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Preface

In spite of the rapid advances made in the development of molecular
orbital theory, the method, even in its simplest form as applied to =-electron
systems of conjugated molecules, has yet to gain acceptance as a universal
language for the description and interpretation of molecular properties.
Classical electronic theories and the method of resonance structures are
still more widely preferred and used in practice. Yet molecular orbital
theory is conceptually easier to understand than the resonance method,
and rests on firmer theoretical foundations; it provides quantitative inter-
pretations which are broadly equivalent to those given by the classical
electronic theories, and offers a more complete description of the theoret-
ical implications. The most serious drawback to the advancement of
molecular orbital theory has, hitherto, been the volume of computational
work involved in practical applications. The time taken to calculate,
on hand machines, w-electron distributions for molecules of practical
interest, even in the simplest molecular orbital method, has generally been
prohibitive for all, except theoretical chemists, especially when qualitative
methods of interpretation prove attractive and versatile in practice. The
situation is now changing, as more computing power becomes available
to research workers, and to undergraduates for teaching purposes, and
it is within the context of a growing interest in the use of computers that
this book appears.

The book is intended to provide a practical guide to the use of com-
puters for solving problems described in terms of m-electron molecular
orbital theory. It covers the Hiickel method, the self-consistent field
method as applied in the approximation introduced by Parr, Pariser and
Pople, and a configuration interaction method for calculating singlet and
triplet excited states. It is not primarily concerned with the quantum
mechanical foundations of molecular orbital methods, nor with the der-
ivation of the equations; neither does it attempt to give an account of the
success of MO methods in predicting and describing a variety of molecular
phenomena. These are matters which have already been considered
extensively elsewhere in existing textbooks and journals. Instead it
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vi Preface

attempts to show how computers may be used to study both the models
which are introduced in molecular orbital theory to interpret the proper-
ties of conjugated systems, and the methods on which they are based. It
does not altogether ignore the important role of computing numbers which
can be correlated with experimental observations, but, by and large, it
subscribes to Hamming’s view that ‘‘the purpose of computing is insight,
not numbers”.! The applications are, therefore, somewhat unorthodox
compared with computations which seek solely to establish agreement
between theoretical predictions, expressed numerically, and experiment.
They should appeal to those readers who enjoy finding out the facts for
themselves.

The first part of the book, which deals with the Hiickel method, contains
material which could be adapted for inclusion in undergraduate courses.
It is evident, from the few w-electrons problems that can be solved easily
(e.g. butadiene, benzene, and possibly naphthalene, where simplifications
due to symmetry may be used) and, which therefore qualify for detailed
treatment in standard texts on molecular orbital theory, that compu-
tational difficulties prevent students from acquiring the kind of practical
experience that ensures a good understanding and appreciation of the
subject. These difficulties are largely resolved by the use of modern
computers, where solutions for molecules containing ten to twenty
conjugated atoms are obtained in a few seconds. Thus, although some
undergraduates courses are designed primarily to present a statement of
the method and its practical use in describing molecular properties, there
is a strong case for recommending that, when a computer is available,
serious consideration should be given to the experimental approach
adopted in this book. This would encourage the student to discover for
himself, by carrying out sets of calculations which lie within the region of
physical validity, and beyond, if necessary, properties which characterize
molecular orbital descriptions, and, in some cases, quantum mechanical
concepts on which they are based. Computational methods of this kind
can be used to illustrate and explain theoretical principles, to identify
questions of interpretation, and generally to enhance the teaching of
quantum chemistry.

The later sections of the book, which deal with self-consistent field and
configuration interaction calculations, are more relevant to the graduate
about to begin research in quantum chemistry, although they could also
be considered as an appendix to an undergraduate course. Applications

1 R. W. Hamming, Numerical Methods for Scientists and Engineers, McGraw Hill,
New York, 1962.

Preface vii

to m-electron problems offer the simplest, and in some ways the most
illuminating practical examples of these methods, which merit careful
study since a good understanding of the solutions provides a valuable
background for more advanced work. SCF-CI calculations are also
important for experimental chemists seeking to use theoretically reliable
methods for interpreting results, especially where these involve excited
states.

Computer programs written in the FORTRAN II programming lan-
guage, for solving the secular equations of the Hiickel method, the non-
linear equations of the self-consistent field method for m-electron ground
states, and configuration interaction equations for excited states, are
presented with typical input data and computed results in each case.
It has been a major objective to ensure that these programs are easy to
use in practice, and special purpose subroutines have been incorporated
to accept input data in the simplest possible forms. Thus, an incidence
matrix of 0’s and 1’s which identify non-adjacent and adjacent atoms
respectively, defines a framework of conjugated carbon atoms; any
conjugated molecule is then represented by simple modifications of
elements of the incidence matrix of an appropriate parent carbon frame-
work. Elsewhere, a hexagonal grid is specified, which generates auto-
matically within a subroutine, prescribed atom co-ordinates and molecular
integrals required in various parts of the programs. Similarly, a single
data record specifies a set of m-electron configurations to be takeninto
account automatically in calculating excited states. The same simple
forms of input data apply to both the Hiickel and SCF-CI programs, and
it is therefore, easy to turn to the more sophisticated methods, having
first gained some experience in using the programs of the Hiickel
method, .

Both sets of programs are designed to operate in core, and to cater
for up to 30 conjugated atoms. Under these conditions, the Hiickel
programs require roughly 12,000 words, and the SCF-CI around 19,000
words of 24 bit core store, with floating point numbers stored in two words.
Rather less than one third of the total storage accommodates the object
code in each case and the programs can be reduced in size simply by
diminishing the dimensions of the arrays. For example, it would be
possible to obtain Hiickel solutions for molecules comparable in size to
naphthalene on a small departmental machine with, say, 5,000 words of
core store. Alternatively, the programs are easily segmented. Solutions
of the Hiickel equations for molecules containing 10 conjugated atoms
are obtained in around 1-3 seconds on machines with core speeds of
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2-6 microseconds, and corresponding SCF-CI solutions take roughly
10-20 times as long.

In preparing this book I have gained immeasurable help from the
texts referenced at the end of Chapter 1, especially Parr’s review, with its
original papers, and Streitwieser’s monograph. Most of the programs
presented in the book were originally written at a time when programming
implied machine code, and the high speed store consisted of a dozen or so
nickel delay lines, and I recall with pleasure the enthusiasm of those days,
and the help I received in particular from Dr. Colin Reeves and Mr. Tom
Hayward. I owe a similar debt to Professor Roy McWeeny and his
research group, and to Mrs. Jean Bishop and Miss Carolyn Healings for
patiently preparing the manuscript.

H. H. GREENWOOD
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Introduction

The MO method of quantum chemistry has provided, since its introduc-
tion around the early 1930°s, a versatile framework for the interpretation
of the physical and chemical properties of molecules. The scope of the
method can be measured by the variety of applications that can be des-
cribed by the theory at different levels of sophistication, which range from
purely qualitative interpretations of molecular properties to large-scale
calculations on small molecules, which take into account all terms of the
hamiltonian operator, and obtain solutions of increasing accuracy by
variational techniques.

This book is concerned exclusively with MO methods devised for the
treatment of wr-electron systems of conjugated molecules, which are chosen,
in the first place, largely for their mathematical simplicity. Thus, a prime
advantage of w-electron methods lies in the comparative simplicity of the
sets of equations describing the models, and of the methods of solution.
In the Hiickel scheme, which is the simplest MO model, the equations can,
for example, be written down virtually by inspection of the molecular
framework, provided appropriate atom and bond parameters are known.
Yet the solutions obtained from these unsophisticated versions provide
quantitatively consistent accounts of many aspects of aromatic chemistry.
Apart from the technical simplicity of formulation and solution, -
electron methods also provide a simple, yet adequate framework for
illustrating most of the principles, practice, and descriptive qualities of
MO theory, and are well endowed with properties that offer scope for
analysis by both theoretical and computational techniques.

However, in spite of the simplicity of formulation, the computational
effort involved in solving the equations can become substantial for all but
the smallest conjugated molecules. As a result, qualitative methods of
interpretation based upon either the classical electronic theories of Ingold
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2 Computing Methods in Quantum Organic Chemistry

and Robinson, or upon the concept of resonance structures proposed by
Pauling and Wheland, which provide attractive accounts of molecular
properties, are still more widely cultivated and favoured. The situation
has, however, changed significantly in recent years through the increasing
availability of electronic digital computers, and there are prospects that
the quality of the MO description may, as a result, become more widely
appreciated. However, the use of computers calls for new and different
methods of approach even when solving familiar problems, because of the
sheer versatility of machine computations. Numerical calculations which
would, otherwise, be directed towards the computation of quantities for
comparison with experiment, take on a new meaning, since it becomes
possible, on a computer, to experiment with the models themselves. The
computer becomes, in effect, like a laboratory tool, by which controlled
experiments may be imposed upon theoretical models to study their
properties and relevance to the physical systems described.

It should be emphasized at the outset, that in studying computational
aspects of -electron theory, we shall not be concerned with explanations
of the quantum mechanical foundations of MO theory, nor with the deri-
vation of equations defining 7-electron methods. It will be assumed that
the reader is familiar with these methods, or has access to texts which
provide the appropriate definitions.!~® Computational methods are, after
all, mainly concerned with the solution of the equations, with the inter-
pretation of observed molecular properties in terms of the solutions
obtained, and with the analysis of theoretical models themselves.

The computer programs provided in later chapters obtain solutions of
the sets of equations defining the models, and calculate energy levels and
orbitals, charge densities, bond orders, free valences, polarizability
coefficients and other quantities that have traditionally been determined
in 7r-electron calculations. However, in choosing material for discussion in
later chapters, we recognize that the importance of these calculations for
the interpretation of the physical and chemical properties of conjugated

molecules has already been widely described elsewhere. Admirable sum-

maries have been given in various books and articles, particularly in
Streitwieser’s comprehensive review,! and it would be pointless to repeat
these results here. In consequence, computations of quantities which are
intended for direct comparisons with experimental results are, throughout
this book, considered quite briefly, though they represent an important
area of application, in which the computer is used primarily as a high-
speed calculator. Attention is focussed, more often, on the design of
experiments which illustrate, within the relatively simple framework of
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w-electron theory, the scope of numerical methods in analysing the proper-
ties and theoretical implications of proposed models.

The book falls broadly into two parts, the first part being devoted to
w-electron theory in the Hiickel MO approximation, and the second to
SCF-CI methods. The material itself can be identified with certain major
landmarks in the development of m-electron theory, namely (a) the intro-
duction of the Hiickel method,® (b) the perturbation method of Coulson
and Longuet-Higgins,” (c) Roothaan’s SCF method? in the approximation
proposed by Pariser and Parr,® and by Pople,1° for the treatment of -
electron systems, and (d) CI methods.'!+2 No attempt is made to discuss
the various extensions and modifications of these ‘standard’ methods,
which may be significant in particular areas of application, since the
conceptual factors associated with each of the main stages of develop-
ment are more fundamental and relevant to m-electron theory itself, and
to the computational techniques employed.

The equations of the Hiickel MO method for m-electron systems are
stated in Chapter 2. A matrix diagonalization method of solution is
explained in some detail, since it represents the core of the computer
program for solving the Hiickel equations, and is also embodied in
programs described later which solve both the SCF and CI problems.
Complete listings of the FORTRAN programs are given at the end of
this chapter, with input-data specifications, and a printed output of Hiickel
solutions for a set of chosen molecules.

