference effects in 2-D PCs can be cap-
tured in a coupled-mode theory that allows us to calculate transmission and reflec-
tion spectra.  Following references [36,37], we consider a loss less optical resona-
tor with m ports as illustrated in Fig. 14.9.  Each port has an incoming and an out 
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going wave, and each wave is coupled to the resonator.  The model also allow for 
direct coupling between each port.   
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Optical 
resonator 

s2+ 

sm-        sm+ 

s2- 

Port m 

Port 2 

Port 1 

 
Figure 14.9  Optical resonator coupled to m ports.  Each port has an incoming and 

an outgoing wave, all of which are coupled to the resonator.  The in-
coming waves are also directly coupled to all outgoing waves and vice 
versa.  The phases of the incoming and outgoing waves are determined 
with respect to reference planes on each port.  

 
We will described the incoming and outgoing waves on each port as vectors in the 
following forms 
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The outgoing waves are coupled to the incoming waves and to the amplitude, a, of 
the resonator 
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where S is the scattering matrix for the overall system, C is the direct coupling ma-
trix and d  is the out-coupling vector.   
 
In this formalism, the resonator amplitude is normalized such that 2a  represents 
the energy stored in the resonator.  The rate of change of the amplitude of the 
resonator mode at the resonance frequency, ω0, can be written as  

( ) ++⎟
⎠
⎞

⎜
⎝
⎛ −= saj

dt
da *1

0 κ
τ

ω  (14.17) 

where ( )mκκκκ ,,,* 121 ⋅⋅⋅=  is the in-coupling vector.  The combined out cou-
pling is here represented by the life time, τ, of the resonator mode.   
 
The coupling coefficients κ, d, and C, and the life time τ are not independent.  Us-
ing energy conservation (remember that we assumed a loss less resonator!) and 
time reversal, it can be shown that [36] 

τ
2=dd  (14.18) 

d=κ  (14.19) 

ddC −=*  (14.20) 

14.3.2 Reflection and Transmission for a Mirror-Symmetric 2-port 
with One Guided Resonance 

The equations can be further simplified when we restrict ourselves to a two port 
with mirror symmetry, e.g. a 2-D PC as shown in Fig. 14.8.  If we define the ports 
such that the reference planes are placed symmetrically about the mirror plane, the 
overall scattering matrix takes the form 
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where rd and td are the direct reflection and transmissions coefficients.  The sign 
convention here is to use the upper signs for modes that are even and the lower 
signs for modes that are odd with respect to the mirror plane.  The total reflection 
and transmission become 
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The direct reflection and transmission coefficients for normal incidence on a PC 
slab are given by the formulae for the Fabry-Perot etalon (Eqs. 12.12 and 12.13).  
For convenience, they are repeated here in slightly modified form   
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where r is the field reflection from the PC-air interface, L is the etalon thickness, 

and 
0

22
λ
π

λ
π nk ==  is the propagation constant for plane waves at normal inci-

dence in the PC, λ is the vacuum wavelength, and n is the effective index of the 
PC slab.   
 
Equations 14.22-24, combined with Eq. 3.28 that gives the normal-incidence re-
flection from a dielectric interface, allow us to plot the reflection from a 2-D slab 
with one guided resonance.  That is done in Fig. 14.10a and b for PC slabs with a 
square lattice of holes of lattice constant a and thickness 0.44 a.  The effective di-
electric constant of the slab is 12.  The PC supports one even guided resonance 
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with an inverse life time of 
a
cπ

τ
2002.01 ⋅= .  In Fig 14.10a the resonance fre-

quency is 
a
c

a πω 233.0 ⋅=  and in b it is 
a
c

b πω 226.0 ⋅= .   

 
Figure 14.10 shows that the reflection from the PC slab is very close to the back-
ground reflection, which is that of a uniform slab, except close to the resonances.  
At resonance the reflection undergoes a rapid change as a function of frequency.  
When the resonance is placed at, or close to a background reflection minimum as 
in 14.10a, then the reflection has a Lorentian-like line shape, while a resonance 
placed away from reflection minima results in a Fano-like line shape as shown in 
14.10b.  One of the very useful features of the PC is that its reflection goes to 
unity at resonance (in the Lorentian case) or close to resonance (in the Fano case). 
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Figure 14.10 Reflection (solid), background reflection (dotted), and background 
transmission (dashed) of square-lattice PC slabs with lattice constant a 
and thickness 0.44 a.  The effective dielectric constant of the slab is 12, 
and the PCs supports one even-symmetry, guided resonance with 

ac⋅⋅= πτ 2002.01 .  In a the resonance frequency is 

ac⋅⋅ π2328.0  and in b it is ac⋅⋅ π2246.0 .  The horizontal fre-

quency axis is in units of ac⋅π2 .   
 
The line width of the resonance in Fig. 14.10 is quite narrow compared to the 
modulation of the back ground reflection caused by the Fabry-Perot.  Figure 14.11 
shows reflections from PCs with substantially wider resonances with inverse life 
times of ac⋅⋅ π207.0 .  All other parameters are as in Fig. 14.10.  We see that 
when the resonance is centered on a transmission maximum as in 14.11a, then the 
PC has a broad and very strong reflection.  Such high-reflection bands clearly 
have many applications.  When the resonance is shifted away from the transmis-
sion maximum, then we still get broad band reflection, but the band has a double-
humped shape that is less useful for most applications.    
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Figure 14.11 Reflection (solid), background reflection (dotted), and background 
transmission (dashed) of square-lattice PC slabs with lattice constant a 
and thickness 0.44 a.  The effective dielectric constant of the slab is 12, 
and the PCs supports one even-symmetry, guided resonance with 

ac⋅⋅= πτ 207.01 .  In (a) the resonance frequency is 

ac⋅⋅ π2328.0  and in (b) it is ac⋅⋅ π2246.0 .  The horizontal fre-

quency axis has units of ac⋅π2 .   

14.3.3 Reflection and Transmission for a Mirror-Symmetric 2-port 
with Two Guided Resonances 

The theory of coupled resonances can be extended to systems with multiple reso-
nances.  It can be shown [37] that with two orthogonal guided resonances the 
transmission is  

( )

( )

( )

( )
2

2

2

1
1

1
1

1

1

1

τ
ωω

τ

τ
ωω

τ

+−
±

+−

±
=⊥

j

tr

j

tr
tt

dddd

d

∓
∓  (14.26) 

where the top sign should be used if mode 1 is even, and the bottom sign should 
be used if mode 1 is odd.  If the two guided resonances have the same symmetry, 
then the transmission is given by 
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An example of the use of formula 14.26 is demonstrated in Fig. 14.12 that shows 
the reflection from a PC slab with two resonances.  Again the PC has a square lat-
tice of lattice constant a, a thickness 0.44 a, and an effective dielectric constant of 
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12.  The PC supports one odd guided resonance at ac⋅⋅= πω 262.01  and one 
even guided resonance at ac⋅⋅= πω 276.02 .  The inverse life time is 

ac⋅⋅= πτ 216.01  for both resonances.  In this case we see that we can create a 
broad, high-reflectivity band away from the transmission maxima.   
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Figure 14.12 Reflection (solid), background reflection (dotted), and background 
transmission (dashed) of square-lattice PC slabs with lattice constant a 
and thickness 0.44 a.  The effective dielectric constant of the slab is 12, 
and the PCs supports one odd guided resonance at 

ac⋅⋅= πω 262.01  and one even guided resonance at 

ac⋅⋅= πω 276.02 .  The inverse life times for both resonances are 

ac⋅⋅= πτ 216.01 , and the horizontal frequency axis is in units of 

ac⋅π2 .   
 
The analytical coupled-mode theory we have described in this section is not a re-
placement for detailed simulations.  The results we get using the formulas for 
transmission and reflection are only as good as the data we have on the frequency 
and line width of the guided resonances, and those data comes from simulations or 
measurements.   
 
We can give some simple rules of thumb to guide design.  In general, the life time 
decreases with increased hole radius, because larger holes lead to stronger scatter-
ing, which again leads to stronger coupling and lower life times.  Increasing the 
film thickness has the opposite effect: It leads to reduced coupling and longer life 
times.  The life time of certain modes can also be understood by considering the 
symmetry of the PC as described in the next section.    
 
In spite of the difficulty of relating crystal structure to modal lifetimes, the theory 
is nevertheless a great tool for understanding Photonic Crystal devices.  The the-
ory is intuitive so it is easy to suggest a set of parameters for a given purpose, and 
the usefulness of that set can quickly be assessed.  It also clarifies how crystal 
structures translate into transmission characteristics.   
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Equally important is the fact that the theory helps us explain and systemize ex-
perimental observations.  Recreating observed spectra using the theory allow us to 
determine the mode frequencies and life times and provide a short cut for investi-
gating the effect of changes of these parameters.  In short, the empirical theory we 
have presented is a great tool that simplifies and speeds up the design of PC de-
vices.  

14.3.4 Coupling to Guided Resonances – Symmetry  

The coupled-mode theory for transmission through 2-D PCs requires the knowl-
edge of resonance frequencies and life times, which are determined by coupling of 
the guided resonances to incoming and out going modes.  The resonance frequen-
cies mostly depend relatively straightforwardly on crystal structure and dimen-
sions, while knowledge of life times typically requires detailed simulations.  The 
symmetry of the PC does, however, give us important information about coupling 
and life times.   
 
To see how, consider the unit cell of a 2-D PC slab with a square lattice of cylin-
drical holes as shown in Fig. 14.13.  The unit cell has eight distinct symmetries; 
four mirror planes and four rotation symmetries (including the trivial 360 degree-
rotation symmetry).  It can be shown [5] that all the modes of a crystal of such 
symmetry must fall in one of the six symmetry classes of Fig. 14.14.   
 

a 

Mirror 
symmetry 
planes 

 
 

Figure 14.13  Square unit cell with four mirror-symmetry planes (the three shown 
plus a mirror plane parallel to the PC surface at the half thickness 
point of the plate) and four-fold rotation symmetry.   

 
The convention that is used in Fig. 14.14 is that if equal signs overlap after a par-
ticular symmetry operation has been performed, then the mode is even under that 
operation, and if not, it is odd.  This follows the usage of [5], as does the designa-
tions of the mode types.  If we use the same convention for describing the symme-
try of plane waves at normal incidence, we get the diagram shown in Fig. 14.15. 
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Figure 14.14  The six symmetry classes of the unit cell of Fig. 14.13.    The modes de-

picted in a) are degenerate (in the square lattice, but not necessarily in 
other lattices) and they couple to plane waves at normal incidence.  The 
six types of modes in b) are non-degenerate and do not couple plane 
waves at normal incidence (after [5]).     

 
By comparing the symmetries of the mode types of Fig. 14.14 and the plane waves 
of Fig. 14.15, we observe the following: Vertically polarized plane waves couple 
to modes of type E(1) and horizontally polarized plane waves couple to modes of 
type E(2), but all other combinations lead to zero over lap and therefore no cou-
pling.  The consequence is that the modes of Fig. 14.15b) do not play any role in 
the transmission and reflection of plane waves at normal incidence.   
 

ey ex

 
a  b 

 
Figure 14.15  Symmetry of plane waves at normal incidence polarized vertically in 

the y-direction (a) and horizontally in the x-direction (b).  
 
The usefulness of this observation is that the PC designer may bring in one or 
more of the modes in 14.15b) by breaking the symmetry of the desired modes.  
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This can be done by changing the angle of incidencec, or by modifying the unit 
cell with a small perturbation designed to break a specific symmetry.  This later 
option is very useful, because it allows control of the coupling through the patter-
ing of the unit cell, i.e. the guided-resonance coupling, and therefore the life time, 
is directly controlled by lithography.   
 
A third method for breaking the symmetry of the unit cell is to configure the crys-
tal to deform under the influence of some measurand, e.g. pressure or acceleration, 
such that the deformation breaks the symmetry in a prescribed fashion.  The me-
surand can then be determined by its influence on the transmission and reflection 
of the crystal.  Examples of such sensors are discussed in the next chapter on 
Photonic Crystal microsystems.    

14.4 Comparison of Photonic and Electronic Crystals 

The energy bands and gaps of Figs. 4.4, 4.5, and 4.6 are very similar to those of 
electronic states in natural crystals.  A 1-D model similar to the one we defined in 
Chapter 14.2.1 can be defined and solved for electrons, yielding results that are 
almost identical.  The extensions to two and three dimensions are completely 
analogous.  In terms of band calculations, the only real difference is that electro-
magnetic fields may take one of two polarizations, so a vector model is required in 
the general case, while the wave function for electrons is a scalar.  The conse-
quences of the bands and the band gaps for device physics are, however, very dif-
ferent for electronics and photonics.   
 
The most obvious difference between electronic and photonic crystals is that natu-
ral crystals have a well-defined number of electrons, equaling the number of at-
oms multiplied by their atomic number.  The crystal can of course be charged, but 
the relative difference in the number electrons that can be sustained in a macro-
scopic crystal is small.  Photonic Crystals have no lower or upper limit on how 
many photons they may contain.   
 
In electronic crystals, each band also has a well defined number of states.  A sin-
gle, non-degenerate band has twice as many states as there are atoms in the crys-
tal, i.e. each atom can contribute two electrons to each band.  Photons, on the other 
hand, may occupy the same state, so there is no limit on how many photons can be 
in a given band, or even in a single state within one band.    
 

                                                           
c  Note that a slight rotation of the PC with respect to the incident light around an 

axis, e.g. the x-axis, breaks the mirror symmetry about the same plane, because 
the hole not only appears elliptical, but is also tilted with respect to the incident 
plane wave.  
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A third very important difference is that electrons exchange energy with each 
other and with the lattice so that the electron energy is not conserved.  On the con-
trary, an electron in a highly-excited (high-energy) state will typically decay to-
wards the available state with the lowest energy.  The electron approaches this 
state through a process of thermal interactions (thermalization) with the lattice and 
with other electrons.  Electrons can also receive thermal energy from the lattice 
and thereby be excited to a higher-energy state.  Photons, on the other hand, do not 
interact with each other directly, and most of their interactions with the PC lattice 
are elastic, so the photons can change state, but not energy.  In other words, pho-
tons may move horizontally in the energy diagrams of Figs. 4.4, 4.5, and 4.6, but 
only under exceptional circumstances will they move vertically by changing en-
ergyd.   
 