Chapter 3 deals with certain aspects of the perturbation method, as
applied in Hiickel theory, which has hitherto proved invaluable in obtain-
ing approximate charge densities, bond orders and similar quantities when
parameters are changed in value from those describing a parent hydro-
carbon. The discussion does not aim, however, to present a case for using
perturbation methods. On the contrary, these methods are largely made
obsolete by the use of high-speed computers, since solutions of the Hiickel
equations for each value of a set of modified parameters, which scan a
range covering the values applicable in perturbation theory, and beyond,
would consume merely seconds of computer time on a modern machine.
The main objective of this chapter is to show that the many analytical
properties of the perturbation method applied in Hiickel theory are asso-
ciated with, and ultimately dependent upon, stronger relationships which
apply to solutions of the secular equations themselves. These are the
relationships normally found in systematically designed computer calcula-
tions. Terminology proves somewhat problematic since related solutions
of the secular equations are called ‘conjugate’, a term which appears to be
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technically acceptable, but is less felicitous in the context of computations
for conjugated molecules. The terminology is retained, however, since the
meaning is usually clear from the context. The analytical properties are
traced, in outline only, from those that apply to the first and second
coeflicients of perturbation formulae, which are used in practical applica-
tions, through a generalization to all terms of an expansion formula,
and finally to the finite changes, obtained without truncating the formulae.
Examples illustrating the various relationships are presented in the form
of problems at the end of the chapter.

Various applications of the Hiickel method are then considered in
Chapter 4. Traditional calculations of charge densities, bond orders and
similar quantities are, as indicated earlier, discussed quite briefly, and
mainly in the context of mesomeric substitution, where trivial errors can
be made in specifying program-input data. The rest of the chapter is held
together, not by the physics and chemistry of the -electron systems studied,
but by the contribution each section makes in demonstrating various ways
of applying the programs to obtain solutions which illustrate properties of
the models, and theoretical implications of interpretations which use them.
Thus, the second section considers general properties characterizing energy
level and orbital changes as parameters of the Hiickel equations vary
systematically, and shows how certain constraints operate to bring about
a degree of orbital ‘localization’. The next two sections serve primarily to
introduce the formulae used in calculating dipole moments and transition
moments for m-electron ‘excitations’ in the computer programs described
and listed at the end of the chapter. Although the calculation of excitation
energies by the Hiickel method is theoretically unreliable, it is possible
to identify, with the aid of computed transition moments, the deficiencies
of the model, and the form of solutions obtained when CI methods are
used. Thus, the Hiickel calculations serve to prepare the way, within a
simple theoretical framework, for an understanding of the nature of the
CI problem which is discussed in the final chapter. The final section in this
chapter investigates d,—p, w-electron systems, and provides interesting
information relating to the nature of conjugation, which has some bearing
upon the concept of aromaticity as applied to these systems. The discussion
is made possible because the formulation of the problem is, in terms of
input data to the computer program, essentially similar to conventional
P»—P~ Droblems.

Chapter 5 discusses MO theories of the chemical reactions of conjugated
molecules. These theories are generally based upon definitions of reactivity
indices associated with models of different stages of the reaction path.

S~
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Indices associated with early stages of reaction mechanisms are usually
defined in terms of perturbation coefficierits describing modified ground-
state configurations. The secular equations for modified systems can,
however, be solved directly by the computer programs, and changes in
energy levels and orbitals, which are not described by the perturbation
method, can be recognized. It turns out that anomalies in predictions of
active positions, by reactivity indices defined by perturbation methods in
certain conjugated molecules, are removed when the complete calculations
are made. However, the same computer calculations provide evidence
which suggests that certain reactivity indices that correlate numerically,
cannot, on conceptual grounds, be associated with the same kind of reac-
tion mechanism. In fact, solutions of the secular equations for modified
ground-state configurations, which are easily calculated by computer
methods for various ranges of parameter changes, provide evidence of
conceptual incompatibilities amongst indices that lie outside the scope of
the perturbation methods by which they are defined. Since there has been,
hitherto, considerable disagreement concerning the validity of reactivity
indices in describing the chemical reactions of conjugated molecules, it
is all the more important that changes in energy levels and orbitals asso-
ciated with perturbation formulae which contain the definitions of reactivity
indices should be explored in some detail by computer methods.

The final two chapters of the book are concerned with SCF and CI
methods, respectively. Here, as elsewhere, the relevant equations are pre-
sented without derivation, though individual terms of the non-linear SCF
equations are interpreted in physical terms which, to some extent, com-
pensates for the absence of a derivation, and enables the method to be
used effectively within a computational context. Furthermore, the iterative
method of solution of the SCF equations, described in Chapter 6, is based
upon a’matrix-diagonalization process analogous to that used in solving
the Hiickel equations, and the computer programs can be regarded as
extensions of those used earlier. At the same time, input data for both
SCF and Hiickel programs are virtually identical, and the solutions take
the same form in calculating energy levels and orbitals, charge densities,
bond orders, free valences and dipole moments. The SCF programs are,
therefore, just as easy to use in practice as the Hiickel programs. The
applications of the SCF programs which are discussed within the text are
largely concerned with investigating properties of the non-linear equations.
The most important of these concerns the existence of ‘conjugate’ solu-
tions, with properties virtually identical to those found for Hiickel theory.
These relationships show that predictions of ground-state properties
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for heteromolecules derived from parent alternant hydrocarbons (AH)
are largely unaffected by the formal neglect, in Hiickel theory, of
electron-repulsion terms. For example, comparable ground-state charge
distributions are obtained for these m-electron systems from both methods
of approximation. A further section considers the definition of electro-
negativity within the SCF description, and associates the concept not only
with properties of the atom, but also, significantly, with its site in the
molecule.

The final chapter on the CI method leaves more unsaid than elsewhere
about the nature of the equations used. Nevertheless, it describes, in detail,
numerical forms of the equations, in making comparisons between applica-
tions to naphthalene and quinolene, and shows how the differences can
be directly related to the solutions obtained. These solutions are described
in terms of energies and wavefunctions for excited singlet and triplet states,
and computed transition moments. The computer program itself is linked
to the SCF programs to form a SCF-CI ‘package’ which provides a
systematic description of =-electron ground and excited states; and, al-
though the calculations are intrinsically much more complicated than
those of the Hiickel method, the input data for complete sets of SCF-CI
solutions are virtually identical with those already used in applying the
Hiickel programs. No new techniques are, therefore, required to apply the
SCF-CI programs, and the experience gained in using the Hiickel pro-
grams should, therefore, be adequate preparation for adopting the more
advanced methods.

Obviously, in a book on computational methods of analysis, the rele-
vance of topics discussed can best be recognized by practical use of the
programs. Although theoretical explanations are available, as indicated in
several instances, the computational approach provides a simple, direct,
and efficient method of gaining an understanding of the properties of
models, and of the methods on which they are based. This, in essence, is
the main theme of the book, and will be lost to the reader unless the appro-
priate practical work is pursued.
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Hiickel Theory

The approximations introduced in formulating the Hiickel method for
conjugated molecules fall into two categories; those that are concerned
with the definition of a m-electron hamiltonian operator, and those that
produce simplifications in the secular equations.

The basic approximation of the first kind is that of #—o separation,
which assumes that the = electrons can be treated independently of the
o-bonded framework, except in so far as the framework itself creates an
‘effective’ field in which the = electrons move. A Schrodinger equation
for a system of n 7 electrons can then be written in the form

hy = ey 2-1)
where the 7-electron hamiltonian 4, is given by
ha(1,2, .. Z( V3D + Vo) + 3 Z ~ 2-2)

f.i=1 U

in which ¥, represents the potential energy of a 7 electron in the field of
the o-bonded framework or ‘core’. This can be visualized as a resultant
field obtained when all the = electrons are removed to infinity. Next, the
independent particle approximation is introduced, in which a = electron
is assumed to move in the field of the s-bonded framework and an averaged
field of the remaining = electrons. The operator A, then simplifies to the
form

ha(1,2,3,...0) = 3 KG) @-3)
where )
BTG = —3V2@) + V() 2-4)

is the effective hamiltonian operator for a single = electron, and where

V(i) represents the potential energy that incorporates, in some average

way, the 7-electron-repulsion terms referring to the remaining = electrons,
8
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which are included explicitly in equation (2-2). With this approximation
the Schrodinger equation (2-1) becomes separable into n-equivalent
equations

hy = ey 2-5)

in which 4 is the operator given in (2-4), and y a MO.
Approximate solutions of (2-5) are sought in the form of MOs 1p chosen
as linear combinations
y= rEIchSr (2-6)
of the 2p, atomic orbitals ¢, associated with each of the N-conjugated
atoms. Equation (2-5) can be ‘solved’ in the sense that a ‘best’ value for
e can be obtained within the framework of the given basic set of orbitals
¢ (r=1,2,...N) by minimizing the expression for e equivalent to
(2-5), namely
_ fy*hypdr
 fy*ydr
with respect to variation of the parameters c, appearing in the expansion
(2-6) for the MO y. This procedure produces the secular equations, at
which stage approximations of the second kind are introduced.

@7

2.1 THE SECULAR EQUATIONS
Minimization of e in (2-7) with respect to variation of the coefficients
¢, in (2-6) leads to the set of equations
Oe
. 7, =0 (r=12,3,...N) (2-8)

that are linear in the coefficients c,, and have the algebraic form

i (hes — €Sp)c; =0 r=123,...N) 29
where w
hes = [brheps dr (2-10)
and
Srs = f¢rds dr @11
The equations have a non-trivial solution provided the determinant is zero
ie. |hes — €Sye] =0 (r,s=1,2,...N) (2-12)
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This determinant can be expanded in the form of a polynomial equation
A(e) =0

of degree N in €, and the Nroots ¢; (j = 1, 2, .. . N) are the energy levels,
or eigenvalues of equation (2-5). Substituting a value ¢; back into equations
(2-9) and solving, gives a set of coefficients ¢,; (r = 1,2, ... N) defining
the MO y, or eigenvector in equation (2-5) corresponding to the particular

eigenvalue e; where
N

Yy = Z Crihr (2-13)

r=1

Hiickel theory now introduces approximations that simplify the equa-
tions (2-9) by ignoring all overlap integrals between normalized atomic

orbitals, so that
Srs =0 (r 7 S)

=1 (=5s) (2-14)

and all terms A,, that do not refer to neighbouring atoms r and s.

ie. hs=0 (r, s non-neighbours) (2-15)
The remaining A,, terms then fall into two groups,

o, = hy, = f¢p2h, dr (2-16)

called the ‘coulomb’ integrals «, that refer to single atomic orbitals ¢, and

Brs = hyy = [$2hd,dr  (r, s neighbours) (2-17)

the ‘resonance’ integrals involving atomic orbitals ¢, and ¢, on adjacent
conjugated atoms. With these approximations, the secular equations
reduce to the simpler form

N
(&—9&c+ 2pcs=0 (s#£r=12,...N) (2-18)
s=1

and the secular determinant becomes

(01 — ©) Pz Bz .- B
‘321 (0(2 - 6) 523 ...... ﬂzN
A(G) = ﬂﬁl ﬁsz (“3 - €) ...... ﬁ3N =0 (2"19)

ﬂm By ﬁNa ------ (ay — €)

Hiickel Theory 11

in which most of the §,, (= B, assuming real orbitals ¢) are zero, non-
zero terms arising only when r and s are neighbouring atoms. Equations
(2-18) and (2-19) define the Hiickel method in its simplest form; other
forms relax the overlap (2-14) and nearest neighbour (2-15) approxima-
tions, but these modifications will not be considered.