The electron’s ability to exchange thermal energy with its surroundings leads to 
the well known situation where the number of electrons in a band can be con-
trolled by introducing “impurities”, i.e. atoms with more or fewer electrons than 
the crystal material itself.  In addition, we can shift the absolute energy of the 
bands by connecting it to a body with a controlled potential.  The underlying 
mechanism for control of electron energy and band occupancy is thermalization, 
which means that all that is needed to change the energy of an electron is to pro-
vide an available state with lower energy.  
 
Once the energy and the number of electrons of an energy band can be controlled, 
then materials with different energies and different band occupancies can be com-
bined to create rectifying diodes and, most importantly, transistors that are the 
cornerstones of modern information technology.  Electronic transistors are highly 
nonlinear devices that can perform many different functions, including amplifica-
tion, binary switching, and, in a more abstract sense, rule-based information re-
duction.   
 
Photons do not interact strongly with their surroundings so their energy cannot be 
controlled by simply applying potentials and providing lower-energy states.  
Photonic Crystals therefore does not enable implementations of photonic transis-
tors or other photonic switching devices the way natural crystals do for electron-
ics.  Certainly it is possible to make optical transistors, and PCs might simplify 
their implementation and miniaturization and thereby make them more practical, 
but it would not be the PC itself that enables the transistor operation.  That role 
would have to be filled by some optical non-linearity that is integrated into the PC. 
 
What PCs do is to provide a means for control of photonic position and direction.  
The periodicity of the PC enhances the (weak) interaction between the photons 
and the solid, such that we may direct and localize photons in much smaller vol-
                                                           
d  These exceptions include wavelength shifts in acousto-optic modulators and 

second-harmonic generation and other multiphoton effects that are important in 
many microoptical systems, e.g. multi-photon microscopes. 
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umes and with much more flexibility that can be achieved with traditional optical 
technologies.  PCs therefore provide an ideal means for communication.  Signals 
can be sent and localized in miniaturized “circuits” (or over long distances in the 
case of PC fibers) that complement, rather than compete with, electronics.   
 
Photonic Crystals also have unique advantages in sensing systems.  The PC struc-
ture enhances the interaction with photons, and enables sensors in which the be-
havior (direction) of the photons is exquisitely dependent on the exact dimensions 
and materials of the PC.  Sensing systems in which the measurand changes the 
material (e.g. bio sensors) or structure (e.g. mechanical sensors like pressure sen-
sors, accelerometers, and gyros) of a PC can therefore be designed to have ex-
tremely high sensitivity.  The fact that the sensor signals are optical is an advan-
tage in applications where the communication of the sensor signal from the sensor 
to the decision-making facility is challenging.  Examples of this include sensors 
operating in high temperature, corrosive, or other difficult environments where 
electronic communication will be compromised, and remote sensors that can be 
connected with free-space optics or optical fibers, but not electronic cables.   
 
There are two characteristics of PCs that give them their ability to control photons; 
photonic band gaps and localized modes.  The band gaps allow us to completely 
avoid electromagnetic wave propagation in certain volumes and certain directions, 
so that the flow of photons can be controlled.  Localized modes allow us to set up 
interferences and control the spectral transmission and reflection of the crystal.  
Both these effects are important in PC devices.  
 
We can sum up the differences between electronic and photonic crystal bands this 
way:  Electronic system conserve the numbers of electrons and states, and 
photonic systems conserve photon energy.  The consequences of these differences 
are that electronics is ideal for information-reducing circuits and photonics is ideal 
for information-communicating circuits.  The two technologies therefore comple-
ment each other.  Electronics and photonics both have unique characteristics that 
make them ideal for certain sensing systems.  The choice of electronic or photonic 
sensors will depend on the specific application and environment.  

14.5 Summary of PC Fundamentals 

The first parts of the chapter, i.e. sections 14.1 and 14.2, contain a brief introduc-
tion to Photonic Crystals in general.  The purpose is to prepare the reader for the 
more detailed discussion of the optical properties of 2-D Photonic Crystal Slabs in 
Section 14.3.  Photonic Crystal slabs support guided resonances that couple to ex-
ternal radiation, i.e. plane waves, in ways that (1) profoundly change the optical 
properties of the slabs, and (2) can be precisely controlled by the structure and di-
mensions of the slabs.  The PC slabs are modeled in a simple, coupled-mode the-
ory that shows that these structures can be designed to have optical characteristics 
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that enable a variety of optical components and systems, some of which are de-
scribed in the next Chapter 15.  The analytical model is also a very useful tool that 
allows the designer to develop an intuition for how to make the correct adjust-
ments to their crystals based on calculated or measured performance.  The last sec-
tion of the Chapter gives a comparison of Photonic Crystals and natural crystals, 
pointing out how the differences between photons and electrons, in particular their 
energy-conserving properties, lead to very different usage for these two technolo-
gies.  

Exercises 

Problem 14.1 - PC Mirrors 

The broad-band mirror is one of the simplest and most robust, yet potentially a 
very useful, application of 2-D photonic crystals.    
 

a. Use the model of Chapter 14.3.3 to design a broad band mirror that covers 
the 1.55 um wavelength range.  Choose the resonance frequencies and life 
times to maximize bandwidth.  Make reasonable assumptions for the ac-
ceptable reflectivity and variations of reflectivity within the band. 

b. If possible, push the design of (a) until the mirror covers an octave.  Are 
the chosen values of the resonance frequencies and life times reasonable? 

c. Comment on the fabrication tolerances of PCs for broad-band applications 
compared to those of PCs for narrow band applications.  

Problem 14.2 - PC Multiplexers 

a. Use the model of Chapter 14.3.3 to design a filter with passband at 1.3 and 
1.55 um wavelength.  Choose the resonance frequencies and life times to 
minimize transmission at intermediate wavelengths. 

b. Design a filter that passes 1.3 um and reflects 1.55 um wavelengths.  
Optimize the out –of-band rejection.  

Problem 14.3 - 3-D PC Filters 

a. How can you use a 3-D PC to create a narrow-band optical filter? 
b. What are the advantages of 3-D PC filters over 2-D filters for narrow-band 

applications? 
c. What type of applications favor 2-D PCs? 

Problem 14.4 - PC Polarization Optics 

a. How can you extend the models of Chapter 14.3 to polarization optics? 
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b. Use extended models to design a PC-based quarter-wave plate at a specific 
wave length.   

c. Maximize the bandwidth of the quarter wave plate.   
d. How does the bandwidth compare to that of a traditional quarter-wave 

plate?  Explain the observed differences ands similarities.  

Problem 14.5 - Optical “Transistors” 

Explain how Photonic Crystals can enhance optical non-linearities and how that 
can be used for simple optical signal processing. 
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15.1 Introduction to PC Devices and Systems 

Photonic Crystals give us a whole new tool box for manipulating electromagnetic 
radiation.  Their band gaps and localized states enable many optical devices, some 
of which are simply miniaturized versions of traditional optical components and 
others that are impossible or impractical to implement with conventional optical 
fabrication technologies.  Photonic Crystals therefore will continue to have impor-
tant impact in all fields of optics.   
 
In this chapter we focus on the opportunities and challenges of PC devices and 
systems.  We will start by describing fabrication techniques that are compatible 
with MEMS and IC technologies.  To take full advantage of the opportunities that 
Photonic Crystals provide will require developments in MEMS technology.  The 
very same properties of photonic crystals that make them useful for optical de-
vices also make them extremely sensitive to pattern irregularities and surface de-
fects.  Practical and commercial development will therefore require improved 
MEMS surface treatments and much better lithography than is commonly used for 
commercial MEMS today.  
 
From fabrication technology, we will move on to show how PCs enable new opti-
cal devices and systems.  Much of the focus will be on two types of PC-MEMS 
that are expected to have significant technical and economical impact:  Photonic 
Crystals that can be actuated to create tunable optical devices, and microsensors 
that utilize Photonic-Crystal interactions to provide superior performance.   
 
This chapter is different from the rest of the book in that the treatment is concep-
tual and qualitative.  The reason is partly that the topic of PC devices and systems 
is too large to cover in detail in a single chapter; it requires a whole book!  The 
field is also so new that many of the device concepts are still very much on the 
forefront of research.  Device design is rapidly changing and still a long way from 
reaching maturity, and, consequently, simple and elegant quantitative descriptions 
have not yet been developed.   
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15.2 IC Compatible Photonic Crystals  

Photonic Crystals come in many different shapes and forms as shown in Fig. 14.1 
of the previous chapter.  Some of these are much better suited to chip-scale im-
plementations than others.  The holey fiber is useful for delivering optical signals 
to ICs, but its manufacture and form are not compatible with IC fabrication tech-
nologies.  Multi-layered Bragg reflectors are used as lasers mirrors for Vertical 
Cavity Surface Emitting Laser (VCSELs) and other resonant optical devices, and 
are therefore essential for III-IV semiconductor photonics.  They are, however, 
difficult to incorporate in standard silicon IC technology, because of material and 
processing incompatibilities.  Differences in thermal expansion coefficient be-
tween the different layers of the Bragg gratings also lead to built-in stress that 
compromise free-standing structures like micromirrors. 
 
Planar 1-D gratings and 2-D PC slabs, on the other hand, are well suited for inte-
gration into ICs.  They can be created using standard IC materials and their di-
mensions are compatible with the film thicknesses and lithography capabilities of 
modern IC manufacture.  Some of the fabrication technologies for PC slabs can 
also be extended to multilayered structures and even towards fully 3-D PCs.   
 
In this section we will cover the most important materials and processes for fabri-
cating PC slabs with emphasis on silicon IC and MEMS compatibility.  The pur-
pose is to present a set of PC structures that are available for use in Photonic Mi-
crosystems, and to show how existing techniques can be extended to create more 
complex, but still IC compatible, crystals with better performance in a wider range 
of applications.   

15.2.1 Silicon Compatible 2-D Photonic Crystals 

In Chapter 14 we saw that to create large band gaps and control guided reso-
nances, it is beneficial to use lossless materials with high dielectric constants.  
Silicon is therefore close to the ideal PC material for fiber-optic applications with 
its high refractive index and low loss in the 1100 nm to 2 um wavelength range, 
that includes the important S (Short wavelength), C (Conventional), and L (Long 
wavelength) fiber-optic bands.  Crystalline Silicon is preferable to poly-crystalline 
or amorphous materials, partly because it tend to give more reproducible crystals 
with smoother surfaces that are better suited for optical applications, and partly 
because it has lower built-in stress.   
 
Silicon has too high loss to be a good PC material at wavelengths below 1100 nm.  
The natural choice for applications in the visible and near IR is therefore Silicon 
Nitride.  It is a standard material of IC fabrication, and it has a reasonably high di-
electric constant.  The refractive index is about 2 for stoichiometric nitride (Si3N4), 
and it can be adjusted downwards by incorporating extra (beyond the stoichiomet-
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ric balance) silicon in the material.  The index of 2 is sufficient to create very use-
ful PC devices for visible-wavelength applications [1].  Nitride has the advantage 
that it typically is in tensile stress when deposited on silicon substrates, so it tend 
to be held flat by internal stress when free-standing. 
 
Beyond silicon and silicon nitride, there are a number of candidate materials that 
are not so well developed, but that have special features that make them interest-
ing for PCs.  Many polymeric materials can be shaped into complex 3-D structures 
by two-photon processes.  In principle that enables the creation of 3-D PCs with 
well-controlled point defects and line defects that defines resonators and wave 
guides.  The drawback of these materials is their low index contrast limit the type 
of optical functionality they can support.   
 
Among inorganic materials, alumina or aluminum oxide (Al2O3 – natural crystals 
of this material are called Ruby or Sapphire depending on the coloring, which is 
caused by impurities) and silicon carbide (SiC) are the most promising.  These 
materials have the high index and low absorption required for formation of good 
PCs at visible and near-IR wave lengths.  This, combined with their thermal, me-
chanical, and chemical robustness, make alumina and silicon carbide excellent 
materials for sensor applications in harsh environments.   
 
We saw in Chapter 14 that the period of Photonic Crystals is, roughly speaking, on 
the order of the wavelength of light.  This means that state-of-the-art optical li-
thography has more than enough resolving power to create the patterns required 
for PC formation down to visible wave lengths.  Still, electron-beam lithography 
and focused-ion-beam milling are often used for their flexibility, particularly in re-
search environments.  Nano-imprint lithography represents a compelling alterna-
tive to optical lithography for the production of PCs on a large scale.  
 
Single-layer Photonic Crystals are straightforward to fabricate using standard IC 
technology.  Any high-index film that is free-standing, or placed on a lower index 
film or substrate, can be patterned into a 1-D or 2-D PC slab.  Figure 15.1 shows a 
typical example.  Here a square lattice of cylindrical holes is patterned in the de-
vice layer of a Silicon-on-Insulator (SOI) wafer.  The thickness of the crystal is 
340 nm, the lattice constant is 998 nm, and the hole diameter is 700 nm.  These 
dimensions, which are chosen to allow the PC to operate at wave lengths just be-
yond silicon’s indirect band gap at 1100 nm wave length, show that the PC is in-
deed compatible with standard film thicknesses and lithography capabilities.  
 
The PC slab of Fig. 15.1 can be released and integrated with MEMS actuators and 
other MEMS devices to create micro-optical systems.  The release can be per-
formed by simply etching the oxide layer underneath in a wet etch (e.g. hydroflu-
oric acid) through the holes of the PC, or, if a completely free-standing structure is 
preferred, the substrate can also be removed.  Typically that will be accomplished 
in an anisotropic etch (e.g. potassium hydroxide) so that a well-defined substrate 
cavity is formed as shown in Fig. 15.2.  The specific mirror of Fig. 15.1 is de-
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signed for high reflectivity when released from the substrate and oxide film.  Un-
der free-standing conditions, it gives better than 98% reflectivity at normal inci-
dence in the wave length range from 1220 nm to 1255 nm.   
 

 
a   b 

 
Fig. 15.1  Scanning-electron micrographs of a high-reflectivity, single-layer, 

Photonic-Crystal mirror seen from the top (a) and in perspective (b). 
The PC is fabricated in a 340 nm thick silicon layer of a SOI wafer. The 
crystal has a square lattice with a 998 nm lattice constant and a 700 nm 
hole diameter.  

 

 
 

Fig. 15.2  Free-standing PC mirror released by removal of the silicon substrate 
and the oxide layer of the SOI wafer through a combination of KOH 
and HF etching (not to scale). 

 
The essence of a 2-D PC is a pattered, high-index plate that is free-standing or 
resting on a lower index material.  It can be made by deposition, or growth, of lay-
ers of alternating refractive index, but his method has limitations.  As for the crys-
tal of Fig. 15.1, a SOI wafer with a layer of crystalline silicon on silicon oxide can 
be used as the starting material.  The drawbacks are that typically only a single 
layer can be used, that the silicon layer is of uniform thickness, and that the PC 
layer is on the starting material as opposed to being deposited at some more op-
portune step in the fabrication process.  These problems can be solved by going to 
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poly-silicon, or amorphous-silicon, films that can be deposited in a range of thick-
nesses at any time during processing.  Crystals made from such deposited films 
tend to suffer from crystalline defects caused by the non-uniformity of the film 
materials and from built-in stress caused by the thermal mismatch between the 
films and the underlying substrate.  These effects become particularly difficult in 
multi-layer stacks, so the patterned, thin-film approach to building PC typically 
cannot be extended much beyond one or a few layers.   
 
A compelling alternative is therefore to etch the PC directly into the silicon sub-
strate through a sequence of etch steps [2,3].  An example of such an etch process 
is shown schematically in Fig. 15.3.  The process starts with an oxidized, standard 
Si wafer.  In the first step resist is spun on the wafer and patterned by optical li-
thography.  The pattern is then transferred into the oxide masking layer and a first 
directional etch is performed to create holes in the silicon (step 3).  After the sili-
con etch, the whole wafer is conformally covered by oxide that is subsequently 
removed in a directional etch so that a protective oxide remains on the side walls, 
but not on the bottom, of the silicon holes (step 5).  Finally the process is com-
pleted by a directional Si etch (step 6) followed by an isotropic etch (step 7). 
 

Silicon 

4. Conformal oxide 
deposition 

6. 2nd directional Si etch 7. Isotropic Si etch 

PMMA Oxide 

Si Substrate 

1. Lithography 
2. Transfer pattern into oxide 

3. 1st directional Si etch 

5. Directional oxide etch 

 
 

Fig. 15.3  A single unit cell illustrating the GOPHER [3] fabrication process for 
etching 2-D Photonic Crystals into a monolithic silicon substrate.  The 
purpose of the final isotropic etch is to create a lower-index layer under 
the Photonic Crystal.  The low index layer is required to support guided 
resonances in the PC.  
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The final isotropic etch creates a buried, low-index layer below the Photonic Crys-
tal.  Without this low-index layer the PC does not exhibit neither the guided 
modes below the light line, nor the guided resonances above the light line, so the 
low-index layer is crucial for the operation of the PC.  Depending on the length of 
the final isotropic etch, the PC layer might be partially or fully released as shown 
in Fig. 15.4 a and b. 
 

 
Fig. 15.4  An isotropic etch of intermediate length results in a low-index layer 

with overlapping spherical holes and solid connections between the PC 
and the underlying substrate (a).  If the isotropic etch is longer, then the 
PC layer is fully released (b), and may be moved by integrated MEMS 
actuators.  

 
The PCs created by the process of Fig. 15.3 can be thought of as being formed by 
intersecting cylindrical and spherical holes.  That results in structures with very 
pronounced spikes and jagged interfaces as shown in Fig. 15.4b.  Such high-
spatial frequency interfaces will amplify the effects of fabrication errors, leading 
to exaggerated variations of optical properties within a single crystal and between 
different crystals.  It is therefore useful to be able to smoothen out the jagged in-
terfaces, using hydrogen annealing [4,5,6,7].  Figure 15.5 illustrates the remark-
able changes in structure and surface quality that can be achieved with this tech-
nology.  
 
Photonic Crystals fabricated by direct etching of silicon wafers have many advan-
tages over PC made from deposited of grown thin films.  Wafer-quality Single 
Crystalline Silicon (SCS) is far superior to deposited films and also better than the 
device layer of SOI wafers, so the construction material of etched PCs is the very 
best.  The finished PC is essentially a monolithic structure with only small 
amounts of native oxide or other passivation layers.  This means that the PCs have 
excellent chemical and mechanical properties, and that they do not experience sig-
nificant material stress due to differences in thermal expansion.   
 
The fabrication is also very flexible, and most importantly, compatible with stan-
dard MEMS and IC processing.  That includes high-temperature deposition, 
growth, and annealing, so post processing of the PCs can be performed with the 
full tool set of microfabrication.  Finally, the crystals are self aligned, i.e. their 
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structure relies on a single lithography mask.  This is a key property for ensuring 
efficient and reliable manufacturing of any semiconductor device.    
 

       
   a      b        c  

 
Fig. 15.5  Scanning Electron Micrographs of Silicon PC before (a) and after (b 

and c) hydrogen anneal [8].  Figures a and b shows cross sections, 
while c shows the top surface after part of the crystal has been removed 
by a Focused Ion Beam (FIB).  The hydrogen anneal was performed in 
two steps for a total of 15 minutes at 950 and 10 Torr.  The period of 
the square-lattice crystal is 900nm and the holes are 600 nm in diame-
ter.  

15.2.2 3-D Structuring of Photonic Crystals 

At present there is no established IC-compatible fabrication technology for three-
dimensional Photonic Crystals at wave lengths in the visible and near-IR.  The 
motivation for creating 3-D PCs at these wavelengths is strong, however, so a 
number of methods are being investigated.  The most promising developments in-
clude building log piles by layer transfer of separately patterned layers [9], layer-
by-layer construction by repeated deposition, patterning, etching, back-filling of 
holes, and planarization [10], holographic lithography in low-index polymers [11], 
and guided assembly of dielectric spheres [12].  Each of these methods have their 
drawbacks and must be substantially refined before they are simple enough, robust 
enough, and well enough suited to the IC fabrication environment to be used for 
commercialization of 3-D PCs.     
 
Even though IC compatible 3-D PCs remain a goal for the future, there are several 
methods that can be used to create multiple, aligned layers of 2-D PCs.  Double-
layer systems have many device applications, some of which will be described in 
the next section, so they represent a substantial improvement over single-layer 
PCs.  Both layer-transfer and layer-by-layer construction can be straightforwardly 
applied to double-layered PC, as can direct etching as shown in Fig. 15.6, so fabri-
cation of double-layer PC devices are well within the capability of IC technology.  
 

900 nm 900 nm 

900 nm 
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Silicon Oxide 

Si Substrate 

 
a    b 

 
Figure 15.6 By conformally passivating a single-layer, direct-etched PC (a), the 

fabrication sequence of Fig. 15.3 can be repeated to create a second, 
aligned PC layer (b).  The process may be repeated to create additional 
layers.  Depending on the size of the isotropically etched spheres, the 
layers may be connected vertically or completely released as shown in 
Fig. 15.4 b. 

15.3 Photonic Crystal Optical Components 

The most obvious advantages of PCs are their band gaps, i.e. regions of the optical 
spectrum where the material rejects electromagnetic radiation, at least in certain 
directions.  A photonic band-gap material is therefore an excellent means for pro-
ducing optical waveguides.  By simply surrounding an optical propagation me-
dium with a band-gap material, we can create a structure that support guided 
modes.   
 
Such PC waveguides are in principle quite different from the traditional 
waveguides we have described in Chapters 5 and 6.  Specifically, the mode-
confining mechanism is different.  In PC waveguides, the surrounding band-gap 
material confines the propagating mode to the core of the wave guide, while in 
traditional guides, Total-Internal-Reflection (see Chapter 3) provides the confine-
ment.   
 
From a user’s point of view photonic band-gap guides share many of the charac-
teristics of regular waveguides.  The most important functional difference is that 
PC waveguides are not constrained to having a high-index core as required by TIR 
waveguides.  In fact, PC waveguides and fibers may have a core of low-index ma-
terial of even air or vacuum.  The Holey fiber of Fig. 14.1b is an example of such 
a PC waveguide with a low-index core. 
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The ability to support guided modes in vacuum is a very valuable practical advan-
tage of PC waveguides.  It means that guided modes with very low dispersion and 
very low non-linear optical response can be created.  That is particularly useful for 
transport of high peak-power, femtosecond laser pulses that would be corrupted by 
the dispersion and non-linearity of standard fiber.  Such pulses can be delivered 
over holey fiber with manageable pulse distortion.  This ability opens up a new 
class of optical instruments that use the flexibility and small size of holey fibers to 
deliver high peak-power laser pulses in hard-to-reach places.  A very promising 
application is in-vivo microscopy and cell surgery using femtosecond lasers [13]. 
 
In addition to being ideal confinement structures for waveguides and resonators, 
PC also enable a variety of other optical functions through their ability to support 
a wide variety of optical modes with well-defined frequency, spatial extent, and 
loss.  The functionality of PC devices springs from the interference and coupling 
between these PC modes and incident and transmitted light.  That is not unique to 
PC devices; most optical devices in loss dielectrics are based on interference, but 
PCs have the very useful characteristics that they create such interferences in 
smaller volumes than can be achieved with other technologies.  Almost all basic 
components and building block of photonic microsystems can therefore be im-
proved by the judicial addition of PCs.   

15.3.1 Mirrors and Filters 

Chapter 14.3 describes how the presence of guided resonances in Photonic Crys-
tals changes their reflection and transmission characteristics.  In particular, we 
demonstrate how destructive interference between a direct (plane-wave like) 
pathway and an indirect (via a guided resonance) pathway through the crystal 
leads to low transmission and high reflectivity.  It is somewhat counter intuitive, 
but nevertheless true, that the high reflectivity can be extended to a broad range of 
wave lengths [14,15] and incident angles [16].   
 
Mirrors based on this concept have mechanical and chemical properties that make 
them ideally suited for photonic Microsystems.  First and foremost they are com-
pact.  The thickness of the 2-D PC is less than one quarter of the vacuum wave-
length, and, due to the wide angle of acceptance, it is possible to focus the optical 
beam to a spot of a few wavelengths in radius.  This makes it possible to create 
compact, yet mechanically very flexible, 2-D PC membranes that can be used for 
optical switching and sensor applications.  In spite of their mechanical flexibility, 
such PC membranes are very robust due to their simple structure and the excellent 
mechanical properties of their constituent materials, which are semiconductors and 
high-index dielectrics.   
 
These materials also have excellent chemical and thermal properties.  They have 
much higher melting temperatures than metals, and in contrast to metals, they do 
not absorb, but scatter, the light that is not reflected.  This gives the PC mirror 
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very good power-handling capacity.  In addition, the semiconductors and dielec-
trics of PC mirrors have well-characterized etching characteristics when exposed 
to etching technologies used in IC and MEMS fabrication.     
 
These characteristics make PC mirrors superior to metal mirrors and dielectric 
stacks in Photonic Microsystems.  Metal mirrors have lower reflectivity, tolerate 
lower optical powers, absorb the power that is not reflected, and have inferior me-
chanical, thermal, and chemical robustness.  The simplicity of metal mirrors will 
make up for these drawbacks in some applications, but in others they are unac-
ceptable. 
 
Dielectric-stack, or Bragg, mirrors are much thicker than PC mirrors.  Even high 
index contrast Bragg mirrors typically have on the order of five pairs of quarter-
wave layers, making these mirrors an order of magnitude thicker than PC mirrors 
at the same wavelength.  This thickness increase leads to additional size increase 
of supporting structures.  The total size increase will vary from device to device.  
If for example, we want to make a diaphragm of a given compliance, then a ten-
fold thickness increase will require a comparable increase of the diameter of the 
diaphragm.     
 
High-reflectivity Bragg mirrors also suffer from optical field penetration of dielec-
tric stacks, while PC mirrors achieve high reflectivity in a single sub-wavelength 
layer.  This means that resonators based on PC mirrors can have effective optical 
lengths that are shorter than is possible for resonators based on Bragg mirrors.  PC 
mirrors are therefore more flexible and enable a wider range of configurations for 
optimization of optical systems for optical generation, modulation, and sensing.   
 
Finally, PC mirrors are more easily integrated with other micro-optical compo-
nents.  The most commonly used Bragg-mirror materials are not compatible with 
IC and MEMS technology, and the thermal-expansion mismatch between the lay-
ers of the stack leads to stress and stress gradients.  Even more difficult is the se-
quential deposition of multiple layers.  This adds a number of fabrication steps and 
makes the fabrication process impractical.  
 
The treatment in Chapter 14.3 also shows that 2-D PCs are well suited to filter ap-
plications.  Both reflective and transmissive filters can be designed to have broad-
band and narrow-band spectral features as desired.  Symmetry breaking as de-
scribed in Section 14.3.4, is a practical and useful tool for accurate control of 
guided-resonance life times.  Such control enables the creation of sharp interfer-
ences in transmission and reflection spectra for narrow-band filters. 

15.3.2 Photonic Crystal Fabry-Perot Resonators 

Two PC mirrors can be combined to a very compact optical resonator as shown in 
Fig. 15.7.  This device has two distinct operating regions.  If the two PCs are sepa-
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rated by more than half a wavelength, then the evanescent, or near-field, coupling 
between the two is insignificant [17].  In the absence of direct coupling between 
the PCs, the resonator acts conceptually as a traditional F-P, i.e. it exhibits trans-
mission maxima when the PC separation equals an integer number of half wave-
lengths.  The fact that the PC mirrors can be designed to provide high reflectivity 
from a single sub-wavelength layer makes it possible to create high-finesse reso-
nators as short as half a wavelength.  This ability is unique to PC resonatorsa and 
makes it possible to create highly sensitive, yet stable, displacement sensors as de-
scribed in detail in Chapter 12.2.4.   
 

Incident Optical 
Beam  

 
 

Figure 15.7 Schematic drawing of a photonic-crystal resonator.  If the PC mirrors 
are separated by half a wavelength or more, then the coupling between 
the modes of the two crystals is insignificant, and the resonator behaves 
like a traditional Fabry-Perot.  If the PC mirrors are close, then the 
near-field coupling between them makes the transmission extremely 
sensitive to lateral and vertical displacement of the plates.  