The MOs y; of equation (2-6) corresponding to the energy levels €,
obtained as solutions of (2-5), are orthogonal, so that

Jpty;dr =0

This equation expresses an analytical independence of the MOs, and
implies that a property, such as the charge distribution, of electrons
associated with ¥, can be computed from v, only. In the case of non-
orthogonal orbitals, part of the given property would be computed from
4,5 hence the value of orthogonal MOs. It is customary to normalize each
1; to unity, so that

Syt dr =1
which, by substitution from (2-13), assuming real orbitals ¢, gives

N N
z c?if‘/’f dr +2 z cricslj¢r¢s dr=1
rw=l 1

r¥s=

In Hiickel theory, this expression reduces to the form
N
2ch=1
r=1

when the orthonormality condition (2-14) for atomic orbitals is intro-
duced.

The nw electrons may now be assigned to the MOs w, with spin functions
o« and B 4ttached. Assume that we are considering a closed-shell ground
state in which the lowest M energy levels are doubly occupied, so that
n= 2M; then a total wavefunction ¥, for the ground state may then be
written as the product

Yo = p:(DF:p(P4) - .. WP + 1) . . . pult — DFuln) (2-20)

where y = ya, § = yp denote spin assignments. Wavefunctions for con-
figurations in which the # = electrons are assigned in some other way to
the gvailable set of MOs y, can be written in a similar form. Consider the
‘exmte.d’ configuration obtained by transferring an electron from an
occupied orbital yp; of the ground state to an unoccupied orbital yp,.. Then

Wi = vi(DP:2) . .. Y (@WPp + 1) .. py(n — Dyu(n)
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describes the product wavefunction when the spin of the excited electron
is unchanged. The energy of a configuration of n = electrons is obtained
as the sum over the corresponding occupied energy levels

N
&= S @-21)
f=1

where »; = 0, 1 or 2 denotes the occupancy of the jth level. This form
implies, amongst other matters, that the excited triplet configuration
obtained by excitation from ¢, to $,. with change of spin, is equal in
energy to the corresponding singlet configuration, in the Hiickel approxi-
mation.

In fact, the product form (2-20) is not an acceptable representation for
electron configurations, since it fails to express correctly the indistinguish-
ability of electrons and the Pauli exclusion principle. The most convenient
way of fulfilling the principle is to use determinantal wavefunctions as
proposed by Slater.* However, these forms become significant only when
electron repulsion terms are accounted for explicitly (e.g. equation 2-2)
in the hamiltonian operator for 7 electrons, as applied in the SCF (Chapter
6) and CI methods (Chapter 7). In such cases, configuration energies are
no longer simple sums (2-21) taken over occupied energy levels.

2.2 MATRIX FORMATION

The secular equations (2-9) or (2-18) when written in matrix form describe
a conventional matrix eigenvalue problem. For example, equations (2-18)
can be written as

N
> hyscs = ey r=12,...N)
s=1

or
(h—eDc=0 2-22)

where his a N X N matrix, with elements defined (equations 2-16 and 17)
in the basis of atomic orbitals ¢,; ¢ is a N X 1 column vector, with ele-
ments that are coefficients in (2-6) of the orbital basis vectors ¢,; and « is
a scalar. I is the unit matrix of order N. Suppose, in the first instance, that
the solution is known in terms of the eigenvalues ¢; (j = 1,2,...N) and
the corresponding vectors y; (j = 1,2, ... N) of equation (2-13). Then
the rules of matrix multiplication show that (2-22) may be generalized

to the form
hC = CE (2-23)
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in which h, C and E are all N x N matrices. E is a diagonal matrix whose
non-zero clements are the eigenvalues ¢;,, and C the matrix constructed
from the column vectors ¢; (=cy;, Cay Cay - - - Cyy)-

E=] ¢ C= A A ____

Y

The ¢; and ¢; (=v,) are ordered in the same way in E and C, though not
necessarily in the particular order given above.
Since the eigenvectors ¢, are orthonormal

c’Cc=1 (2-24)

where C' is the transpose of C, and I is the unit matrix. Therefore, from
(2-23)

C'hC = C'CE = E (2-25)

It follows that solution of the eigenvalue problem consists in finding an
OFthogonal matrix C which transforms the given symmetric matrix h to
diagonal form. The diagonal elements will then be the eigenvalues or

energy lgvels, and the columns of C the corresponding eigenvectors or
MOs.

2.3 SOLUTION OF THE SECULAR EQUATIONS

Matrix methods for solving the secular equations of Hiickel theory are
now used as exclusively on computers as polynomial methods were pre-
viously used for hand-machine calculations. The polynomial method can
be programmed, but precautions must be made to handle satisfactorily
particular computational problems that can arise in practice; degeneracies
can, for example, produce such problems, and it may be necessary in
certain situations to employ double length working. By comparison,
matrix methods are straightforward. However, the polynomial method
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can be a valuable source of intuitive ideas about the structure of energy-
level diagrams, and, to this extent, can provide useful preliminary notions
about the nature and origin of certain physical phenomena. A short
discussion, confined, at this stage, to alternant hydrocarbons will be given
(see p. 44), and the ideas developed will be used in practical applications
later.

A. The polynomial method
It is customary to simplify equation (2-19) by introducing the substitution
x=(x—9ofp

For a conjugated hydrocarbon all «s are the same, and similarly all non-
zero fs are equal, so that, for ethylene, for example, the secular determi-
nant equation becomes

x 1|=0

1 x
or x*—-1)=0

A(x) =

which has the roots x; = —land x, = +1,0re; = o + fand g = ¢ —
B, with ¢, the lower, since 8 is negative. Similarly, the equation for buta-
diene takes the form

Ax)=|x 1 0 0]=0
1 x 10
01 x 1
0 01 x
or xt—-3x24+1=0

with roots
x1=—(H/5+12 or e&=a+16188

xg = —(v/5 — 1)/2 € = o + 06188
x3 = +(/5—1)2 € = o — 0-6188
xs = F+(H/54+ 12 €, = o — 1-618f

The corresponding MOs v, (j = 1, 2, 3, 4) are obtained by substituting
each ¢, back, in turn, into the secular equations (2-18) and normalizing,
It will be noted that the Hiickel method does not make a distinction.
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between cis- and trans-butadiene since the non-zero off-diagonal elements
arise only between adjacent atom pairs. This simple structure of the
secular determinant provides, for chains of conjugated carbon atoms, a
recurrence relationship of the form

Py =xPy_; — Py,

where Py = Py(x) is the characteristic polynomial for a chain of N atoms.
It is interesting to note how the series begins by constructing P, for
ethylene from P, and P,. Clearly P; relates to an isolated carbon atom
with determinant

Pyx) = AR) = x|

and P, to the ‘bond’, or off-diagonal term 1. Then

Py=xP, — Py =x2—1
For the allyl w-electron system

Py = xP; — P, = x% — 2x
and, for butadiene,

Py =xP3 ~ Py =x*—2x2 — (x2 — 1)
=x*—3x2+4+1

Similar recurrence relationships can be obtained for conjugated systems
other than chains, though particular problems occur when the construction
involves the closure of rings. It is a fairly straightforward matter to build
up a ‘library’ of polynomials for structural residues that will simplify the
determination of the characteristic equation for a new conjugated system.
The technique has been described in detail by Heilbronner,? Streitwieser,?
and others.

For present purposes, the polynomial formulation is of interest, not
primarily as a computational method, but for the insight it provides on
the distribution of energy levels in conjugated systems. Consider, for
€xample, the determinant for two conjugated atoms of the same kind

x d|=x2=6)=0
d x

or x= =44

with an interaction or ‘bonding’ term 8. For simplicity, assume the atoms
are carbon so that § = 1 would represent the ethylene system. When ¢ is
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zero, the two roots coincide in the zero of energy, and a non-interacting
system is represented. As & is increased from zero the degeneracy is
removed, the two levels separate symmetrically and increasingly until the
‘ethylene’ solution is reached, and beyond, if 6 > 1.

The diagram simply expresses a well-known theoretical property of
‘repulsion’ between energy levels of interacting systems; the interaction is
represented by non-zero off-diagonal terms in the secular equations, and
the magnitude of ‘repulsion’ increases with increase in the interaction
term. The levels of the allyl system can, therefore, be visualized as being
derived by ‘fusion’ of ethylene and a single carbon atom, and butadiene
as ‘fusion’ of a carbon atom and allyl.

V2 | —J2
1._ —
X
o S ———
_1_
sl —
f C Cc=C c-C-C

The extension of these constructions to large molecules is usually
straightforward, since energy-level diagrams for many molecules are now
available in the literature. The polynomial formulation will not, however,
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2|
‘\/é_ — 1618
x 1 — 10
Of = ___ —_———
b — 10
_/é-— —_——
—_— -1618
2k
C c-C-C Cc-C-C-C

be pursued further for the time being, though it will be invoked subse-
quently at appropriate places throughout the text. It may, however, be
remarked that it is sometimes more valuable to obtain a qualitative
understanding of a physical process from comparative studies of energy-
level diagrams, than from perturbation formulae, where details of the
physical interpretation are seldom directly accessible.

B. Matrix diagonalization

The procedure recommended for solution of the secular equations by
computer methods is that of matrix diagonalization as represented in
equation (2-25). Of the various techniques that are available, the Jacobi
method for real symmetric matrices will be described in outline, and a
computer program (JACOBI SCOFI 1 routine) provided.

The method is based upon an iterative technique* for annihilating, in
turn, off-diagonal elements of the given matrix A by two-dimensional
rotations. Assume that the element A, is to be annihilated, and consider
the transformation

T’AT = A* (2-26)
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where k—\_)
p q
T=|1
1
1
1
1 .
P c s
1
1
1
1
-3 c
! 1
1
1
1
1

(2-27)

in which ¢ = cos 6, s = sin 0 all other elements being 1 along the diagonal
and O otherwise. Then the orthogonal transformation (2-26) represents a
rotation in the (p, g) two-dimensional plane through angle 0. The elements
of A* are the same as those of A except in the pth and gth rows and columns,
where the following values are obtained

Ar, = Ay, + 5244 + 25cA
Ay = 524,y + %Ay, — 25cA g

Ap = cApe + sAq jl k#p.gq
Aq‘k = _SApk + CAqk -
Ay = (c? — 54, — sc(Apy — Ago) (2-28)

Annihilation of the (pq)th element means that 4% = 0, which define
the required angle of rotation 6 by the equation

= 24w (2-29)
App - Aqq

In principle rotations should be carried out for every non-zero pivot qu
but since the transformations affect elements other than the pivotal pair,
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subsequent transformations will undo the annihilation of previous pivots.
Clearly, diagonalization will not result from a single pass through the
matrix A and the method is, therefore, essentially iterative and not finite.

It is easy to show from equations (2-28) that

AR+ A= A%+ AL
and

Ais + A= A5 + A,
for all k # p, g, and, therefore, the sum of squares of off-diagonal elements
excluding the (pg)th is invariant under the transformation. This means
that the total sum of squares of off-diagonal elements has been reduced
by 24 and it can be shown, again by application of equations (2-28) that
this quantity has been absorbed in the sum of squares of diagonal terms.
Successive pivoting therefore transfers the sum of squares of off-diagonal
elements on to the diagonal, and the matrix becomes progressively diagon-
alized.

In practice the matrix is scanned for selected pivots Ay, and rotations
are made on each occasion until the matrix converges to diagonal form
within a prescribed terminating limit, which might, for example, refer to
the magnitude of the largest off-diagonal element. The complete process
corresponds to the sequence of operations

Ty ToT T AT, T, Ty . .. T, . ..
which converges to the form

UAU=D 2-30)
where D is diagonal to the prescribed limit, and
U="TT.T;...T,...T, 2-31)

where the sequence T,T,...T,...T, represents the successive two-
dimensional rotations, T, being the final rotation of the process.

Procedures for selecting pivots and other practical details of the com-
puting technique are discussed in a later section describing the computer
programs.

2.4 CHARGE DENSITIES, BOND ORDERS AND FREE
VALENCES

Many physical and chemical properties of conjugated molecules are des-
cribed, not by the MOs themselves, but in terms of certain quantities
such as the charge density, bond order and free valence which are derived
from the MOs as indicated below.
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The probability distribution for a = electron occupying the MO v, is
(assuming, for simplicity, real orbitals ¢ )
P2 = [c2gl + e+t ~
+ 2¢1,C21$2 + 2cyiCaprps + 7
R 5 2ercsj¢r¢s + - ] (2'32)

and, since v, is normalized

f P dr = [:lcf, f $rdr 23 cuey f bubs d-r] -1 @)

r<s<1l
By the overlap approximation (2-14) the second sum in (2-33) is zero, and

the integrated probability distribution for the jth orbital therefore gives

N
S =1 (2-34) .
r=1

Individual terms ec?, of this sum multiplied by the electronic charge,

therefore represent (negative) charges associated with individual conju-

gated atoms r contributed by a mr electron occupying the MO ;. It follows

that the sum
N
g, =e 2 v (2-35)
i=1
where v; (=0, 1 or2) is the occupation

taken over the complete set of MOs,
harge on atom r. The dimension-

pumber, represents the total mr-electron ¢

less quantity

N
gr= D vicy (2-36)
i=1

is called the m-electron charge density* at atom r. It is obvious, from the
definition, that
N
2q=n 2-37)
r=1

where n is the total number of = electrons.
The bond order associated with the bo
similarly defined as

nd joining atoms r and s is

(2-38)

Mz

Drs = V4CriCsg

i=1

]

* ‘Charge population’ would be a better term for-this quantity, but since the des-
cription ‘charge density’ is used almost universally it will be accepted in this text also.
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Bond- o
chir;ie(l)r;ier tert'ns rr.lake no contribution to the charge distribution in the
distributigf;:l&;x;’tzn)a.tlﬁn since the corresponding terms in the probability
. -32) integrate (or s i
tion is aoplica, g (or sum) to zero when the overlap approxima-

The free valence F, at atom r is defined in terms of the bond orders
F, = Nyox — N, (2'39)

;vfgr; N, 15_ the sum of w bon.d orders between atom r and its neighbours
methyfen;xe m—et\h/ 3is (a thesoretlcal maximum value of W, derived from tri,
ane (see Streitwieser).® The equations (2-3 )

¢ el . -36, 38 and 39

represent generalized definitions, but for th ( :
2 ) e usual closed-shell -

Sta}? configuration »; = 2 for occupied MOs and 0 otherwisee ground

ow the energy & of a closed-shell ground state .

&= =
2215, G=1,2,...M) (2-40)

Ee;ns:te)sgz:f;;ed l'l;l terms of(‘1 the charge densities ¢, and bond orders p
each occupied orbital y; i i iC d
e worsesmonging o Thu}; al y; in turn in equation (2-7) to find

L) N
€ = ~ ri%r + 2r§= 16',]0,,6" (2_41)
and, therefore,
M N
g =2 = &
’=zl € , =z]. q,0, + 2'<sz= 1P fsﬂ rs (2-42)

E .
; :2 ;lcl);ﬂ(lgatid hydrocz_trbons _all coulomb integrals «, are assumed to
«, = a), and in the simplest approximation B, is put equal to

a uniform value g throughout i
cimplifies 0, Casta 2,87 ghout, and the energy expression (2-42) then

& = na + 282 pys) (2-43)

A

’ ;szﬁi f;); gh:oni;)lzeg} ihat all resonance integrals 8 are formally put
cdualto® wi;h i~ = na« represents the energy of the n = electrons
associated with t<.samc: set of N carbon atomic ¢,(2p,) orbitals in the
o oo 2B _]u)ga ton. It follows that in the energy expression (2-43)
the term 260 g;: ;ezil:lser}ts the energy of conjugation, and it is therefore
convenient 1o fix 2 zef of energy gqual to the coulomb integral « for a

0 that & measures, directly, the conjugation energy.
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The coulomb integrals for conjugated atoms X other than carbon can
now be expressed in the form

Ax = O + 6ax (2'44)

and, since =-electron energy is measured in units of 8 the energy difference
dax can itself be represented in terms of 8

dog = hgf (2-45)

Similarly, resonance integrals other than those between adjacent carbon
atoms can also be represented as multiples of g

ﬁxy = erﬂ (2'46)
Both hy and kxy are dimensionless parameters.

2.5 COMPUTER PROGRAMS WITH LISTINGS

A FORTRAN program for solving Hiickel m-electron problems is pre-
sented in the form of a set of subprograms, each of which performs a
distinct part of the complete calculation; a MAIN program controls the
sequence of operations. The complete program is designed to provide
processing for a series of molecules, each referred to a parent hydrocarbon
which is defined on input by an ‘incidence’ matrix with elements 1 and 0
specifying respectively neighbouring and non-neighbouring atoms. The
number of different molecules ‘derived’ from the same hydrocarbon
parent is specified by the identifier NDER and the total number of parents
by NMOLS. A molecule differs from the corresponding parent in one or
more matrix elements which represent modifications of coulomb inte-
grals (2-45) and/or resonance integrals (2-46). The number of modifica-
tions that brings the form for a parent hydrocarbon to that of a required
molecule is specified by the identifier NMOD which appears in subroutine
MODH. The individual subprograms can be identified as follows:

MAIN  — the main, control program.

INPT — reads Hiickel semimatrix for a parent hydrocarbon to
store. '

PAHY  — initiates parent hydrocarbon matrix.

MODH — modifies selected elements for prescribed molecule.

JACOBI — diagonalization routine.

ORDR — orders eigenvalues and vectors.

PMAT — constructs P, the bond order matrix.

FVAL — constructs F, the vector of free valences.

OTPT — outputs results.
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MAIN
&FORTRANG TIME = U000
TIME = 0000
T3
&Llf, c HUCKEL CALCULATIONS
2% DIMENSTON A(30,30),ADIAG(30),U(30,30),PRS(30,30),FV(30)
3x DIMENSION Z(30)
4 READ(7,99)NMOLS
5% 99 FORMAT(I4)
6% DO 10 KMOLS=1,NMOLS
7% WRITE(2,100)KMOLS
gx 100 FORMAT(1H1,13H MOLECULE NO.,14)
9% CALL INPTUN,M,A)
10% READ(7,99)INDER
11= DO 10 KDER=1,NDER
12# CALL PAHY(N,A,ADIAG,2)
13w CALL MODH(N,A,AD1AG,2)
14% EPS=1E~16
15# NIT=7
16e CALL SCOFIL(N,A,ADIAG,U,NIT,EPS)
178 CALL ORDR(N,A,ADIAG,U)
18+ CALL PMAT(N,H,U,PRS)
19% CALL FVAL(N,PRS,FV,A)
20% CALL OTPT(N,M,A,ADIAG,U,PRS,FV)
21% 10 CONTINUE
22+ STOP
23% END
INPT

The routine begins by reading N, the number of conjugated atoms, and
M, the number of doubly occupied orbitals, so that 2M is the total number
of 7 electrons.

Hiickel matrices for parent hydrocarbons are read in the form of
‘incidence’ matrices with off-diagonal elements 1 or 0 indicating neigh-
bouring and non-neighbouring atoms respectively. Diagonal elements of
this matrix are also zero.

The elements are read by columns (@) and stored in an array NUCK in
upper semimatrix form

! - - - - 0100011
- - - - 01000
- - - - 0100
- - - - 010
- - - - 01
- - - 0
(@) ®

so that the input semimatrix for benzene is that given in (). The routine
changes the sign of the 1 off-diagonal elements, following input, to ensure
that bonding terms in a Hiickel matrix HUCK are negative; the original

0z

02
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incidence matrix is printed for the record, in an equivalent lower semi-
matrix form. (See the following subsection on data specification.)

1s SUBRGUTINE INPT(N,M,HUCK)

2% DIMENSION HUCK(30,30),NUCK(30,30)
3e READ(7,99)N, M o

4% READ(7,100) ¢ (NUCK(I,J),T=1,0),J=1,N)
5% DO 17 J=1,N

6 D0, 17 1=1,J

7% 17 HUCK(I,J)=-NUCK(I,J)

8 DO 16 J=1,N

9 16 WRITE (2,101) (NUCK(I,J),I=1,d)
10» 101 FORMAT (4012)

11« 99 FORMAT(213)

12« 100 FORMAT(80I1)

13 RETURN

14» END

PAHY

As noted in the description of the JACOBI (SCOFI 1) diagonalization
routine, processing takes place in the lower semimatrix, and the upper
semimatrix is unchanged. This routine brings down into the lower semi-
matrix of A the matrix HUCK of the parent hydrocarbon which is pre-
served in the upper half of A. The diagonal elements are duplicated, for
processing purposes, by storing them in the array ADIAG. Elements of
an array Z are also set equal to unity (see Chapter 4).

is SUBROUTINE PAHY(N,A,ADIAG,Z)

2% DIMENSION A(30,30),ANIAG(30)
3= DIMENSION Z(30)

4 00 18 J=i,N

Sa DO 17" 1=1,J

b 17 A, 1)=AC1,0)

7« Z(4)=1,0

8« 18 ADIAG(NI=ALJ, I

9 RETURN

10» END

MODH
Elements of the parent hydrocarbon currently stored in the lower semi-
matrix A and ADIAG may be modified in this program. The number of
modifications changing the parent to the prescribed molecule is read into
the identifier NMOD and each element to be changed is specified by its
row and column subscripts 7 and J, and the value X to be substituted. The
program ensures that only the lower semimatrix of A is modified. If 1
equals J the corresponding element of ADIAG is modified. The modified
elements for all calculations are then recorded on the lineprinter.

If the eigensolution of the parent hydrocarbon itself is required, the case
must be included in specifying the number of variations NDER in the
MAIN program, and the modification number NMOD made zero.
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1% SUBROUTINE MODH(N,A,ADIAG,2)
2% DIMENSION A(30,308),ADIAG(30)
3. DIMENSION Z(30)
4= READ(7,99)NHOD

5% IF(NMOD)>18,18,19
6% 19 WRITE (2,103)
7+ 03 FORMAT ¢///14H MODIFICATIONS)

8w NO 17 K=1,NMOD

9% READ(7,100)1,J.X "

10+« WRITE (2,102)1,J.%X

1i= 102 FORMAT(13,2X,13,3X,F7.3)
12= IF (1-0)15,16,14

13 16 ADIAG(JI=X

14+ GO 70.17

154# 15 A(J,1)=X

16% G0 TO 17

17% 14 ACT,J)=X

18+ 17 CONTINUE

19# 99 FORMAT(14)

20% Y00 FORMAT(12;12,F6.3)
21%. 18 RETURN :

22w END

JACOBI (SCOFTI 1)

The rotations (2-26, 27) operate upon the lower semimatrix of the sym-
metrical Hiickel matrix A (or HUCK), and the upper half, including the
diagonal, is preserved. The diagonal elements of the lower half, that are
changed on rotation, are stored separately in the one-dimensional array
ADIAG.