15.3.3 PC Tunneling Sensors 

When the separation between the two PC mirrors in Fig. 15.7 is on the order of a 
quarter wavelength or less, then the evanescent coupling between the guided reso-
nances of the two become significant.  In this regime, the evanescent fields may 
facilitate transmission of the optical power between the PCs.  On other words, the 
photons are tunneling between the plates.  The coupling of the guided-resonances 
of the two plates depends critically on the symmetry and configuration of the 
combined crystal, so the tunneling through the structure is extremely sensitive to 
the relative position of the two plates [17].  This effect has been successfully dem-
onstrated and applied to acoustic-pressure sensing [18,19].  

                                                           
a  Metal mirrors enable short cavities, but not high finesse, while Bragg mirrors 

provide high reflectivity, but do not allow short cavities due to the layered struc-
ture of the mirrors. 
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15.3.4 PC Polarization Optics 

Symmetry can be used to control reflection and transmission of 2-D PC.  By 
changing the periodicity along orthogonal axes or by breaking the symmetry of the 
unit cell itself (see Section 14.3.4), we can create PCs with different reflection and 
transmission for different polarization states [20].  In addition to the usual advan-
tages of being compact and compatible with IC and MEMS fabrication technol-
ogy, this type of polarization optics has the advantage that the form birefringence 
is determined by lithography.  This allows tremendous flexibility in design and 
fabrication, such that almost any conceivable piece of polarization optics can be 
created.   

15.3.5 PC Index Sensors 

The frequency and lifetime of PC modes themselves, as well as the coupling be-
tween modes, depend, among other things, on the evanescent fields of the modes 
outside the PC.  The effect that these modes have on optical characteristics like re-
flection and transmission is therefore sensitive to the refractive index in the vicin-
ity of the crystal.  This dependence can be exploited to create index sensors that 
are sensitive to index changes in a thin layer on or around the crystal. 
 
An important application of this index-sensing principle is the detection of bio-
molecular associations [21], as shown schematically in Fig. 15.8.  The sensor con-
sists of a 2-D PC with a bio-molecular thin film on its surface.  The bio-film is de-
signed to bind a specific molecule of set of molecules.  The molecular association 
can be antibody-antigen binding, DNA hybridization, or some other protein-
protein binding.   
 

Incident optical 
beam  

Reflection modified 
by refractive index  

2-D PC covered by bio-
molecular sensor film  

 
 

Figure 15.8 Photonic Crystal index sensor designed for detection of bio-molecular 
associations.  The PC is functionalized with a sensor film that recog-
nizes a specific bio-molecule.  When the target agent binds to the sensor 
film, the index in the vicinity of the PC changes and so does the reflec-
tion.  
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Once the sensor is exposed to the molecule it is designed for, the association takes 
place, and the refractive index of the biosensor film changes proportionally to the 
number of bound molecules.  This changes the resonance frequency of one or 
more PC modes, which in turn modifies the optical characteristics of the PC.  The 
modified property can be reflection, as shown in Fig. 15.8, or some other quantity 
like transmission, diffraction angle, polarization, or phase.   
 
More sensitive index measurements can be made by confining the light to create a 
high-finesse optical resonator as shown in Fig. 15.9.  Here the bio-sensor film is 
applied in the central defect of the 2-D PC.  The defect creates an optical resonator 
with one mode that has a resonance frequency that is very sensitive to the refrac-
tive index of the sensor film.  The mode is excited through a single-mode 
waveguide, and the resonance frequency of the defect mode is determined by 
measuring the transmission of the incident light to the output waveguide.     
 

Single mode 
output waveguide

2-D PC with 
high-finesse 
optical 
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Incident 
optical field 

Transmitted 
optical field 

Single mode 
input waveguide  

 
Figure 15.9 High-finesse optical resonator for detection of bio-molecular associa-

tions with single-molecule sensitivity.  The central defect is functional-
ized with a bio-sensor film that changes the resonance frequency when 
a specific bio-molecular binding takes place.  The state of the sensor is 
determined by transmission measurements (after [24]).  

 
This resonator can be thought of as a waveguide Fabry-Perot:  The section of 
Photonic Crystal between the input waveguide and the defect is highly reflecting 
at resonance, and the same it true for the section between the defect and the output 
waveguide.  These two PC sections correspond to the first and second mirrors of a 
F-P, and the defect corresponds to the volume between the mirrors.      



15:  Photonic Crystal Devices and Systems            573 

 
This comparison to a traditional F-P resonator helps explain the high sensitivity of 
the structure when it is used as an index sensor.  On resonance, the fields build up 
in the defect mode until the fields are so high that the input coupling equals the 
output coupling, and the transmission approaches unity.  Even minor perturbations 
of the defect mode will change the resonance condition and significantly reduce 
the transmission, making the sensor extremely sensitive to index changes.  Sensors 
based on this principle approaches single-molecule sensitivity [22,23]. 

15.4 Tunable Photonic Crystals 

The PC components we have listed in section Chapter 15.3 are static, but in many 
cases it is necessary to change the PCs during operation to implement additional 
functions.  For example, we might want to modify the PC band gap or tune the 
resonance frequency, life time, or coupling of a PC mode to change the state of an 
optical modulator, switch, or filter.  In sensor application it is often desirable to 
change the operational characteristics to optimize the sensitivity of the sensor to a 
specific measurand and a specific environment. 
 
Tuning of PC characteristics can be achieved by changing the refractive index of 
the PC material or its surroundings.  In principle we can use any effect that modu-
lates the refractive index, but most tunable PC devices that have been developed 
require relative index changes on the order of a percent or more.  That excludes 
the Kerr effect, the electro-optic effect (which is zero in Si, but much used in de-
vices made in Lithium niobate and III-V semiconductors), and band-gap effects 
like the Quantum-Confined-Stark effect and Wannier-Stark effect, and leaves us 
with four viable candidates; liquid-crystal tuning, thermally tuning, injection of 
free carriers (plasma effect), or structural changes mediated by MEMS actuators.   
 
Liquid crystals can be incorporated into PCs as part of the fabrication process and 
used to change the PC index, either thermally or by electric fields [24].  This is a 
promising approach to large-scale production of tunable PC devices, because of 
the large changes in refractive index that liquid crystals can support.  Significant 
process development is needed, however, to optimize the incorporation of liquid 
crystals and make them compatible with IC technology.  
 
Thermal tuning of PCs enables index tuning as high as several percent [25] and its 
implementation is simple and convenient.  All that is needed are integrated resis-
tors that heat the PC through ohmic losses.  The resistors can be applied as thin 
films or directly integrated into the material in the case of semiconductor PCs.   
 
The challenge of thermal tuning is to localize the heat to small volumes.  Ideally 
we would like to isolate the individual devices so that they can be heated with 
minimum power dissipation, minimum influence on neighboring devices, and 
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maximum speed.  Good thermal isolation of small volumes can be achieved by 
utilizing MEMS technologies, like sacrificial etching, to provide air bridges and 
isolating cavities, but the overall size of the optical devices tend to be dominated 
by the isolating features rather than by the requirements of the optical functions.  
Thermal tuning is therefore best suited for larger devices that are meant to be uni-
formly heated and that can tolerate the relatively long switching times (micro sec-
onds) required to remove heat from large volumes.   
 
The free-carrier effect, or plasma effect, is straightforward to apply to tuning of 
semiconductors PCs [26,27].  The simplest method is to irradiate the parts of the 
PC that should have its index modified with light at frequencies above the semi-
conductor band gap.  Direct carrier injection is also a practical possibility in PC 
devices that are integrated with transistors.  The plasma effect tends to be fast 
(sub-nano second) in PCs because of the high surface to volume ratio of these 
structures, so relatively high bandwidth switching can be achieved through the use 
of this effect.   
 
MEMS provide extra dimensions for tuning, because rather than simply change 
the refractive index, MEMS actuators can dynamically modify the size, shape, and 
position of Photonic Crystals.  Flexible structures [28,29] allow the complete PC 
to be dynamically altered in response to applied forces.  This enables tuning of all 
aspects of the optical response of the crystal. 
 
It is simpler and more efficient, however, to modulate the PC by changing its posi-
tion or surroundings, because that avoids the difficulty of controlling the overall 
structure and shape of the PC, and because PCs through evanescent coupling are 
extremely sensitive to their position relative to external structures.  The external 
structures can simply be the substrates that the PCs are built on, but the position 
sensitivity is enhanced if the external body is another PC [30] or a nano-scaled ob-
ject like the tip of an Atomic Force Microscope [31].   
 
These effects have been used to demonstrate MEMS-actuated, tunable PC 
switches [32,33,34], displacement sensors [35,36,18], tunable optical filters 
[37,38,39,40], and tunable optical resonators [41,42].  In the following we will de-
scribe two MEMS-based PC systems; one actuator and one sensor.  These are 
picked to illustrate the compatibility of PCs and MEMS, and the simplicity of their 
integration.  

15.4.1 Photonic Crystal MEMS Scanners  

Photonic-crystal mirrors have several advantages over traditional mirror technolo-
gies like metal films and dielectric stacks; they have low internal stress, can han-
dle high optical intensity, and their dimensions make them compatible with mod-
ern optical lithography.  This latter point is particularly advantageous in MEMS 
implementations, because the PC mirrors are created as an integral part of the 
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MEMS structure without requiring more than a few simple additional process 
steps.   
 
Integration with standard MEMS is further simplified when the PC material is sili-
con.  It makes the PC mirror chemically robust and tolerant of high-temperature 
processing so that the mirrors can be made at any stage of the fabrication se-
quence.  Silicon PC mirrors are also material-compatible with IC and MEMS fab-
rication.  This is in sharp contrast to metal mirrors and Bragg stacks that contain 
materials that degrade the performance of devices like transistors and photo detec-
tors.  The chemical and thermal robustness of PC mirrors also enables high-
temperature, wafer-scale encapsulation that simplifies packaging.  The conclusion 
is that PC mirrors are well-suited to the MEMS manufacturing environment and 
therefore significantly simpler to integrate into photonic microsystems than metal 
mirrors and dielectric stacks.   
 
These advantages of fabrication, integration, and packaging make PC mirrors can-
didates for replacing metal mirrors in almost all traditional Optical MEMS appli-
cations.  Figure 15.10 shows a simple MEMS scanner with a PC mirror.  In this 
example the scanning surface with the PC reflector is suspended on torsional 
springs and rotated by electrostatic comb drives.  
 

Torsional 
spring 

Electrostatic 
comb drive 

PC mirror 

 
 

Figure 15.10 Conceptual drawing of MEMS scanner with PC mirror.  The scanner is 
suspended on torsional springs and driven into rotation by the vertical, 
electrostatic comb drives on either side of the reflecting surface with 
the PC mirror.    

 
A more detailed picture of the implementation of a PC scanner is shown in the 
cross sectional view of Figure 15.11 [43].  The MEMS components, including the 
scanning-mirror base, the springs, and the actuators, are made by DRIE (Deep Re-
active Ion Etching) of SOI (Silicon on Insulator) wafers, while the PC reflector is 
made in a polysilicon layer deposited on an oxide film on the mirror base.  The re-
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flector can be created before or after the MEMS devices.  The actuators are de-
signed for resonant operation, with only a slight asymmetry created by the 
polysilicon layer.  This asymmetry facilitates the starting of resonant actuation.    
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Figure 15.11 Cross section of a PC MEMS scanner fabricated in SOI by DRIE.  The 
PC mirror is formed in a polysilicon layer deposited on an oxide film 
on the mirror base, which is resonantly driven by slightly asymmetrical 
vertical combdrives.  The substrate under the mirror is removed by 
DRIE.    

 
The PC scanner can be made monolithic by etching the PC mirror directly into the 
mirror base as shown in Fig. 15.12.  The mirror is defined using the direct-etching 
process described in Section 15.2.1.  If a single layer reflector is used, then it may 
be necessary to create a free-standing PC to ensure sufficient reflectivity, and a 
scattering surface on the opposite side of the mirror base may be required to avoid 
Fabry-Perot effects in the base.   
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Figure 15.12 MEMS scanner with PC mirror that is etched directly into the SOI mir-

ror base, thus creating a monolithic scanner.   
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To avoid the problems of a free-standing reflector and the extra processing re-
quired to fabricate a scattering surface, we can use a double-layer PC mirror as 
shown in Fig. 15.13.  The double layer gives better reflectivity, even in a fully 
connected crystal like the one shown.  This mirror is therefore more mechanically 
robust, and also simpler to fabricate, because the scattering surface is unnecessary.  
 

Fully-connected, double-layer 
monolithic PC Reflector 

 
 

Figure 15.13 Fabrication process of a PC MEMS scanner (a) Pattern polysilicon 
with ebeam (b) Etch poly and oxide (c) Pattern and etch combdrives in 
SOI layer (d) Release substrate by DRIE (e) Release buried oxide (f) 
Pattern scattering surface with FIB. 

 

15.4.2 Photonic Crystal Displacement Sensors 

Displacement sensors are the basis for many MEMS sensing systems, including 
accelerometers, gyros, pressure sensors, and microphones.  Photonic Crystals, 
with their high sensitivity to relative position, are good building blocks for such 
sensor systems.  Figure 15.14 show conceptually how such a sensor can be de-
signed.   
 

     
a     b 

 
Figure 15.14 Conceptual drawing of a Photonic Crystal displacement sensor.  The 

crystal slab is nominally perfectly centered on the pillars that serve as 
reference points for the PC with respect to the substrate (a).  When the 
PC is displaced relative to the substrate (b), then the evanescent cou-
pling of the crystal modes to the reference pillars change, and so does 
the optical reflection of the PC sensor.   
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The sensor consists of a movable PC plate that is spatially referenced to the sub-
strate by pillars inside the PC holes.  If the PC is laterally displaced with respect to 
the pillars, then its reflectivity changes, yielding a sensing system with nanometer 
sensitivity [44].  
 
The fabrication sequence of the PC position sensor is shown in Fig. 15.15.  For 
clarity, only a single PC hole is shown.  The supporting MEMS structures are de-
fined and fabricated simultaneously with the PC. 
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PMMA 

 
7)  Define MEMS and release       

 
Figure 15.15 Fabrication sequence for PC displacement sensor. 