Various techniques have been proposed and used in practice for selecting
pivots A4, for rotation. One method rotates about those pivots that exceed
a prescribed threshold value, which itself is systematically reduced when
no remaining off-diagonal element exceeds the current threshold; in
another method, pivots are chosen as the largest off-diagonal element in a
row (or column). A numerical criterion must be prescribed to specify a
limit for convergence, and so terminate the iteration process. This could,
for example, be a limiting value for the sum of squares of off-diagonal
elements, reduced by the order of the matrix. The given program SCOFI 1
adopts a simple, somewhat naive criterion that, in effect, covers both cases.
The terminating criterion for convergence is that the magnitude |4 ,|max

- of the largest off-diagonal element in the final scan shall be less than 1-10~8;

it is, in fact, applied in the form
(4 <€

where e is set in the MAIN program in the identifier EPS. This same
number is used for selecting pivots, so that rotation about the pgth element
is skipped only when

|4, < 1-10-8
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In practice rotation takes place about virtually every off-diagonal element
during the first three scans; there is then a reduction in the number of
rotations in the fourth scan, and the iteration process converges rapidly
to meet the required criterion usually after seven scans. With Hiickel
matrices which are initially sparse, the sum of squares of off-diagonal
elements becomes more or less evenly distributed over all elements
throughout the first few scans, and it is not obvious that a more refined
selection of pivots would save time. Subsequently, selection may be
profitable, but at this stage the iteration process converges rapidly in any
case. Similar observations apply to the criterion for terminating the pro-
cess. The more sophisticated criteria require additional calculations, at
least during the final scans, and the time for computation could appreci-
ably exceed that required for further scans which rapidly lower the largest
off-diagonal element. These remarks, which are based on observations on
Hiickel matrices of orders 10 to 20, are intended to suggest that increased
sophistication should be incorporated with discrimination, and not auto-
matically, since the simple approach may be just as efficient.

The SCOFI 1 routine, as it stands, is short and suitable for machines
with a small fast store, and, being simply related to the analysis, is appro-
priate to the present context. It has a theoretical advantage in producing,
automatically, orthonormal eigenvectors over degenerate subspaces, a
situation that must often be resolved independently in certain alternative
methods, such as the codiagonal matrix methods of Givens and House-
holder.® These degenerate eigenvectors are not, however, generally ob-
tained in forms reflecting the molecular symmetry, which is often a source
of degeneracy.

The matrix to be diagonalized, of order N, is stored in lower semi-
matrix form below the diagonal in A with diagonal elements in ADIAG.
Normally NIT is set equal to zero on entry. A unit matrix of order N is
then constructed in U and transformed by the sequence of rotations of
equation (2-31) to give the final U whose columns are the eigenvectors of
A. The elements of U* obtained from a current U matrix by the rotation
that annihilates the pqth element of A are the same as those of U except in
the pth and gth columns where the following relationships hold

o = CUsp + sUy,
Ug = —sUgp + cUy

These equations are complementary to those of equations (2-28) which
give the transformed elements of A.
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If NIT is not zero on entry, construction of the unit matrix in U is
bypassed. This can be useful facility when approximate eigenvectors are
known and stored on entry in U; the technique proves advantageous in
solving iteratively the simplified Hartree-Fock SCF equations for -
electron systems described later.

1% SUBROUTINE SCOFI1(N,A,ADIAG,U,NIT,EPS).
2= DIMENSION A(30,30),U(30,30),ADIAG(30)
3% IF(NIT)10,999,10

4% 999 DO 8 J=1,N

S5 DO 9 I=1,N

6% g9 Utr,.n=0.0

7 8 U(J,Jd)=1.0

8% 10 AMAX=0,0

9 DO 11 1=2,N
10+ JUP=I-1
11% DO 1t J=1,JuP

12% AII=ADIAG(I)
13# AJU=ADIAG(J)
4w ADD=ACI, )
15% ASG=ADD*AOD

16% 28 IF(ASQ-AMAX)23,23,27
7% 27 AMAX=ASG

18# 23 IF(ASQ-EPS)11,11,12
19% 12 DIFFR=AlI=AJJ

20 IF(DIFFR)13,15,15
21% 13 SIGN==-2.0

22% DIFFR==-DIFFR

23 GOTO 16

24x 15 SIGN=2,0
25 16 TDEN=DIFFR+SQRT(DIFFR=DIFFR+4.0%ASQ)

26% TANK=S1GN#AOD/TDEN
27+ €=1.0/(SORT(1.0+TANK=TANK))
?8% S=CaTANK

29 DO 24 K=1,N

30% XJ=C#U(K, J)=S#U(K, 1)

3% UCK, 1)=S#U(K, J)+C2UCK, 1)
32% UK, J)=XJ

33 IF(K=J)17,24,18

34 17 XJ=C#A(J,KI=S2ACI,K)

35% ACI,K)=S#ACJ,K)+CRA(I,K)
36 ACJ,K)=XJ

374 GOTO 24

38+# 18 IF(K-1)19,24,21
39w 19 XJ=C#A(K,J)~S#A(1,K)

40 ACI,K)=S#A(K,J)+C#AL(F,K)

11 ALK, J)=XJ

2% GOTOD 24

434 21 XJ=C#A(K,J)=S#A(K, 1)

q4% A(K, 1)=S#A(K,J)+C*A(K, 1)

45% AlK,3)=XJ

46% 24 CONTINUE

47 = ADIAG(I)=Cx#C=Al[+S#5#AJJ+2.04S4C»A0D
48 ADIAG(CJ)=CHCaAJJ+S=SsALI=2.045%C5A0D
49 ACI,2)=0

50 11 CONTINUE

51# 1F (AMAX~EPS)20,20,10

52 20 RETURN

53 END

ORDR '

The cigcr}values and vectors produced by the JACOBI (SCOFI 1) routine
are obtained in the same arbitrary sequence. This routine orders the
eigenvalues from the lowest to the highest value and the corresponding
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vectors accordingly. Negative eigenvalues correspond to negative, and,
therefore, bonding energy levels; positive eigenvalues represent anti-
bonding levels.

1= SUBROUTINE ORDR(N,A,ADIAG,U)
2% DIMENSION A(30,30),ANTAG(30),U(30,30),UTEST(30)
3 DO 40 K=1,N

4% ATEST=ADIAG(K)

5u JTEST=K

6% DO 41 J=K,N .

7% IF(ADIAG(J)~ATEST)42,41,41
8 42 ATEST=ADIAG(D)

9w JTEST=J

10+ 41 CONTINUE

11= ADIAG(JTEST)=ADIAG(K)

12= ADIAG(K)=ATEST

13+ DO 40 I=1,N

14+ UTEST(1)=sU(T, JTEST)

15+« UCT,JTEST)Y=U(I,K)

16+ 40 UCI,K)=UTEST(I)

17# RETURN

18+ END

PMAT .
The calculation of charge densities and bond orders involves summations

over the lowest M-occupied orbitals, appropriately ordered in the previous

routine.
The program calculates complete bond-order matrices with elements

referring to all atom pairs. Diagonal elements are the charge densities
g, = P(IR, IR)

and the conventional bond-order terms p,, are those values P(IR, IS)
that refer to adjacent atoms. The remaining matrix elements are formal
bond orders between non-neighbours.

1% SUBROUTINE PMAT(N,M,C,PRS)

2% -DIMENSION €(30.,30),PRS(30,30)
3# DO 18 IR=1,N

48 D0 18 1S=1,1IR

S SUM=0.

6% DO 17 J=1,M

7 17 SUM=SUM+C(IR,J)=C(IS,J}
8+ 18 PRS(IR,[5)=2.0%#SUM

9% RETURN

10+ END

FVAL
The upper semimatrix of A is scanned to identify neighbours s of a

prescribed atom r. The corresponding bond orders p,, are summed, and
the free valence of atom r is determined from

F, = +/3—=2p, (r, s neighbours)
8
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1% SUBROUTINE FVAL(N,PRS,FV,A)

2n DIMENSION PRS(30,30),FV(30),A(30,30)
3 DO 18 J=1,N

4% XNR=0,

5% DO 27 I=1,N

6% 1F(I~J)16,27,28

7% 16 IF(ACI,J)40.1)29,29,27
8 29 XNR=XNR+PRS(J, 1)
9 60 TO 27
10 28 IF(ACJ,1340,1139,39,27
11 39 XNR=XNR+PRS(I,J)
124 27 CONTINUE

13= 13 FV(J)=1.732 ~XNR
14+ RETURN
15# END

OTPT

This subroutine provides a printed layout for a lineprinter with a width
of at least 120 characters. The energy levels, tabulated MOs, total =-
electron energy, charge densities, and free valences are all printed with
appropriate labels attached. The bond-order matrix is printed without
labelling in the semimatrix sequence

P11 P12 P22 P13 P23 Psa P14 P24 ...etc.

1 SUBROUTINE OTPT(N,M,A,ADIAG,U,PRS,FV)

g; ?égE:S!ON A(30,30),ADIAG(30),U(30,30),PRSL30,30),FV(30)
@ = )

44 L=0

S5 16 L=L+1,

6% JF(10=1~N)17,18,18

7% 18 NUPP=N=-10#(L-1)

8% IND=1

9% 6o 10 77

10+ 17 NUPP=10
11= 77 WRITE(2,101)
12+# 101 FORMAT(/14H ENERGY LEVELS)

13+ KLOW=10#(L~1)+1

14= KUPP=NUPP+10#(L~1)

15= WRITE(2,99) (K,K=KLOW,KUPP)

16 99 FORMAT(3X,3H J=,3X,13,8(7X,13))

17« WRITE (2,100)(ADIAG(K),K=KLOW,KUPP}
18+ 100 FORMAT(/4X,8F10.4)

19% WRITE (2,102) -

20% 102 FORMAT(/16H HUCKEL ORBITALS)

21s WRITE(2,99) (K,K=KLOW,KUPP)

22+ DO 27 I=1,N

23= 27 WRITE(2,103)1,(UCI,K),K=KLOW,KUPP)
24 103 FORMAT(14,8F10.6)

25% IF(IND)16,16,15
26 15 SUM=§
?7% DO 115 J=1,M
28% 115 SUM=SUM+ADBIAG(J)
29+ SUM=2%SUM
gn« WRITE(2,105)SUM
1# 105 FORMAT(/27H TOTAL PI-ELECTRON EN =,F10.
32 WRITE(2,104) ON ENERGY =.F10.4)
33# 104 FORMAT(/17H CHARGE DENSITIES)
34 WRITE(2,100) C(PRSCI,J),T=2J,0),J=1,N)
35% HRITE(2,106)
36% 106 FORMAT(/14H FREE VALENCES)
37+ HRITE(2,100)(FV(I), [=1,N)
38+ WRITE(2,108)
33. 108 FORMAT(/18H BOND-ORDER MATRIX)
* WRITE(2,100)(( = Sz
40n NRITEC VPRSI, ), U1, 1), 121,N)

42x END
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A. Data specification

The following data list provides an input to the Hiickel program for
benzene, the three diazines, s-triazine, styrene and the hyperconjugation
of toluene, the systems to be treated consecutively. It will be observed that
the ‘incidence’ matrix is presented in lower semimatrix form which is
convenient for the printed page; provided the matrix elements are punched
by rows the data will be read correctly.

0002 NMOLS = number of parent hydrocarbons.
14
006003 N,M —in INPT (2I3)
1]0 1
210 6 2
31010 NUCK (8011)
410010 5
5/00010 4
6/100010 benzene
0006 NDER — six variations (14)
0000 NMOD — benzene (I14)
0001 NMOD — pyridine (I4)
0101-0-500 L], X (12, 12, F6-3)
0002 NMOD — pyridazine
0101-0-5007] LI X
0202-0-500 |
0002 NMOD — pyrimidine
0101-0.5007 LI X
0303-0-500 |
0002 NMOD — pyrazine
0101-0-5007 LI X
0404-0-500 |
0003 NMOD — s-triazine
0101-0-500] L1LX
0303-0-500
0505-0-500 |
008004 N,M —inINPT
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>l< 8
110 X7
2|10 |
31010 1
4/0010 6 2 NUCK (801
5/00010
6/100010 5 3
711000000 4
8100000010 styrene
0002 NDER — two variations
0000 NMOD — styrene
0004 NMOD — toluene
0808 + 0-500
0707 + 0-100 L)X
0807 — 2920
0701 — 0-834

The parameters for the toluene calculation were selected from those
proposed by I’I-.Iaya6 in discussing hyperconjugation between the methyl
group and the ring. The numbering scheme is represented as follows

5 6
7 8

4 C==H

1 3

3 2
so that in equations (2-45 and 2-46)
by = —01; hyg= —05; kqg=2920; k7 = 0834
the signs being chosen to match 8 which is negative, and represented by

—1 in the HUCK matrices.
) Some further comments are needed to clarify certain details of the
input-data specification.

Incic-lence matrices are punched on data cards as strings of 1s and Os
according to the FORMAT specification 8011, that is, with one character
per card column. Thus, the incidence matrix for benzene corresponding
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to the lower semimatrix reproduced in the data specification given above
would be punched as
010010001000010100010
1t 1 t t i
where the arrows point to the ends of the rows. Reading a lower semi-
matrix in this way, by rows, is identical to reading an upper semimatrix by
columns as described in the section on the subroutine INPT. Incidence
matrices are more conveniently represented on the printed page, in con-
trast to the punched card, in semimatrix form, and this form is generally
reproduced within the text and, in fact, in the program output, for checking
purposes. The data card for the incidence matrix for styrene given above
can be obtained by duplicating the first 21 columns of the benzene data
card, and then punching the next 15 columns according to the pattern of
1s and Os given in rows 7 and 8, taken sequentially. This technique of
‘bordering’ existing incidence matrices can simplify data preparation and
diminish punching errors.
The modifications introduced in the subroutine MODH appear in the
input data as
LI X

with FORMAT specification 12, 12, F6-3. The values associated with the
subscripts I and J identify the row and column of the element of the
matrix HUCK to be modified. If I = J, then X is to be identified with
day in equation (2-44) and not with the parameter Ay in (2-45). However,
dax is to be measured in units of |8|, so that, in fact, dax and hx are equal
in magnitude but opposite in sign. This representation ensures that dax = X
carries the correct sign on an electronegativity basis relative to carbon.
In the data specification for the azines given above, the nitrogen atoms are
correctly represented as negative with respect to carbon, although,
according to equation (2-45) hx would, correspondingly, be given by 4-0-3.
Similarly, when I s J the value of X is to be identified with Sxy in equation
(2-46) and not with the parameter kxy. Thus X must always be negative
in this context since it represents a resonance integral, whereas kxy would,
correspondingly, be positive.

The notation used for X avoids a switching of signs, and corresponding
ambiguities which are sometimes associated with the use of the para-
meters hy and kxy. A similar feature appears in the form of the program
output where negative eigenvalues imply negative, and, therefore, bonding
energy levels, and positive eigenvalues imply antibonding levels; each
eigenvalue is measured in units of | §|. Most of the ambiguities which often
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arise in practice due to the fact that a chosen unit of energy, §, is negative
are, thereby, systematically avoided. The only possible source of uncer-
tainty lies in the natural tendency to interpret off-diagonal 1s of the
incidence matrices as representing, more or less directly, the resonance
integral B. It is better to interpret the notation literally, so that incidence
matrices simply identify neighbouring and non-neighbouring conjugated
atoms, and to assume that the programs then construct a representation
of the Hiickel equations from this data. The fact that this construction
simply involves changing the signs of all 1s of the stored incidence matrix
NUCK in producing a Hiickel matrix does not imply a genuine source of
ambiguity.

B. Computed results

The following tabulated results were obtained from the data specification
given above.



ENERGY LEVELS

MOLECULE NO. 1
Js= 1 2 3 4 5 6

0
18
10 -212168  -1,2129  ~1.1007  0.7275  0,9298  1.8733
6010
00010 ’ HUCKEL ORBITALS
1800¢%0 J= 1 2 3 4 5 6
1 0.518353 -0.415224 0.347399 0.534799 ~0.242692 =0.305457
ENERGY LEVELS 2 0.518353 -0.415224 ~0.347399 ~0.534799 -0.242692 0.,305457
J= 1 2 3 4 5 6 3 0.371572 0.119199 -0.556094 0.121641 0.589683 -0.419479
4 0.305360 0.559804 -0.264714 0.446311 -0.305573. 0.480347
-210000 -1,0000 -1.0000  1.0000  1.0000  2.0000 5 0,305360 0,559804 0.264714 -0.446311 -0.305573 —0.480347
’ 6 0.371572 0.119199 0.556094 -0.121641 0.589683 0.419479
HUCKEL ORBITALS
J= 1 2 3 4 5 6 TOTAL PI-ELECTRON ENERGY =  -9,0610
4 0.408248 0.183671 -0.547356 ~0.561289 -0.135234 -0,408248
2 0,408248 -0,382189 -0.432742 0.397761 -0.418473 0.408248 CHARGE DENSITIES
3 0,408248 -0.565859 0.114614 0.163528 0.553707 -0.408248
4 0,408248 -0,183671 0.547356 -0.561289 ~0.135234 0.408248 1:11236  1,1236  0.9230  0.9534  0.9534  0.9230
5 0,408248 0.382189 0.432742 0.397761 -0.418473 -0.408248
6 0,408248 0.565859 -0.114614 0.163528 0,553707 0.408248 FREE VALENCES
TOTAL PI-ELECTRON ENERGY =  =8.0000 014186 10,4186  0.4046  0.4041  0.4041  0.4046
CHARGE DENSITIES BOND-ORDER MATRIX
1:0000  1,0000  1,8000  1.0000  1,0000  1.0000 1¢1236  0,6408  1.1236 -0.1002  0.6726  0.9230 -0.3322  0.0356
FREE VALENCES 016548  0.9534  0.0356 -0.3322  0.0660  0.6731  0.9534  0.6726
0:3987  0.,3987  0.3987  0.3987  0.3987  0.3987 -0:1002  -0.3139  0.0660  0.6548  0.9230
BOND-ORDER MATRIX
170000  0,6667  1.0000 -0.0000  0.6667  1.0000 ~-0.3333 -0.0000 NODIFICATION§
; 1 1 -0.500
016667  1.0000  0.0000 -0.3333 =-0.0000  0.6667  1.0000  0.6667 3 3 =0.500
010000 -0,3333 -0.0000  0.6667  1.0000 ENERGY LEVELS
J= 1 2 3 4 5 6
-211928  -1,2808 -1.0767  0.7808  0.9121  1.8575
MOBIF ICATIONS -
1 1 -0.500 HUCKEL ORBITALS
J= 1 2 3 4 5 6
ENERGY LEVELS 1 0,468386 -0.557345 -0.263607 -0.435162 0.302073 -0.346233
- 1 2 3 4 5 6 2 0,427196 -0.000000 -0.489648 0.,000000 -0.662398 0.372796
3 0.468386 0.557345 ~0.263607 0.435162 0.302074 -0.346233
-2:1074  -£,1872  -1.0000  0.8410  1.0000  1.9337 4 0.365705 0.435162 0.337621 ~0.557345 0.235852 0.443448
5 0.333545 0.000000 0.627130 0.000000 -0.517185 -0.477468
HUCKEL- ORBITALS 6 0,365705 -0.435162 0.337621 0.557345 0.235852 0.443448
J= 1 2 3 4 5 6
1 0,520706 -0,571374 0.000000 0.545913 0,000000 -0.323073 TOTAL PI-ELECTRON ENERGY =  -9.1007
2 0,418504 -0.190609 ~0.500000 -0.366024 -0.500000 0.393128
3 0.361268 0.348897 -0.500000 -0.238101 0.500000 -0.437110 CHARGE DENSITIES
4.0,342849 0.597839 0.000000 0.566258 -0.000000 0.452102 ,
5 0,361268 0.348897 0.500000 -0.238101 -0.500000 -0.437110 1:1990 0.8445 1.1990  0.8742  1.0091 0.8742
6 0,418504 -0.190609 0.500000 ~0.366024 0.500000 0.393128 FREE VALENCES
TOTAL PI-ELECTRON ENERGY =  -8.5493
I ) 014240  0,4153  0.4240  0.4149  0.3972  0.4149
CHARGE DENSITIES BOND-ORDER MATRIX
11952 01,9230 L0045  0.9499  1.0045  0.9230 .
1 9 1 : 1{1990  0.6583  0.8445 -0.0435  0.6583  1.1990 -0.3205 -0.0182
FREE VALENCES )
_ 016497  0.8742 -0.0182 -0.3292 <-0.0182  0.6674  1.0091  0.6497
014247  0,4090  0.3977  0.4022  0.3977  0.4090 _
~0:0182  -0,3205  0.1167  0.6674  0.8742
BORD~ORDER MATRIX
1:1952  0,6537  0.9230 -0.0225  0.6694  1.0045 -0.3261  0.0591 MODIFICATIONS
0:6649  0.9499 -0.0225 -0.3306  0.0045  0.6649  1.0045  0.6537 ! 1 z0.500
-0:0770  -0,3306  0.0591  0.6694  0.9230 ENERGY LEVELS
J= 1 2 3 4 5 6
-2!1861  -1.3508 ~1.0000  0.6861  1.0000  1.8508

MOBIFICATIONS
1 1 =0.500
2 2 =0.500



HUCKEL ORBITALS

J= 1
0,454401
0.383092
0.383092
0.454401
0.383092
0.383092

E R TR S

2
~-0.605913
~0.257750

0,257750
0.605913
0.257750
~0.257750

TOTAL PI-ELECTRON ENERGY
CHARGE DENSITIES

1.1472 0.9264
FREE VALENCES
0:4110 0.4108

BOND-ORDER MATRIX

1:1472 0.6605
016605 1.1472
-0:0736  -0,3394
MODIFICATIONS
1 1 -0.500
3 3 -0.500
5 5 -0.500
ENERGY LEVELS
gz 1 2
-2:2656 -1,2808
HUCKEL ORBITALS
J= 1 2
1 0,432827 0.005262
2 0.382092 -0.433093
3 0.432827 -0.559958
4 0.382092 -0.004109
5 0,432827 0.554696
6 0.382092 0,437202

TOTAL PI~ELECTRON ENERGY

CHARGE DENSITIES

1:2030
FREE VALENCES

0:4237

0.7970

0.4237

BOND-ORDER MATRIX

1.2030
0:6541

0:0395
MOLECULE NO.

CHHEROOOHD
coaoore
cooero
cooro
cora

m coo
o

ENERGY 'LEVELS
J= 1

-2:1358

0.6541
0.7970

-0,3160
2

2
-1.,4142

3 4 5
-0.000000 -0.541774 -0.000000
-0.500000 0.321310 -0.500000
~0.500000 0.321310 0.500080
-0.000000 ~0.541774 -0.000000

0.500000 0.321310 -0.500000
0.500000 0.321310 0.500000
= -9.0738

0.9264 1.1472 0.9264
n.4108 0.4110 0.4108
0.9264 0.0358 6.6606
0.0358 ~0.3394 ~0.0736
0.0358 0.6606 0.9264

3 4 5
-1.2808 0.7808 0.7808

.3 4 5
=-0.643546 0.467923 -0.183130
-0.254791 -0.502777 -0.401738
0.317215 -0.075366 0.496798
0.502465 0.599304 ~0.234549
0.326330 ~-0.392557 ~0.313668
~0.247674 ~0.096527 0.636287

= =-9.6542

1.2030 0.7970 1.203¢
0.4237 0.4237 0.4237
0.7970 -0.0395 0.6541
-0.0395 -0.3160 -0.03%95
0.0395 0.6541 0.7970

3 4 5
-1.0000 -0.6622 0.6622

6
-0.364513
0.428445
-0.428445
0.364513
-0.428445
0.428445

0.9264

0.4108

0.9264
0.6605

6
1.7656

6
~0.382092
0.,432827
-0.382092
0.432827

~0.382092
0.432827

6.7970

0.4237

1.203¢6

0.6541

6

1.00060

-0.3213

0.9264

-8.3160
1.2030

7

1.4142

0.0358
0.6605

0.0395

0.6541

8

2.1358

HUCKEL ORBITALS

5
0.334227
-0.307706
~0.130478
0.394103
-0.130478
-0.307706
0.394103
-0.595183

6
~0.000000
-0.500000

0.500000
0.000000
-3.500000
0.500000
0.000000
~-0.000000

.