 
The process starts with patterning of the basic PC structure in a PMMA resist 
layer (Step 1).  The PC pattern is transferred into the masking layers (ox-
ide/poly/oxide) and the resist is removed (Step 2).  The formation of the PC and 
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the supporting MEMS structures is completed by etching the upper nitride layer, 
the poly silicon, and the underlying oxide (Step 3).  A Low-Temperature Oxide 
(LTO) layer is then deposited (Step 4) and etched back to expose the bottom of the 
PC holes, while the sides of the holes are covered (Step 5).  The reference pillars 
are then formed by deposition and etching of a poly silicon layer (Step 6).  At this 
point the MEMS structures that supports the PC plate are defined, and finally the 
complete structure is released in a sacrificial oxide etch (Step 7). 

15.5 Photonic Crystal Fiber Sensors 

The compactness and simplicity of Photonic Crystal devices enable direct integra-
tion on single-mode optical fibers as shown conceptually in Fig. 15.16.  The PC 
sensor is placed directly on the fiber facet and covers an area corresponding to the 
mode size of the fiber.  The optical input to the fiber is the forward-propagating 
single mode of the fiber, and the output is the reflected mode.  The measurand, 
which can be temperature, pressure, acceleration, bio-molecular associations, etc., 
modifies the PC or its surroundings so that the reflection is modulated.  The opti-
cal readout can be over an extended spectral region, or at a single wave length.   
 

Optical 
fiber 

Photonic-Crystal 
Sensor 

 
 

Figure 15.16 Schematic drawing of a fiber-tip sensor.  The PC sensor, which may be 
designed to measure any one of a wide range of measurands, modifies 
the back reflected on the fiber.  Fiber tip sensor.  (Graphics courtesy 
Onur Kilic, Stanford University) 

 
To work well in this configuration, the PC sensor must be designed to accept the 
full set of spatial frequencies of the fiber mode.  As described in Chapter 5, the fi-
ber mode can be expanded as a sum of plane waves of different directions.  The 
PC sensor should respond similarly to all these incident plane waves to give an 
unambiguous output.   
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The sensor system of Fig. 15.16 receives its operating power over the fiber, and 
the fiber output signal is available at the far end, which can be as much as 100 km 
away.  The fiber-tip sensor is therefore well suited to remote sensing.  The size of 
the PC sensor allows it to be placed on the fiber without extending much beyond 
the facet.  This compact solution gives access to remote locations that are inacces-
sible to bulkier traditional sensors.    
 
Acoustic sensors are particularly well suited to fiber-tip implementations, because 
of the excellent mechanical properties of PC mirrors.  The thickness of the PC 
mirror is on the order of a quarter of a wave length.  This makes them very com-
pliant and enables sensitive pressure sensors of the size of a standard single-mode 
fiber facetb as shown in Fig. 15.17.   
 
The operating principle of this sensor is tried and true:  The compliant PC mirror, 
together with the partially transmitting mirror on the fiber facet, create a Fabry-
Perot resonator.  Incident acoustic pressure deflects the PC mirror to modify the 
length, and therefore the reflection, of the Fabry-Perot resonator.  The acoustic 
pressure can then be deduced from the magnitude of the reflected light on the fi-
ber.   
 

 
Figure 15.17 Fiber tip microphone based on a Fabry-Perot resonator between a fi-

ber-facet mirror and a compliant PC mirror.  The PC mirror deflects 
under acoustic pressure to modify the back reflected light on the fiber.  
(Graphics courtesy Onur Kilic, Stanford University) 

 
Ideally both mirrors of the Fabry-Perot should be Photonic Crystals.  In addition to 
the mechanical advantages, that allows the resonator to be short, and therefore sta-
ble, while also having high finesse and high sensitivity.  The fiber-facet mirror 
can, however, be a thin metal film, because the fiber facet provides a stable sub-
strate for fragile thin-film metal mirrors.  That solution reduces sensitivity, be-

                                                           
b  The diameter of a single-mode fiber is standardized to 125 um. 
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cause the reflectivity of the thin, partially-transmitting film is lower than for well-
designed PC mirrors, but it is a practical design that avoids the complexity of cre-
ating PCs on fiber facets.   
 
Figure 15.18 shows a simple implementation of a fiber-tip acoustic sensor.  Here 
the Fabry-Perot is formed between a compliant PC mirror and a gold fiber-facet 
mirror.  The PC mirror is fabricated on a Si chip and mounted on the fiber as 
shown.  The chip is larger than the fiber facet, leading to a modest increase in size 
of the overall sensor system.  This type of sensor has excellent characteristics both 
as a microphone [45,46] and as a hydrophone [47].   
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Figure 15.18 Implementation of a fiber-tip microphone/hydrophone.  The PC mirror 
creates a low-loss, low-order F-P that combines high acoustic-pressure 
sensitivity with good temperature stability and a robust construction.   

15.6 Summary of PC Devices and Systems 

The main message of this chapter is that Photonic Crystals are very flexible and 
practical.  They can be fabricated using IC and MEMS processing and integrated 
with IC and MEMS devices, as well as with fibers, and they have the flexibility to 
form the basis for a wide range of optical devices that are particularly well suited 
for miniaturized optical systems. 
 
The chapter starts with a description of PC fabrication technology.  The examples 
are chosen to illustrate the compatibility of PCs with IC and MEMS fabrication 
technology, and how the power and flexibility of the IC fabrication environment 
can be applied to the creation of PC devices.  We then go on to list some of the PC 
components that are enabled by IC fabrication technology.  Waveguides, 
waveguide devices, and optical resonators are obvious candidates for PC imple-
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mentation, but the focus of our treatment is on free-space optical components in-
cluding mirrors, filters, Fabry-Perot resonators, polarizers, and sensors.  These 
components can be integrated into microphotonics systems.  We illustrate that 
through two examples; PC MEMS scanners and PC displacement sensors.  The 
chapter wraps up with a section on the advantages and opportunities of direct inte-
gration of PC devices on optical fibers.   
 
The list of PC devices and systems is by no means exhaustive.  In fact it barely 
scratches the surface, and with the rapid development in this field, the list will 
very soon be out dated.  Novel PC devices, as well as PC-based improvements to 
traditional devices, are invented at an astonishing rate, and their advantages of fab-
rication, integration, and packaging are utilized in increasingly sophisticated sys-
tems.  It is therefore expected that PC devices will become integral parts of all op-
tical communication and sensing systems that require small size and superior 
performance, and that they will have significant impact on a wide range of com-
mercial photonic applications. 

Exercises 

Problem 15.1 - CMOS PCs 

Find a description of a standard, industrial CMOS process and show how it can be 
used to fabricate PC devices.  

Problem 15.2 - Gopher MEMS  

a. Show how you can use the GOPHER process (described in Fig. 15.3) to 
create MEMS electrostatic actuators.  As shown in the figure, the process 
leaves the whole wafer connected, so you will have to add some processing 
to support the application of electrostatic voltages.   

b. Show how your process can be used to fabricate a Fabry-Perot interfer-
ometer with PC reflectors.   

c. Ditto for fabrication of a Grating Light Modulator with PC reflectors.   

Problem 15.3 - Biosensors 

a. Design an index sensor based on coupling to Surface Plasmons (described 
in Chapter 3.5.4) 

b. Design a similarly-functioning index sensor based on coupling to guided 
resonances in 2-D PC.  Use the models developed in Chapter 14.3. 

c. Compare the two sensor principles.  What advantages, if any, does the PC 
sensor have?   

d. For each sensor, name two applications that it is ideally suited for. 
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Problem 15.4 - Dimensional Tuning of PCs 

PCs can be tuned by moving them with respect to a reference as in Fig. 15.14, but 
they can also be tuned through changes in their dimensions.  Consider a 2-D PC 
with a square unit cell in which there is a centered, circular hole.  Explain qualita-
tively how the resonance frequency and life time of a guided resonance change 
when such a PC is  
 

a. stretched equally in both directions in the plane 
b. stretched along a row of holes 
c. stretched along a diagonal 
d. bowed 
e. Which one of these tuning mechanisms are most efficient in terms of the 

force that has to be applied to establish a certain change? 

Problem 15.5 - PC Fiber Sensors 

a. What is the diffraction angle of the mode of a standard single-mode optical 
fiber at 1.55 um wavelength? 

b. What does that mean for the plane-wave acceptance angle for PC devices 
that are designed to be placed directly on the facet of standard single-mode 
optical fibers? 

Problem 15.6 - PC Accelerometer 

Design an accelerometer based on fiber F-Ps as shown in Figs. 15.16-18.  Assume 
that the silicon PC is 400 nm thick, that the PC holes have negligible influence on 
mechanical characteristics (they are only present over the core of the fiber), and 
that the PC diaphragm is clamped along the periphery of the standard single-mode 
fiber (125 um in diameter).  You will need a proof mass on the PC diaphragm to 
increase sensitivity to acceleration. 

a. How would you affix the proof mass to the diaphragm so as to not interfere 
with the optical performance of the sensor? 

b. How big must the proof mass be to create a deflection of 20 nm in the cen-
ter of the diaphragm under an acceleration of 1 g?  Use standard formulas 
for deflection of clamped diapraghs. 

c. What are some of the applications of an accelerometer of this type? 
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Appendix A: Geometrical Optics 

A.1 Introduction to Geometrical Optics 

This appendix summarizes the fundamentals of Geometrical Optics and introduces 
Geometrical-Optics model of common optical devices that are used in this book.  
Geometrical Optics, or Ray Optics, is based on the Law of Reflection and Snell’s 
Law of Refraction that are described in Chapter 2.  These laws are derived from 
Maxwell’s equations and are valid for plane waves, i.e. electromagnetic waves 
that have no transversal variation.  Geometrical Optics introduces the concept of 
an optical ray, which is a light beam of zero cross section, and postulates that rays 
propagate according to the Laws of Reflection and Refraction.  This means that 
Geometrical Optics disregards wave diffraction, and that it is an accurate model 
for systems that are limited not by diffraction, but by other effects, e.g. lens aber-
rations.  Typically, we find that Geometrical Optics is useful for optical systems 
with apertures that are much larger than the wavelength of light, and that we must 
be careful when applying this theory to miniaturized optical devices.   
 
In the first part of this appendix, we describe the operation of lenses in the Geo-
metrical Optics perspective.  Simple considerations allow us to derive a set of 
first-order rules for lens-system analysis.  In the last part of the appendix, we give 
the ABCD matrices for a number of common optical components. 

A.2 Geometrical Optics Treatment of Lenses 

A.2.1 Lens – Ray Picture 

The operation of lenses can be understood by tracing individual rays through the 
lens.  The rays all bend in different ways at the air-lens interface, and the shape of 
the lens surfaces is chosen such that each ray passes through the focus as shown in 
Fig. A.1.  
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Figure A.1. The shape of a lens is designed to refract all incoming parallel op-

tical rays to a common point in the focal plane. 

A.2.2 Lenses – Wave Picture 

The operation of a lens can also be understood by considering the wavefronts of 
the light passing through the lens.  The lens is delaying the center part of the beam 
with respect to the sides such that all parts of the beam arrive at the focus in phase.   
In other words, all parts of the beam are interfering constructively at the focus, 
which leads to high intensity at this point.  This wave-picture view of lens opera-
tion is illustrated in Fig. A.2. 
 

 
 

Figure A.2. The thick center part of a convex lens creates spherical wavefronts 
that converge to a common point in the focal plane. 

Collimated (parallel) 
optical beam 

The rays are deflected at the air-lens interface due to 
the higher index of the lens.  If the lens is thin, we con-
sider both deflections to take place at the center plane 
of the lens. 

The effect of the ray deflec-
tion is that all the rays pass 
through the focus 

Center 
plane

Focal 
plane

      

 
   

 

Collimated (parallel) 
incident optical beam 

The lens is thinner on the periphery, 
so the peripheral parts of the beam 
are delayed less than the center part, 
resulting in curved phase fronts

The curvature of the 
wavefronts focus the 
beam to a point 
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A.2.3 Ray Tracing 

To trace rays through ideal lenses we need only two simple facts: (1) Each ray 
goes through the focal plane at the same point as its parallel central ray, and (2) 
central rays (rays passing though the exact center of the lens) are not deflected.  
These two rules are illustrated in Fig. A.3. 
 

 
Figure A.3. The intersection of the straight central ray determines where all 

parallel rays meet in the focal plane. 
 
Using these two facts we can draw the image-formation of a lens as shown in Fig. 
A.4.  This construction is very useful for first order analysis of lens systems.  In-
spection of the drawing gives us the thin lens equation 

fba
111 =+  (A.1) 

We also see that the magnification of the imaging system is given by 

a
bM =  (A.2) 

 

Focal plane 

Central rays 
(rays that pass 
through the cen-
ter of the lens) 
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Figure A.4. Image construction with an ideal lens. 
 
Image construction as shown in Fig. A.4 falls in one of five regimes: 

1. If the object distance exceeds the focal length (a<f), then rays from a 
common object point diverge after the lens, so no image is formed. 

2. If the object distance equals the focal length (a=f), then rays from a common 
object point are parallel after the lens, so we have a collimated beam, but no 
image. 

3. If the object distance falls between one and two focal lengths (f<a<2f), then 
the lens forms an image with a magnification larger than unity (M>1). 

4. If the object distance equals two focal lengths (a=2f), then the lens forms an 
image with a magnification of unity (M=1). 

5. If the object distance is larger than two focal lengths (a>2f), then the lens 
forms an image with a magnification less then unity (M<1). 

A.3 ABCD Matrices  

For modeling of systems consisting of several optical elements, it is convenient to 
use the ABCD-matrix formalism.  The trajectory of a ray through a given optical 
device depends on the incident position and slope.  If the output position and slope 
are linearly dependent on the input position and slope (or approximately so), we 
say that the ray is paraxial.  The linear dependence is equivalent to the approxima-
tion sinθ ≈ tanθ ≈ θ.  In the ABCD-matrix model an optical device, the distance 
and slope of rays in the output plane of the device are related to the distance and 
slope in the input plane 
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This is illustrated in Fig. A.5.   
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Optical axis r2 
r2’ 

r1 

r1’ 

 
Figure A5. The ABCD matrix of an optical device relates the distance and 

slope of outputs rays to the distance and slop of input rays.  

A.3.1 Free Space   

Figure A.6 shows that the ABCD matrix for a fee-space propagation segment is 
given by  
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Figure A.6. Relationship between distance and slope on the input and output of 
a free-space segment of an optical system. 

A.3.2 Slab of Index n 

If the free-space propagation is through a slab of index n, then the distances and 
slopes are related as shown in Fig. A.7.  We see that  

( ) ( ) int11int1int1 sinsin rnrrnrn extextext ′=′⇒′=′  (A.5)

and the ABCD matrix is  
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Figure A.7. Relationship between distance and slope on the input and output of 
a uniform slab of index n. 

A.3.3 Thin Lens 

We find the ABCD matrix of a thin lens from Fig. A.8.  Note that for a thin lens 
we have r1=r2, so  
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Substituting this expression into the lens equation ⎟⎟
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Combined with r1=r2, this gives the ABCD matrix   
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Figure A.8. Rays through a thin lens. 

A.3.4 Curved Mirror 

Figure A.9 shows that the focal length for a spherical mirror is f=R/2, where R is 
the radius of curvature of the mirror.  By extension form the thin lens, we then 
find the following ABCD matrix for the spherical mirror  
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Notice that in this as in the other examples we have 1=− DBAC . 
 

 
 

Figure A.9. Rays reflecting off a spherical mirror.  As for the thin lens, there is 
no lateral shift of the rays at the mirror, only a change in direction.   

 

A.3.5 Combinations of Elements 

The strength of the ABCD-matrix formulation is that the matrix of a combination 
of optical elements is found by simple matrix multiplication as shown in the ex-
ample in Fig. A.10.     
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Figure A.10. The ABCD matrix of a two-element system is found by multiplying 
the two ABCD matrices.  The extension to multiple elements is 
straightforward. 

 
The position and slope at plane 2 can be expressed in terms of the position and 
slope at plane 1 in the following way 
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Similarly, the position and slope at plane 3 can be expressed in terms of the posi-
tion and slope at plane 2  
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By combining these we find  
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A.3.6 Reverse Transmission: 

By inverting the ABCD matrix, we find the following rule for reverse transmis-
sion  
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Appendix B: Electrostatic Actuation 

B.1 The Parallel Plate Capacitor 

Our investigation of electrostatic actuators starts with one of the most basic, but 
also most common MEMS devices; the parallel-plate electrostatic actuator.  In our 
treatment we will use some simplifying assumptions about the electric field.  The 
simplified results we obtain contain all the important physics of the correct solu-
tion.  Consider the schematic of a parallel-plate capacitor shown in Fig. B.1. 
 

+

- 

V 

I 

g E

 
 

Figure B.1. Parallel plate capacitor.  The lower plate is fixed, while the upper 
plate can move.   

 
As a first approximation, we will assume that the electrical field is uniform be-
tween the plates of the capacitor, and zero outside.  (This is of course not a com-
pletely correct solution.  This electrical field distribution has non-zero curl at the 
edges of the capacitor plates in violation of Maxwell’s equations.)  The uniform 
electric field between the plates is then pointing down towards the lower plate, and 
it has the magnitude 

A
QE
ε

=  (B.1) 
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where A is the area of one capacitor plate, and Q is the magnitude of the charge on 
each plate.   
 
With the signs shown in Fig. B.1, the charge is negative on the lower plate and 
positive on the upper.  The voltage across the capacitor is simply the product of 
the E-field and the gap 

A
QggEV

ε
⋅=⋅=  (B.2) 

and the capacitance is the ratio of the charge and the voltage 

g
A

V
QC ⋅== ε  (B.3) 

B.1.1 Energy Storage in Parallel-Plate Capacitors 

If the capacitor plates are fixed, then the stored energy in the capacitor is given by 
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We can also find the stored energy by considering the force attracting the capaci-
tor plates to each other.  The field creates an electrostatic force that tries to bring 
the plates together.  The magnitude of the force on each plate is:  
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⋅
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ε
 (B.5) 

Note that when expressed in terms of the charge, Q, the force is independent of the 
gap between the plates!  
 
The factor 2 in the denominator might seem surprising.  You might ask: Isn’t the 
force the product of the field and the charge, and therefore simply given by 
F=EQ?  Remember that in the definition of the electric field (the classical defini-
tion of the electric field is that it is a vector field that when multiplied by the mag-
nitude of a test charge, gives the force on that charge), we specify that the charge 
that is subject to the force of the electric field, is a test charge that does not itself 
influence the electric field.   
 
To see how this definition leads to the factor of 2 consider the force on an infini-
tesimal charge on a conductor in an electric field as illustrated in Fig. B.2.  The 
field at the conductor surface is partly due to the distant charges and partly to the 
charges on the conductor surface.  As for all conductors, the electric field is nor-
mal to the surface, and the field is terminated on the surface (i.e. there is no field 
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inside the conductor).  Inside the conductor the surface charges must be exactly 
large enough to cancel the field contribution from the distant charges.  This means 
that the two contributions are equal.  Right outside the surface these two equal 
contributions add up, so that the total field is twice as large as it would have been 
if only the distant charges were present.  If we removed the surface charge and 
placed a test charge (i.e. one that does not change the field) there instead, it would 
see half the field, so the force on the surface charge on the conductor is given by  

2
total

distant
EQEQF ⋅=⋅=  (B.6) 

 
 Electric field set up 

by a combination of 
distant charges and 
the charges on the 

conductor 

Q 

Conductor 

 
 

Figure B.2. Positively charged conductor in the presence of distant charges.  
The electric field just outside conductor is made up of contributions 
from the distant charges as well as the charges on the conductor.   

 
An alternative way of explaining the factor of two in the expression for the force 
is to more carefully consider the product of a step function (the voltage is a step 
function going from zero to its constant value at the surface) and a delta function 
(the charge density is a delta function at the surface).  If we instead use a more re-
alistic approximation of a linearly increasing voltage across a surface region with 
a constant charge density, the factor of 0.5 appears naturally in the calculated 
force.  Assume that the electric field is linearly increasing through a surface region 
with a thickness, Δz, and a constant charge density, ρ.  The force can then be ex-
pressed  
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The factor of 2 now appears simply as a consequence of the linearly increasing 
force. 
 
The energy stored in the capacitor is equal to the energy needed to pull the two 
plates apart till their separation equals the final gap, g.  The stored energy can then 
be expressed 
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This follows directly from the expression for the force.  The force is independent 
of the gap size g, so we find the work required to increase the gap from zero to g 
as the product of the constant force and the distance over which it is applied.  Note 
that this expression is identical to the one we found by considering electrical en-
ergy that must flow into the capacitor to increase the charge from zero to Q.   

B.2 The Parallel Plate Electrostatic Actuator 

This preceding simple treatment of the parallel-plate capacitor emphasizes the fact 
that it is both an electric and a mechanical device.  It is indeed a transducer, in 
which electrical energy can be transformed into mechanical energy and vice versa.  
Usually we don’t worry about the mechanical aspects of the capacitors we use in 
electronics, because the plates are both fixed so there is only insignificant me-
chanical energy storage.  (In principle, of course, any real capacitor will have its 
plates separated by a mechanical structure with a finite compliance, so there will 
indeed be some stored mechanical energy).   
 
In the practical implementation of the electrostatic actuator, however, both elec-
trostatic and mechanical energy storage are important.  Mechanical energy can be 
stored as potential energy, kinetic energy, or both.  To model the energy storage, 
we include a spring in the physical model, and we attribute a mass to the moving 
plate.  The physical model then looks as shown in Fig. B.3.  
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Figure B.3. Physical model of a parallel plate capacitor with mechanical en-
ergy storage.  The lower plate is fixed, while the upper plate can 
move.  Energy can be stored in the spring (potential energy), or in 
the movements of the plate (kinetic energy).  
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B.2.1 Charge Control 

With the inclusion of the mechanical spring (we will not consider the mass and the 
damping until we are ready to model the dynamics of the actuator), the electro-
static actuator is modeled as shown in Fig. B.4.  The electrical source in this sys-
tem is a current source, which allow us to control the charge on the parallel-plate 
capacitor by switching the source as indicated.   
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Figure B.4. Electrostatic actuator model incorporating the two-port parallel-
plate capacitor and a capacitor representing the mechanical 
spring.   

 
The charge on the capacitor is the integration of the current.  Assuming that we 
start with an uncharged capacitor at t=0, we find: 

( )∫=
t

in dttiQ
0

 (B.9) 

The charge determines the electrostatic force on the plates.  In principle, we can 
therefore control the force of the actuator by controlling the current as a function 
of time.   
 
In equilibrium, the electrostatic force must match the spring force.    
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QQEF

εε 222

22
=⇒⋅===  (B.10) 

We see that the displacement is a quadratic function of the stored charge, i.e. it is a 
monotonically increasing function that is stable throughout its range of validity.   
 
The gap in the actuator can be expressed as  
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which leads to the following expression for the voltage  
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The expression for the magnitude of the gap shows us that if we increase the 
charge to a sufficiently high value, the gap goes to zero.  That happens when the 
charge reaches the value:  

AkgQ ε2ˆ
0 ⋅=  (B.13) 

Notice that the voltage goes to zero for this value of the charge.  These relation-
ships are illustrated in Fig. B.5. 
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Figure B.5. Plot of normalized deflection (z/g0, solid) and voltage 
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for a charge-controlled, electrostatic parallel-plate actuator. 
 
We see that the deflection is well behaved, increasing monotonically from zero to 
the full value of the gap, when the charge is increased from zero to the critical 
value.  The voltage reaches its maximum value 
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when  

3
20 AkgQ ε⋅=  (B.15) 

as can be verified by differentiation of the voltage expression.   
 
The charge-controlled parallel-plate actuator has many desirable characteristics.  It 
is simple and the deflection can be controlled over the whole electrode gap.  The 
MEMS designer faces some practical difficulties in implementing this actuator, 
however.  Most problematic is the fact that most typical MEMS capacitors are on 
the order of femto-Farads, i.e. much smaller than the capacitance associated with 
bond pads and off-chip connections,.  This means that the switching that controls 
the charge on the MEMS capacitor has to be on the chip.  If it is off-chip, then the 
large stray capacitances will vary too much to allow accurate charge control.   

B.2.2 Voltage Control 

The voltage controlled electrostatic actuator, shown in Fig. B.6, is easier to im-
plement, and therefore the design of choice in practice.  Unfortunately, the ease of 
implementation comes at a cost.  For many applications voltage control has less 
favorable characteristics than charge control. 
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Figure B.6. Model of electrostatic actuator with voltage control.   
 
In this case the charge on the capacitor is 

g
VACVQ ε=⋅=  (B.16) 
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The charge determines the force, as before, and the electrostatic force must be 
matched by the spring force.    
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We see that z is a function of the gap size.  This complicates the final expression  
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To proceed, we solve this equation with respect to the voltage  

( )zg
A

kzV −⋅= 0
2
ε

 (B.19) 

This expression is plotted in Fig. B.7.  
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Figure B.7. Graph showing normalized deflection, z/g0, as a function of nor-
malized voltage in an electrostatic, parallel-plate actuator.  There 
are two equilibrium deflections for each value of the voltage.  The 
solutions corresponding to the upper branch of the graph are un-
stable. 

 
We see that there are two eqilibria for each voltage.  The upper branch of solutions 
is, however, unstable.  To see that, we write an expression for the net force 
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and differentiate with respect to g 
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The edge of the stable region is defined by 

002

2

03

2

3
2

22
gggg

kg
AVgg

g
AVk =⇒−=−=⇒= εεδ  (B.23)

This corresponds to the maximum voltage, as can be verified by differentiation of 
the expression for voltage vs. deflection. 
 
We conclude that the upper branch of the solution shown in Fig. B.7 is unstable.  
A real parallel-plate capacitor will therefore exhibit the snap-down characteristics 
shown in Fig. B.8.  As the voltage is increased beyond its maximum stable value, 
the plates spontaneously snap together.  In practice the plates will often reach a 
mechanical stop before they touch (which will short-circuit the voltage and lead to 
all kinds of unpleasant effects).  In that case the capacitor has hysteresis as shown.  
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Figure B.8. Illustration of normalized deflection, z/g0, as a function of normal-

ized voltage in an electrostatic, parallel-plate actuator.   
 
As the voltage applied to the parallel-plate electrostatic actuator increases, so does 
the deflection until the transition point between the stable and unstable regions is 
reached.  Increasing the voltage beyond this point leads to “snap-down”, or “pull-
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in”, i.e. the moving plate of the capacitor is accelerated until it becomes stabilized 
by another mechanical force.   
 
Two cases are shown in Fig. B.8.  In the first case (dashed line), the moving plate 
isn’t stopped until it hits the lower plate.  In this case, no voltage is required to 
hold the plate in the “snap-down” position.   In the second case (solid line), the 
plate is stopped once it reaches a point corresponding to 75% of the original gap.  
Increasing the voltage further doesn’t change the position of the plate.  Reducing 
the voltage below the voltage of the unstable solution at 75% deflection makes the 
plate relax down to the stable branch.  The result is a very open hysteresis curve. 
 
The maximum voltage for stable operation (snap-down voltage or pull-in voltage) 
is given by:  
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The snap-down voltage is equal to the maximum voltage for charge control.  Us-
ing this expression to normalize the voltage, we find the following expression for 
the net force 
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where 01 gg−=ζ .  The two parts of the expression for the net force is plotted in 
Fig. B.9. 
 
The implication of the snap-down phenomenon is that we only can stably operate 
the voltage-controlled, parallel-plate, electrostatic actuator over one third of its full 
range of motion.  The maximum force is the same as for the charge-controlled ac-
tuator, so the result is that the force*range product, which is an often-used figure-
of-merit for microactuators, is reduced by a factor of three.   
 
This is a substantial reduction, but the difficulties of implementing charge control 
for small capacitances, has made the voltage controlled actuator the more common 
design in practical and commercial applications.  Consequently, MEMS designers 
have shown considerable ingenuity in coming up with actuators that extend the 
travel range of the simple parallel-plate actuator.  We will study some of these so-
lutions in the following. 
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Figure B.9. Spring force (straight line) and electrostatic force (family of curves 
with the applied voltage normalized to the pull-in voltage as the pa-
rameter) acting on the plates of the parallel-plate capacitor.  We 
see that when the voltage is larger than the snap-in voltage, there 
are no equilibrium solutions.  When the voltage equals pull-in, 
there is one unstable solution, and when the voltage is less than 
pull-in, there are two solutions, one stable and one unstable. 