J= 1 2 3 4
1 0,513120 -0.353553 -0.000000 -0.334227
2 0,394103 0.000000 -0.500000 -0.307706
3 0.328596 0,353553 -0.500000 0.130478
4 0,307706 0.500000 -0.000000 0.394103
5 0.328596 0.353553 0.500000 0.130478
6 0.394103 0.000000 0.500000 -0.307706
7 0.367706 -0.500000 -0.000000 0.394103
8 0.144072 -0,.353553 0.000000 0.595183
TOTAL PI-ELECTRON ENERGY = ~-10.4243
CHARGE DENSITIES
1:0000 1.0000 1.0000 1.0000
FREE VALENCES
0:1058 0.4432 0.3947 0.4148
BOND-ORDER MATRIX
1:0000 0.6101 1.0000 0.0000
0:6586 1,0000 0.0000 =-0.3213
0:0000 -0,3213 -0.0000 0.6787
0:0000  -0,0485 0.0000 1.0000
-0:0000 =-0,2527 0.9113 10000
MODIFICATIONS
8 8 0.500
7 7 0.100
8 7 -2,920
7 1 -0,834
ENERGY LEVELS
J= 1 2 3 4
-2.8208 -1,9363 -1.0000 -0,9524
HUCKEL ORBITALS
J= 1 2 3 4
t 0,296875 0.313683 -0,000000 -0.557649
2 0.126475 0.378234 =0.500000 -0.305788
3 0.059889 0.418686 =0.500000 0.266432
4 0,042462 0,432463 0.000000 0.559524
5 0,059889 0.418686 0.500000 0.266432
6 0,126475 0,378234 0.500000 -0.305788
7 0,700824 -0.178762 0.000000 0.096521
8 0.616232 -0,214254 0.000000 0.194059
TOTAL PI-ELECTRON ENERGY = ~-13.4189
CHARGE DENSITIES
0:9950 1,0051 0.9997 1.0038
FREE VALENCES -
0:2288 0.4096 0.3977 0.4013
BOND-ORDER MATRIX
0:9950 0.6534 1.0051 0.0011
0:6654 1.0038 0.0011  -0.3311
0:0051 ~0,3311  ~-0.0043 0.6689
0:0129  -0.0143 -0.0170 1.0649
-0:0022 -0,1249 0.9778 0.9266
END
S8END;
TIME = 0001 34

1.0000

0.3947

0.6787
-0.0000
1.6000
0.0000

5
0.9861

5
-0.567200
0.291506
.0.279742
-0.567364
0.279742
0.291506

-0.028405
0.170621

0.9997

0.3977

0.6689
=0.0003
1.0051

-0.0150

1.0000

0.4432

1.0000
0.6586
0.4059
-0.2527

6
1.0000

]
0.000000
~0.500000
0.500000
-0.000000
-0.500000
0.500000

=0.000000
-0.0000600

1.0051

0.4096

0.9997
0.6654
0.1963
~0.1249

7
-0.353553
~0.000000

0.35355%
-0.500000
0.353553
~0.000000
0.500000
~0.353553

1.0000

G.4148

-0.3012
1.0000
0.0000

~0.0000

1.9728

7
0.369068
~0.396621
06.413781
-0.419486
0.413781
-0.396821
0.078592
~0.155819

1.0649

0.557¢9

-0.3275
0.9997
-0.0170

-0.0022

8
~0.513120
0.394103
=-0.328596
0.307706
~0.328596
0.394103
0.307706
-0.144072

1.0000
0.8207

-0.0000
0.6101
-0.0485
0.2042

-0.211112
0.070667
~0.025663
0.015319
-0.025663
0.070667
0.678668
=0.695200

0.9266
0.7542

~0.0043
0.6534
-0.0143

0.0842
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2.6 PROBLEMS
1. Construct a NUCK matrix for naphthalene

10 1
9 6 2

8 > 3
7 a

by bordering that given in Section 2.5.A for benzene.

Apply in turn the following modifications

(i) 0001 NMOD
0101 — 0500 L3, X
(ii) 0001 NMOD

0202 ~ 0-500 LJ, X
to compute solutions for quinolene and isoquinolene. Note the corres-
ponding changes in charge densities, bond orders, free valences and energy
levels.

2. Border the NUCK matrix for naphthalene to give that for anthracene
and apply similar modifications at symmetrically distinct atoms.

3. Repeat the same procedure in constructing data for phenanthrene
and its various N derivatives.

4. Compute Hiickel solutions for linear polyenes C,H,., taking
n=24,6,8,10; observe bond order, free valence and energy level
changes in the series.

5. Compute Hiickel solutions for the corresponding cyclic polyenes.

6. Construct a NUCK matrix for azulene

a
2 3 5

10987

and introduce modifications at various peripheral atoms to represent N
substitution. Note that the charge densities in the parent hydrocarbon are
not unity.
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7. Construct a NUCK matrix for the benzyl framework.

2 3
1 Y7
6 5
Note that the following two specifications for N, M
(i) 007004 N, M (8 = electrons)
(>ii) 007003 N, M (6 = electrons)

compute m-electron configurations for (i) the anion and (ii) the cation.
How can the configuration for the radical be determined ?
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Equations

The methods discussed in the previous chapter determine solutions of the
secular equations for any conjugated molecule described by an appropriate
set of «, B values. Hiickel theory has, however, progressed beyond this
stage, notably by the use of perturbation methods, which provide practical
advantages in obtaining approximate solutions, and in comparative
studies of physical and chemical properties of conjugated molecules.

A typical application is the derivation of approximate solutions for
conjugated molecules in which the secular equations differ from those of
a parent hydrocarbon in particular coulomb or resonance integrals. The
formal representation of pyridine, for example, may differ from that of
benzene in the coulomb integral representing the nitrogen atom, which,
according to (2-44, 45) may be written in the form

ay = « + doty
with
day = hyf

Since B is negative, the dimensionless, adjustable parameter ky is positive,
ensuring that the nitrogen atom is more electronegative than the carbon
atom it replaces. A solution for pyridine can be expressed in terms of
finite changes A4 from the known solution of the parent hydrocarbon

0A 924"
=|(— — ) a2 - 3-1
M = ()t 3{55) ot + (D)
where 4 may represent &, the m-electron energy, g,, a charge density,
Pst, @ bond order, or any other quantity relating to the description of the
solution. The leading partial derivatives in the expansion (3-1) can be
40
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determined once and for all, from the solution for the parent hydrocarbon,
and thereafter, approximate solutions for pyridine can be found from the
change 04 obtained by truncating the expression (3-1) for the finite change
AA after the first or second term; clearly any number of such ‘solutions’
are obtained by substituting directly prescribed values of Soy.

The expansion form (3-1) is more generally written in terms of a change
da, (=0ay) in coulomb integral at the uth atom position in a conjugated
system, and typical examples of truncated formulae are

0& = q,0a, + m, 00> (3-2)

5qr = ﬂr,ué‘xu . (3-3)

6pst = ”st.uaau (3'4)

where the symbol 84 is reserved for approximate values of the finite
change AA.

The first term in (3-2) is obtained from equation (2-42), where
_ ( o8 )
qu = aau (3'5)

and the terms =, , and =,; , that are known as atom-atom and bond-atom
polarizabilities respectively, are, specifically, the first-order derivatives

ma = () (3-6)
T = (22) 1)

which are independent of du, and can be calculated from a known solution
for the parent hydrocarbon.

The corresponding formulae for a change 88, in the resonance integral
referring to adjacent atoms u and v are

Puw = %(aaﬁ(i) (3-8)
Tty = (?;‘) (3-10)

where =, ,, and =, ,, are the atom-bond and bond-bond polarizabilities
respectively.!?
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This chapter is devoted to the analytical treatment of parameter varia-
tions in Hiickel equations, initially within the context of perturbation
theory. The objective is not to prepare for the computation of perturbation
coefficients; on the contrary, the availability of computer programs for
calculating ‘exact’* solutions of the Hiickel equation means that the
approximate solutions obtained by perturbation methods for w-electron
systems can largely be dispensed with. Instead, the aim is to present,
initially through known properties of polarizability coefficients, important
analytical relationships that largely condition the nature of solutions
obtained by the Hiickel method. Clearly, the computer programs can be
used without reference to these properties, and numerical results can,
correspondingly, be obtained for comparison with experimental observa-
tions. However, both Hiickel and SCF methods abound with analytical
relationships that should not be ignored, even in the context of numerical
calculations which can be carried out rapidly and with negligible personal
effort, on a computer. At the lowest level, recognition of these properties
will assist in the economic planning of computer runs and, thereby, con-
serve valuable computer time. More important still, they will provide the
investigator with an analytical framework through which valid solutions
can be chosen judiciously, and possibly with evidence of the extent to
which correlations with experimental results may be parameter-indepen-
dent.

Most of the properties discussed in this chapter can be verified numeric-
ally by appropriate applications of the computer programs described
previously, as indicated in the problems presented at the end of this
chapter. Calculations of this kind provide elementary demonstrations of
the value of computer methods for studying analytical relationships, and
large sections of later chapters are similarly concerned to illustrate the
use of computers for investigating the properties of theoretical models.
Such applications are generally more interesting, instructive, and reward-
ing than those aimed solely at obtaining numerical correlations between
theory and experiment.

The results obtained by the different analytical methods described in
this chapter are quoted briefly, and generally without proofs; for this

* The term ‘exact’ implies, in this context, a value of A A obtained by direct solution of
the secular equations; it is to be distinguished from approximate values d4 obtained
from truncated forms, e.g. (3-2 to 4) of equation (3-1) by perturbation methods. Direct
solutions do not give ‘exact’ values in the full sense of the term, since the accuracy is
liln;nited by numerical procedures, by arithmetical rounding, and by the word length of
the machine.
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reason, it may be worth identifying the successive stages in the develop-
ment of the subject matter. Section 3-1 states properties of solutions for
AHs derived from the ‘pairing’ theorem. Section 3-2 presents expressions
for various polarizability coefficients, which, as indicated above, are first
and second-order terms in the expansion formula (3-1) for AA4. These
coefficients can be expressed either in a conventional form of perturbation
theory as certain sums taken over orbitals and energy levels of the unper-
turbed system, or in an integral form introduced by Coulson and Longuet-
Higgins. The integral forms are particularly valuable from an analytical
point of view, because they may be developed to include every term of the
infinite expansion (3-1), from which may be deduced the analytical proper-
ties of AA4. No attempt is made within the text to explain the derivation of
high-order terms, and the technique is presented in outline only for the
sake of completeness, and to preserve continuity of the argument, since
the principles involved in extending the treatment to the infinite expansion
are not too difficult to follow. One further reason for including the integral
form here is that similar ideas are later used in Chapter 5 in establishing
relationships between reactivity indices. However, in both areas of applica-
tion, the essential features illustrating the analytical properties under con-
sideration can be established numerically, and rapidly by computer
calculations, without reference to the integral forms. The reader may,
therefore, be inclined to omit the section dealing with the integral formu-
lation at a first reading, and to reconsider these theoretical matters retro-
spectively in the light of experience gained by examining the analytical
properties numerically. An experimental approach of this kind is advo-
cated throughout the text, which frequently seeks to show how computa-
tional methods may be used to illustrate analytical properties of models
and methods. Section 3.3 finally demonstrates that all the properties may
be deduced directly from the secular equations, firstly in terms of the
‘pairing’ theorem, and secondly in terms of a generalized pairing of
conjugate solutions, defined by related variations £ de,; formal proofs
are outlined, since they do not appear to have been given in the
literature.