B.3 Energy Conservation in the Parallel Plate 
Electrostatic Actuator 

In the preceding sections we found the force and deflection of the parallel-plate 
electrostatic actuator by considering the forces set up by the electrostatic field.  
This straightforward approach works for this simple case, but for more complex 
actuators, energy methods are simpler to apply.  We will develop such methods 
and use them to verify our calculations for the force and deflection in the parallel-
plate actuator in this chapter.  In the next chapter we will use these methods to in-
vestigate the characteristics of the electrostatic combdrive.  
 
We saw earlier that if the electrodes of the parallel-plate electrostatic actuator are 
fixed, then the stored energy in the capacitor is given by 
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Alternatively, we can find the same expression by considering the force attracting 
the capacitor plates to each other.  The magnitude of the force on each plate is 
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The stored energy in the energy parallel-plate electrostatic actuator can be sup-
plied either as electrical energy or mechanical energy, and the stored energy, 
W(Q,g), is a function both of the stored charge, Q, and the electrode gap, g.  The 
differential of the stored energy can then be expressed:  
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Consequently, we can write the following expressions for the force and the volt-
age:  
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Using the formula we found for the stored energy, these expressions evaluate to:  
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These expressions are valid for the charge controlled electrostatic parallel-plate 
actuator, and, as we would expect, we see that the results are the same as those we 
found by more direct methods earlier.   
 
For the voltage controlled parallel-plate actuator we cannot use the differential 
above, because in this device, the voltage, not the charge, is the independent vari-
able.  In this case use the co-energy, which is a function of the voltage and the 
electrode gap.  It is defined as:  

( ) ( )gQWQVgVW ,,* −=  (B.33) 

This definition is illustrated in Fig. B.10.  For a linear capacitor, the energy and 
the co-energy are the same, but in general these two quantities can be different. 
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Figure B.10. Energy and co-energy of a non-linear capacitor.  As the capacitor 
is charged, the capacitance is increased.  The voltage is therefore a 
nonlinear function of the charge, and the energy and co-energy are 
different.  

 
The differential of the co-energy is:  
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We can now write the following expressions for the force and the charge  
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The equation for the force will be rewritten in terms of the capacitance for future 
use  
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The co-energy can be found by integration of the charge for a fixed gap 
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We can now evaluate the expressions for the force and charge:  
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We see that these expressions agree with the basic definitions and the formulas we 
found earlier by more direct methods.   
 
To see the use of the energy and co-energy, we now plot these quantities for the 
parallel-plate actuator.  First we plot the stored energy, including both electrical 
and mechanical energy, in a charge controlled parallel-plate actuator as a function 
of electrode spacing (gap) with the constant charge as a parameter.  This is done in 
Fig. B.11, showing that there is one stable solution for each value of the charge, Q.   
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Figure B11. The stored mechanical and electrical energy in a charge controlled 
parallel-plate actuator as a function of electrode spacing (gap) 
with the constant charge as the parameter.  The minimum repre-
sents a stable solution.  This figure is for illustration only.  It is not 
to scale and should not be used for calculations. 
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For the voltage controlled actuator, the situation is more complex.  This is illus-
trated in Fig. B.12 where we have plotted the co-energy in a voltage controlled 
parallel-plate actuator as a function of electrode spacing (gap) with the constant 
voltage as a parameter.  The co-energy is defined as: 
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The graphs shows two stable solutions at the two maxima of the co-energy. 
 
 

Stable solution 

Co-Energy, W* 

Electrode gap, g g0 

0 

Electric Co-Energy: 2V
g
Aε  

Mechanical Co-Energy: 
-0.5·k·(g-g0)2  

Unstable solution 

 
 

Figure B12. The co-energy in a voltage-controlled parallel-plate actuator as a 
function of electrode spacing (gap) with the constant voltage as the 
parameter.  The maxima (one at g=0 and one marked on the graph) 
represent stable solutions.  This figure is for illustration only.  It is 
not to scale and should not be used for calculations 

B.4 Electrostatic Spring 

The nonlinear characteristics of the electrostatic force creates an “electrostatic 
spring” that leads to shifts of the natural frequency of microactuators [1], and that 
can be used to tune both the sense-mode frequency and the sensitivity of mi-
crosensors [2].  The basic mechanism of the electrostatic spring is illustrated in 
Fig. B.13. 
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Figure B.13. Schematic drawing of parallel-plate MEMS resonator with an ap-
plied voltage that creates an electrostatic spring that modifies the 
spring constant, and therefore the natural frequency, of the resona-
tor. 

 
Neglecting fringing fields (not because they are not important, but because it is 
easy), and the damping, we can write the force balance for the upper plate as: 
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where ε0 is the dielectric constant and the other parameters are defined in Fig.B13.  
The nonlinear electrostatic force (the right-hand side of the force-balance equa-
tion) can be expanded in a Taylor series around a nominal displacement x0 
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Inserting this expansion into the force balance yields 
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This equation is the familiar expression for a second order resonance.  We see that 
the mechanical spring constant, and therefore the resonance frequency, is modified 
by the electrostatic force.  The modified resonance frequency is given by 
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The voltage required for a specific static deflection, x0, is found from the force 
balance (without the time derivative term): 
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Inserted into the equation for the resonance frequency, this gives: 

00

02
1

00

0 21
)(

2
xs

x
m
k

xsm
kx

m
k

res −
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−=ω  (B.47) 

 
Solving the force-balance equation for the voltage, V, and maximizing gives us the 
maximum voltage, and the corresponding deflection, that the plate-spring system 
can support.  Applied voltages larger than this maximum will lead to a spontane-
ous “pull-in” or “snap-down” to the substrate of the spring-supported plate.  We’ll 
call this voltage (deflection) the electrostatic instability voltage (deflection). 
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At the instability, the resonance frequency goes to zero. 
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B.4.1 Sensors Based on the Electrostatic Spring 

The electrostatic-spring effect can be used to create sensors with frequency-
modulated output and tunable sensitivity.  Consider the schematic of a pressure 
sensor shown in Fig. B.14.  
 

P 

 
  

Figure B.14. Schematic drawing of pressure sensor, in which the sensitivity and 
the response frequency can be electrostatically tuned. 

 
In static equilibrium we have that the mechanical spring force is equal to the pres-
sure and the electrostatic force  
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The pressure causes a static deflection 
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The resonance frequency then becomes 
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The sensitivity of the sensor is defined as 
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At the instability: 
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We see that the electrostatic spring allows us to trade off bandwidth for sensitiv-
ity; as the voltage is increased towards the instability point, the sensitivity goes to 
infinity, but the resonance frequency, and therefore the bandwidth, goes to zero. 

B.5 Electrostatic Combdrives 

Voltage-controlled, parallel-plate, electrostatic actuators suffer from problems 
with snap-down and limited range of operation as discussed in the preceding chap-
ters.  A much-used electrostatic actuator that avoids these problems is the electro-
static combdrive shown in Fig. B.15.   
 
The operation of the electrostatic combdrive is very similar to that of the parallel-
plate actuator.  Just like the parallel-plate actuator, the combdrive has two elec-
trodes; one stationary, and one that is suspended by a mechanical spring so that is 
will move under an applied force.  The force required to move the suspended elec-
trode is created by setting up an electrostatic field between the two electrodes.  
This can be accomplished by controlling the charge on the electrodes, or by apply-
ing a voltage between them, as is the case for the parallel-plate actuator.   
 
The obvious difference between the combrive and the parallel-plate actuator is in 
the geometry of the electrodes.  The combdrive has interdigitated electrodes as 
shown in Fig. B.15, and that has important consequences for the characteristics of 
the device.  As the two electrodes are pulled together, the increase in the capaci-
tance is mostly due to the increased overlap of the teeth of the two combs.  (There 
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is also a small contribution to the capacitance increase from the end of the teeth 
moving closer to the base of the opposite electrode, but this contribution is negli-
gible in most practical designs).  This capacitance increase is a linear function of 
the relative positions of the electrodes (this is different from the parallel-plate ac-
tuator, in which the capacitance is inversely proportional to the electrode spacing, 
i.e. the capacitance is a non-linear function of the relative electrode positions).  
The combdrive is therefore sometimes referred to as the linear electrostatic comb-
drive.  
 

Ground 
plate 

Folded beams 
(movable comb 

suspension) 

Anchors 

Stationary 
comb 

Moving 
comb 

 
 

Figure B.15. Electrostatic combdrive.  The voltage across the interdigitated elec-
trodes creates a force that is balanced by the spring force in the 
crab-leg suspension. 

 
To calculate the electrostatic force in the combdrive, consider the field distribution 
shown in Fig. B.16.  We write the capacitance as a sum of two parts; one corre-
sponding to the fringing fields, and one corresponding to the fields in the region of 
overlap between the electrodes: 

( )xCCCtot += 0  (B.57) 

The force can be written (note that the coordinate x here is chosen opposite of g in 
the parallel-plate actuator.  This changes the sign in the expression for the force):  
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Figure B.16. Electric field distribution in comb-finger gaps.  Note that the direc-
tion of the x-coordinate is chosen opposite of the parameter g in the 
parallel-plate actuator. 

 
Using the same uniform-field approximation we employed for the parallel-plate 
actuator, we can write: 
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where N is number of comb-fingers, h is the thickness of the comb-fingers (per-
pendicular to the plane in Fig. B.16), and g is the width of gap between the comb-
fingers. 
 
In many practical implementations of the electrostatic combdrive, the thickness, h, 
of the combteeth is comparable to the electrode gap, g.  Under those conditions, 
the parallel-plate approximation is relatively inaccurate.  The most accurate repre-
sentation of the fringing field are obtained by numerical techniques, but for many 
purposes it is sufficient to use tabulated correction factors to compensate for the 
effects of the finite thickness.  The force can then be expressed as:   

ηεα
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where α, β, η are fitting parameters extracted from simulations [3].  
 
We see that the force in the voltage-controlled combdrive is not a function of the 
displacement.  This is what we found for the charge-controlled parallel-late actua-
tor.  The combdrive does therefore not suffer from snap-down in the primary de-
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flection direction (x in Fig. B.16), even in the voltage-controlled case.  This is one 
of the major reasons for the popularity of combdrives in MEMS technology.   
 
The voltage-controlled combdrive is, however, susceptible to snap-down in the 
transversal direction.  Figure B.16 shows clearly that each of the teeth in the mov-
able comb is attracted sideways towards its nearest neighbors on either side.  In 
the ideal case, the gaps on both sides are equal, so that the sideways forces exactly 
balance.  In reality, however, the two gaps will not be exactly equal, and there will 
be a net sideways force in one direction or the other.  It is also important to be 
aware that even in the ideal case, the combdrive will be unstable if the voltage and 
the overlap between the combteeth are too large.  This happens when the voltage 
creates sideways forces that are so big that an infinitesimal offset from the per-
fectly centered position will make the comb snap sideways.  
  
To analyze the stability of the combdrive, we need an expression for the total po-
tential energy and co-energy.  We start by generalizing the expression for the ca-
pacitance of the combdrive to the situation where the movable teeth are asymmet-
rically placed between the stationary teeth [4] 
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The force can then be expressed 
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In equilibrium, the electrostatic force must equal the mechanical spring force  
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We can write a similar expression for the force balance in the transversal direction 
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Finally, we can write an equation for the total co-energy in the actuator 
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The values of y where •W*/•y=0 are all possible equilibria, but only those that 
have •2W*/•y2<0 are stable  
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For y=0, this expression simplifies to: 

y
x k

g
xk

y
Wy −=

∂
∂

⇒= 2

2

2

2 2*0  (B.71) 

In the ideal case (y=0) we therefore have the stability criterion:  
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We see that sideways snap-down limits the deflection of the electrostatic comb-
drive.  We have to make the ratio of the transversal (y-direction) spring constant to 
the longitudinal (x-direction) spring constant as large as possible.   
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It should be noted here that the sideways snap-down that we have focused on in 
this treatment is only one of several possible electrostatic instabilities that must be 
considered in the design of combdrives.  Others include rotational snap-down, and 
snap-down to the substrate.  Creating springs with large ratios of their spring con-
stants for unwanted vs. wanted motion is therefore an important issue in mechani-
cal MEMS design.  
 
We can now compare the force in the parallel-plate and the combdrive actuators.  
The first-order expressions for the force in these two actuators are: 

Combdrive: 
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Figure B.17. Calculation of area of the combdrive.  (a) shows both the parallel-
plate actuator and the combdrive, and (b) shows one unit cell of a 
periodic combdrive. 

 
To compare these two expressions, we write the area of the combdrive as 

hdNAcd ⋅⋅= 4  (B.75) 

where the parameters are defined in Fig. B.17.  Given these definitions, we find 
the ratio of the force produced by a combdrive and a parallel-plate actuator of the 
same cross-sectional area to be 
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We see that the combdrive can generate substantially larger forces than the paral-
lel-plate actuator.  If we make the assumptions that the parallel-plate actuator is 
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voltage controlled and can be operated over one third of its gap (g/3), and that the 
gap in the combdrive is determined by the lithographic resolution, we find  
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In many applications we might want the total range of travel of the actuators to be 
one or two orders of magnitude larger than the lithographic linewidth.  In these 
applications, the combdrive is clearly vastly superior to the parallel-plate actuator, 
at least if the maximum available force is important.   
 
We should remember, however, that the range of the combdrive is also limited by 
snap-down as discussed above.  Using the expression we found for the deflection 
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Note that this equation is valid for the situation where the parallel-plate actuator 
and the combdrive have the same range of motion, given by the maximum range 
of motion possible in the combdrive.  This is not necessarily the most “fair” way 
to compare these two actuators.  We can often use leverage to trade off force and 
range such that their product is constant.   
 
In many applications we therefore find that the force*range product is a better 
figure-of-merit than the force:  

x

y

x

yx

y

pppp

cdcd

k
k

k
k

d
g

g

d
k

k

d
g

rangeF
rangeF

22
3

22
3

3

2
2 2

2
⋅≈⋅⋅=

⋅
⋅=

⋅
⋅  (B.79)

We see that this equation is not as favorable for the combdrive as the one derived 
earlier.  If the mechanical springs are well designed (ky>>kx), however, the comb-
drive is still superior to the parallel-plate actuator by a substantial margin.   

B.6 Summary of Electrostatic Actuation 

Under the assumption of uniform field between the plates and zero field outside, 
we find the following expressions for the electric field, voltage, capacitance, force 
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(note the factor of 2 in the denominator), and stored energy in parallel-plate ca-
pacitors:   
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Here A is the area of each capacitor plate, g is the spacing of the plates, ε is the di-
electric constant of the material (air) between the plates, and Q is the magnitude of 
the charge on each plate.   
 
If we control the charge on the capacitor, we can express the force, deflection, 
gap, and voltage as follows:  
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The deflection is a monothonically increasing function of the charge, increasing 
from zero to the full gap as the charge increases from zero to AkgQ ε2ˆ

0 ⋅= .   
 



622      Photonic Microsystems 

The charge controlled parallel plate actuator is stable over the whole electrode 
gap, but it is hard to implement because typical MEMS capacitors are very small 
(~ 10-15 F).  In practice we therefore more often use voltage control.  In this case 
the charge, force, and displacement of the capacitor are: 
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The displacement is a function of the gap size:   
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This cubic equation in z has two solutions for z<g0, but only voltages less than 

εA
kgV downsnap 27

8 3
0 ⋅=−  lead to stable solutions.   

 
The differential of the stored energy can be expressed:  
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which leads to the following expressions for the force and voltage: 
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The co-energy is defined as:   
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The co-energy can be found by integration of the charge for a fixed gap: 
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which leads to the following expressions for the force and charge:  
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The force in the electrostatic combdrive, can be found from the equation: 
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Note that the coordinate x here is chosen opposite of g in the parallel-plate actua-
tor.  Using the uniform-field approximation, we can write: 
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where N is number of comb-fingers, h is the thickness of the comb-fingers (per-
pendicular to the plane in Fig. B.15), and g is the width of gap between the comb-
fingers.   
 
The force in the voltage-controlled combdrive is not a function of the displace-
ment, which means that the combdrive is stable in the longitudinal direction.  
Voltage control does make the combdrive unstable in the transversal direction.  
This limits the range of motion even in the perfectly aligned combdrive  
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The ratio of the forces of combdrives and parallel-plate actuators is 
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If the range is the same for both actuators, this can be written  
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The ratio of the force*range products is:  
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Conclusion:  The combdrive is superior to the parallel-plate actuator, particularly 
for long-range operation.   
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Fringe counting, 453 
Full Width at Half Maximum (FWHM), 
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G 
Gauss’s divergence theorem, 11, 12 
Gauss’s laws, 11, 12, 19 
Gaussian Aperture, 342 
Gaussian Beam - Truncated, 103, 104, 

254 
Geometrical Optics, 42, 43, 44, 67, 85, 

90, 91, 96, 98, 108, 109, 112, 116, 
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Gimbal, 282, 283, 285 
Gires-Tournois interferometers, 498, 

499, 500, 511, 526 
Goos-Hänchen, 55, 56, 67 
GOPHER, 564, 582 



628      Photonic Microsystems 

Gouy Phase, 80, 83, 84, 105, 108, 467, 
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Grating Equation, 390, 391, 392, 396, 
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398, 401, 402, 404, 407, 408, 415, 
417, 418, 420, 422, 425, 428, 430, 
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Grating Light Valve, 366, 368, 377, 379 
Grating Optical Lever, 472 
Group velocity, 17, 18, 138, 142, 144, 

145, 146, 150, 162, 168, 218 
Group Velocity, 17 
Guided Resonance, 533, 541, 543, 544, 
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561, 564, 565, 568, 570, 582, 583 

H 
Hard Aperture, 344, 356 
Harmonic function, 23, 25, 43, 169, 216, 

383, 398, 504, 506, 510, 511 
Harmonic Vibration, 409 
HE11 mode, 131, 135, 136, 159, 162 
Helmholz equation, 19 
Hermite-Gaussian, 82, 83, 84, 108 
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Higher Order Gaussian, 81 
High-Finesse Interferometer, 460, 480 
Holey fiber, 533, 534, 561, 567, 568 
Holographic Display, 423 

I 
Immersion lens, 94 
Insertion loss, 217, 298, 313, 317, 322, 

323, 428, 495 
Interferogram, 449, 502, 504, 505 

K 
Kerr effect, 573 
Kinetic Energy, 279, 409, 410, 599 
Knife-Edge Method, 182 

L 
Laser display, 292 
Laser speckle, 420, 421, 422, 430 
Law of reflection, 42, 44, 46, 55, 67 
Lens Scanner, 269, 270, 291 
Lens Scanners, 269 
Linear Display, 412 
Linearly Polarized Modes, 131, 162 
Lithium niobate, 573 
Littman configuration, 521, 522, 524 
Littrow configuration, 519, 520, 521, 

522 
Log Pile, 534, 542, 566 
Long-wavelength band (L-band), 436 
Lorentian, 548 

M 
Mach-Zender, 215, 216, 217, 218, 221, 

222, 232, 423 
Magnetic actuator, 316 
Maskless lithography, 334, 348, 364, 

365 
Matrix Switch, 296, 299, 300, 301, 302, 

304, 306, 308, 311, 312, 313, 315, 
316, 317, 321, 322, 325, 327, 328, 
330, 331 

Maxwell’s equations, 4, 5, 10, 11, 15, 
18, 19, 23, 140, 543, 588, 596 

Mechanical antireflection switch 
(MARS), 498 

Mechanical Resonances, 276, 279, 285 
MEMS Fiber Switches, 6, 296, 298, 308, 

327 
MEMS Scanner, 5, 246, 247, 253, 256, 

269, 285, 290, 419, 574, 575, 576, 
577, 582 

Mesosphere, 359 
Michelson interferometer, 10, 20, 21, 

22, 450, 451, 452, 453, 455, 456, 503, 
504, 507, 508, 510 

Microhinges, 271, 275 
Micromirror Arrays, 332, 333, 334, 336, 

338, 345, 347, 348, 356, 358, 360, 
362, 363, 365, 368 

Microphone, 580, 581 
Microresonator Filter, 495, 496, 497 
Microring, 496 
Mirror bow, 259, 260, 261 
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Mirror Curvature, 247, 258, 259, 261, 
266, 494 

Modulation Function, 396, 398, 440 
Modulation index, 217, 220, 476, 477 
Modulation Index, 217, 220, 476, 477 
Molecular Beam Epitaxy (MBE), 518 
Multi Mode Fibers, 184 
Multilayer Stacks, 57, 67, 68, 266 

N 
Noise Equivalent Power, 478, 479 
Noise, 1/f, 474, 479 
Noise, Relative Intensity Noise (RIN), 

473, 474, 475, 477, 478, 479, 480, 
487 

Noise, thermal, 473, 474, 475, 477, 478, 
479, 481, 482, 487, 489 

Normalized propagation parameters, 127 

O 
Optical Coherence Tomography, 455, 

513 
Optical Fibers, 5, 7, 10, 16, 18, 104, 

116, 129, 130, 131, 135, 158, 160, 
169, 170, 174, 175, 223, 231, 238, 
297, 309, 376, 555, 579, 582, 583 

Optical lever, 6, 448, 450, 469, 470, 
472, 473, 481, 486, 489 

P 
Parallel Plate Capacitor, 596, 599 
Paraxial Wave Equation, 77 
Permeability of free space, 11 
Permittivity of free space, 11 
Phase Distortion, 359, 360, 429 
Phase Modulation, 6, 7, 215, 218, 297, 

332, 339, 349, 350, 358, 363, 364, 
366, 369, 371, 374, 399, 400, 401, 
403, 422, 423, 446, 448, 455, 499 

Phase Step, 350, 351, 352, 353, 355, 
362, 363, 370, 397, 445, 446 

Phase velocity, 16, 17, 18, 145 
Phase Velocity, 16 
Phasor Notation, 18, 19, 36, 37, 140, 

276, 374 
Photo current, 476 
Photon Multiplier Tube (PMT), 476 

Photon Tunneling, 63, 64, 65, 67, 69, 
450, 486 

Photonic Bandgap, 212, 232 
Photonic Crystal Fabry-Perot, 569 
Photonic Crystal filter, 556 
Photonic Crystal mirror, 569, 570, 574, 

575, 580, 581 
Photonic Crystal Tunneling Sensors, 

450, 570 
Plasma effect, 573, 574 
Point Spread Function, 339, 340, 341, 

342, 343, 344, 345, 347, 348, 349, 
350, 352, 353, 355, 356, 357, 358, 
360, 362, 363, 364, 369, 370, 419, 
420 

Polarization Dependence, 218, 298, 428, 
429, 440, 441, 442, 443, 444, 445, 
446 

Polarization-mode dispersion, 429 
Polycrystalline Silicon, 264, 288, 404, 

415, 416, 561, 564, 577, 578 
Position Sensitive Detector (PSD), 448, 

449, 470, 471, 472, 473, 481 
Potential Energy, 279, 310, 408, 409, 

410, 599, 617 
Poynting theorem, 4, 10, 24, 25, 26, 27, 

28, 29, 30, 37, 100, 101, 141, 175 
Prism Coupling, 185 
Projection Display, 332, 333, 334, 335, 

336, 337, 348, 364, 366, 368, 374, 
379, 403, 413, 418, 419, 422, 423, 
429, 430 

Propagation constant, 17, 122, 131, 148, 
176, 194, 199, 200, 204, 205, 206, 
207, 212, 222, 227, 340, 392, 429, 
497, 536, 537, 538, 539, 547 

Pulse Spreading on Fibers, 148 

R 
Ray optics, 44 
Rayleigh Method, 409, 410 
Recirculating field, 460, 461, 496 
Rectangular function, 505 
Resolution criterion, 250, 251, 269, 291, 

292 
Resolvable spots, 247, 250, 251, 252, 

269, 270, 290, 292, 336, 337, 338 
Resonance Frequency, 83, 138, 263, 

277, 278, 279, 280, 281, 285, 289, 
290, 294, 405, 406, 411, 546, 548, 
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Resonant ring filter, 225 
Responsivity, 476, 480 

S 
Scanner Aperture, 253, 270 
Schlieren Projection, 379, 397, 430 
Second law of thermodynamics, 28 
Segmented mirror, 360 
Short-wavelength band (S-band), 436 
shot noise, 473, 474, 475, 477, 478, 479 
Shot noise, 473, 474, 475, 477, 478, 479 
Signal-to-Noise Ratio, 476, 477, 484 
Silicon Carbide, 562 
Silicon Dioxide, 282, 283, 406, 416, 

562, 563, 564, 565, 575, 576, 577, 
578 

Silicon Material Parameters, 283 
Silicon Nitride, 61, 406, 407, 411, 415, 

416, 417, 498, 499, 561, 562, 578, 
579 

Silicon-on-insulator, 264, 265, 266, 279, 
285, 286, 287, 289, 290, 310, 311, 
497, 508, 562, 563, 565, 575, 576, 
577 

Single Mode Fiber, 130, 131, 137, 158, 
177, 185, 232, 234, 236, 237, 240, 
296, 305, 306, 307, 309, 444, 489 

Slab Waveguide, 116, 117, 118, 120, 
122, 125, 126, 127, 128, 129, 130, 
136, 137, 144, 161, 166, 167, 168, 
170, 189, 199, 240, 241 

Snap down, 604, 605, 612, 614, 616, 
617, 618, 619, 620 

Snell’s law of refraction, 42, 44, 67 
Sodium, 359 
Spatial Light Modulators, 335, 365, 366, 

511, 512, 517, 524 
Spectral Synthesis, 511, 514, 515 
Square unit cell, 444, 540, 551, 583 
Square-law devices, 422 
Step-Index Optical Fibers, 116, 130 
Stoke’s theorem, 11, 12 
Surface micromachining, 260, 264, 265, 

308, 309 
Surface Plasmon, 42, 65, 67, 69, 74, 

170, 242, 582 

Surface Roughness, 247, 256, 257, 259, 
261, 266, 271, 291, 311, 376, 404, 
415 

Switching Speed, 298, 316, 335, 376, 
411, 412 

T 
Thermal noise, 474 
Thermal tuning, 496, 498, 573 
Three-level Grating Light Modulator, 

430 
Tip-Tilt-Piston, 361, 362 
Total Internal Reflection, 5, 49, 50, 52, 

53, 55, 56, 64, 65, 66, 68, 70, 72, 73, 
116, 117, 122, 145, 161, 163, 166, 
167, 450, 542, 567 

Transfer function, 102, 392, 452, 453, 
454, 455, 456, 459, 501, 502, 504, 
515 

Transform Spectrometers, 455, 502, 
506, 507, 510 

Triangular function, 505 
Tunable Blazed Grating, 366, 367, 517 
Tunable Lasers, 491, 517, 523, 524 
Tunable Photonic Crystals, 573 
Tunneling sensors, 486 

U 
Universal joint, 247, 282, 288, 289, 290 

V 
V parameter, 127, 129 
Vertical Cavity Surface Emitting Laser 

(VCSEL), 517, 518, 519, 524, 561 
Vertical Combdrive, 272, 287, 289, 576 
V-grooves, 177, 316 
Vibrating String, 408, 409, 411 
Vitreous humor, 360 
Voltage Control, 366, 602, 605, 607, 

610, 620, 622, 623 
Voltage-controlled Optical Attenuator 

(VOAs), 438 
Vortex, 353, 370 
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W 
Wave equation, 5, 10, 13, 14, 15, 16, 19, 

37, 77, 78, 81, 82, 108, 118, 189, 190, 
191, 538 

Wave guide, 144, 204, 519, 535, 542, 
543, 562, 567 

Wavefront, 78, 86, 87, 89, 235, 358 
Waveguide Modulators, 215, 232 

Wavelength Division Multiplexing, 34, 
214 

Y 
Yablonovite, 542 
Y-coupler, 32, 33, 38, 39, 194, 215, 216, 

221, 222 
Young’s modulus, 263, 264, 265, 268, 

273, 408, 410, 411 
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