It is intended that this chapter should convey the idea that systematically
planned sets of calculations may be used, not merely to illustrate, but
sometimes to detect, properties of a theoretical method. The fact that
many properties of the secular equations of Hiickel theory have already
been discovered does not diminish the argument. In the case of the SCF
method for conjugated molecules (see Chapter 6) the non-linearity of the
equations makes the derivation and detection of analytical properties
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rather more difficult, and computer calculations may provide the simplest
and most direct method for finding them.

3.1 PROPERTIES OF THE SECULAR EQUATIONS

A set of secular equations (2-18) with dimensions N prescribed, can be
regarded as defined in a parameter space of «, §§ values, so that a character-
istic polynomial, its roots, eigenvectors and all derived quantities are
completely specified by prescribing a particular set of [«, §] values defining
a unique point in the parameter space. The dimensions of the equations
and of the determinant (2-19) are, of course, fixed by the number of atomic
orbitals participating in conjugation, that is, by the value of N in the
expansions (2-6 or 13) for y. It is possible, therefore, to define the kth
partial derivative with respect to any «, or f,, at a point P in the space
specified by a prescribed set [«, 8]; of parameter values, and to write
_ (4 PAN say o L(%A) sl 5
Ad = (a);‘}x + ‘}('a}'e)fx b ( axk)Pax +ooe (311)
where x = «, or By, and A = E, €, ¢y, ¢, Pst» Fr, and so on. The first
and second derivatives of charge densities ¢, and bond orders p,; are the
polarizability coefficients defined by Coulson and Longuet-Higgins,*?
which are to be interpreted simply as slopes and curvatures contributing
to a finite change AA.

It turns out that a prescribed set of «, § values in which all coulomb
integrals « are equal, and all resonance integrals § are the same, and for
which the topological arrangement of conjugated atoms is ‘alternant’,
gives rise to solutions that possess unique analytical properties. An alter-
nant molecule is, by definition, one in which the starring of alternate
neighbours cannot give rise to adjacent starred atoms; thus naphthalene
is alternant and azulene is non-alternant.

% *

% *
*
%k % * ) %

naphthaiene azulene
FIGURE 3-1

A conjugated hydrocarbon that is alternant meets the specified condi-
tions, since, in the simplest approximation, the coulomb integrals for all
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carbon atoms are the same, and resonance integrals for all carbon-carbon
bonds are equal. The unique properties of alternant hydrocarbons (AH)
are well known, and can be briefly summarized as follows

(i) Bonding and antibonding energy levels are ‘paired’, with levels €
and ey_;.; lying symmetrically above and below the zero a of energy
respectively.

(i) If the orbital y, corresponding to e, is written in the form

Yy = jcr r + zcrj¢r (3-12)

where the first sum 3* is taken over conjugated atoms that are ‘starred’,
and the second 3 over those that are not starred, then

Yy = o — ey, (3-13)

is the MO corresponding to ;. (' = N — j + 1).
(iii) When the number of conjugated atoms is odd, a non-bonding MO
(NBMO) of energy expmo = a = 0 is obtained, and

Yi=nBMo = DDy, (3-14)

since the coefficients of unstarred atoms are zero, provided the starring
process is applied so that the number of starred atoms exceeds the un-
starred by one.
) (iv} When the MOs are filled, in ascending order, by the n 7 electrons
in spin-coupled pairs, the w-electron density ¢, at each atom in the neutral
molecule is unity.

Thgse are well-known properties, and can readily be confirmed by
applying the computer programs described in Chapter 2 to any arbitrarily
chosen AH.

3.2 PROPERTIES OF POLARIZABILITY COEFFICIENTS

In considering the analytical properties of polarizability coefficients for
AH, the expressions used in practice will be quoted without proof, the
refider being referred to the original papers of Coulson and Longuet-
Higgins.-2 The expressions were originally developed in two forms; firstly
by conventional perturbation methods, in terms of the energy levels e,
and MOs g, of the parent hydrocarbon, and, secondly, as contour inte-
grals in which the integrands are functions of the secular determinant
and its minors.
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In the perturbation method, wavefunctions for the modified 7-electron
system are expressed in the form of expansions taken over the MOs of
the (unperturbed) alternant parent hydrocarbon. As a result, polarizability
coefficients are obtained in terms of the coefficients c,; of the atomic orbi-
tals ¢, in the MOs y; of the parent AH. Typical first-order coefficients,
for example, take the form
i CriCujCriCuk (3_1 5)

Tyu = 4
j=1 k=M+1 € — €

S f % CusCur(CesCric + CisCoi) (3-16)
j=1 k=M+1 €; — €
M

Moo =23 (CssCtic + C1s€siHCusCore + CurCos) G-17)
j=1 k=M+1 € ™ €

where M = N/2 in an AH containing an even number N of conjugated
atoms. Using the relationships between paired orbitals y; and y; (j' =
N —j + 1) in AH, it is not difficult to show that =, = 0.2 The second-
order terms become increasingly complicated, and correct results are
obtained only when normalization terms are incorporated.® First-order
and the more cumbersome second-order polarizability coefficients are
readily programmed, but the method appears to hold no prospect either
for computing or for studying the properties of higher order terms.

Turning now to the contour-integration method, the following formulae
for the charge density g, and the bond order p,; represent typical starting
points of the method*

Integration is along the y axis in the complex plane, from —oo to + o0
and (iy) is the argument in all secular determinants and minors. A,y is
the determinant obtained by crossing out the ath row and bth column of
A in the expression (2-19) and A’ is the derivative with respect to the

argument (iy).

Parametric Properties of Hiickel Equations 47

The polarizability coefficients can now be derived! by differentiation
of the forms (3-18) and (3-19) to give first-order terms

a0 _ 1AL 4

T E™ =i _A ] Ly (3-20)
apst — 1 At.uAt.u

Tt o, —;f[ A7 ]dy 3-21)

Similar expressions can be obtained when differentiations are made with
respect to f,,, but these will not be considered here.

Interesting analytical properties arise when the integrands refer to
minors for AH. Consider an even AH, with N = 2M conjugated atoms;
A(e) is then a polynomial of order N, with even powers of € only, h;
\yhich successive terms alternate in sign, reflecting the symmetric disposi-
thn of roots about the origin, « = 0, already described. When the appro-
priate minors have been obtained, it is found that the integrands obtained
from the substitution € — (iy) are either real functions of y, or imaginary
functions that are odd in (iy) and therefore integrate to zero. The theory
can, in fact, be immediately developed further to apply these properties
to individual terms in the finite change:

© 1 (o4
Ad = ,ZIE (375)(5«“)'6 (3-22)

Successive differentiation under the integral sign yields the following
formulae*

se= S0 [[(5) (52) oo 62

k=1

aro= 300 [[(F52) (%) o ]enr G20

k=1

in which atom-atom and bond-atom polarizabilities are the leading
coefficients corresponding to k = 1. The properties of the minors of the
§ecular qeteminant for AH may now be used to show that alternate
Integrals in (3-23) and (3-24) are zero,* so that the integrands of succes-
sive non-zero terms in each expansion differ by the multiplier
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The zero terms in (3-23) correspond to even powers, and in (3-24) to odd
powers of da, so that Ag, is an odd function, and Ap,, an even function of
da,, which shows why the first and second-order terms of perturbation

theory
Opst 0?
ma=(32) wa (5E)
are both zero.

It is interesting to note that, having established these properties, it is
then possible to sum the expansions (3-23) and (3-24) in the closed forms
given by Fukui et al.®

6“1& Aru 2 1
2= 2 [ () |rramal® N
— Sty As.uAt.u »*G,
so= 2[5 ) 69
where
_ Au.u(ly) (3-28)

T @AW)
is of the form
polynomial in y? of order (M — 1)
polynomial in y? of order M

G, is related to the multiplier (3-25) and correspondence with equations
(3-23) and (3-24) is easily established by binomial expansion. The ana-
logous formula for the energy is

AS = bay — 1 §In[l + (bo,)?°G2] dy (3-29)
m

Coulson and Jacobs® have shown how integrals in equations (3-20) and
(3-21) may be evaluated numerically using standard quadrature formulae.
The polynomial forms A, ,(¢) must, in general, be derived algebraically
preceding integration, and the method is, therefore, not ideally suited to
automatic computation. Nevertheless, coefficients of any order in (3-23)
and (3-24) and finite changes A4 for prescribed values of da, in (3-26)
and (3-27) can, in principle, be evaluated numerically though it is always
much simpler on a computer to calculate A4 directly from solution of
the appropriate secular equations. )
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3.3 PAIRING PROPERTIES OF CONJUGATE SOLUTIONS

T.he analytical relationships quoted above—and others—which have been
discussed in outline, and without proofs, can in fact be deduced directly
from the secular equations; proofs appear to have been given only in
terms of corresponding theorems for the m-electron SCF equations,”
which are more complicated than the Hiickel secular equations. The proofs
which are outlined below, show that the pairing of levels and orbitals
for AH is a particular case of a more general situation, involving a pairing
between ‘conjugate’ solutions, which in the simplest case are obtained
from changes +da, in the coulomb integral at atom u. The following
relations hold between two ‘conjugate’ solutions.
(i) Bonding and antibonding levels are ‘paired’ so that

& (—dx,) = —en_ 41 (+60,) (3-30)

(i) If the orbital v, corresponding to ¢, is written in the form

L7} (_6au) = icrﬁﬁr + Zcrj¢r (3-31)

where 3* and 3’ denote sums over starred and unstarred atoms respec-
tively, then

Yr-se1 (+60) = Seo b, — e, (3-32)

) The relations between the levels ¢, (~—d«,) and ¢, (+06a,) where
J=N-—j+1 may be recognized in the energy-level diagram of
Figure 3-2, which also includes the levels of the AH (for which da, = 0),

that are symmetric about the chosen origin « = 0.

The. relations (i) and (i) can be obtained directly from the secular
equations

—ec, + P, =0 (r % u; r, s neighbours; r, s = 1,2, ... N)
(—day — €)c, + Xfc, = 0 (u, s neighbours) (3-33)
Let ¢, be an eigenvalue with y, = (cy,, €y, . . . cy;) the correspondmg
eigenvector. Now change the sign of da,, and change the signs of coeffi-

cients in y, of the unstarred set to give a vector ;.. It is easy to see on
inspection that the secular equations are satisfied on substituting e,. and
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€ Sa =0 €,/

/

modified energy levels: N=10
FiGURE 3-2

y,. since, in any single equation, the neighbours r and s bcl(?ng to opposite
sets, and the equation changes sign in every term or remains unchanged,
so establishing the results (i) and (ii). ‘ ‘

The main consequences of the ‘pairing’ properties are de'nved most
simply from the orthogonality properties of the matrix C which collects
the N MOs o, (j=1,2,...N) as column vectors, each element ¢,

being a coefficient in the atomic orbital basis ¢,
vy=Scp, (=12...N)
T
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The orthogonality relationships

cc=1 (3-34)

can be written in terms of orthogonality between columns

N
Zlc/rcfk = 8y (3-35)
and between rows
N ’
D, CoCje = Oyt (3-36)
j=1
where 6, =1 A=1v)
=0 (A #£9)

Equations (3-25) represents the orthonormality of MOs, the sum being
taken over all atoms r, and (3-26) relates to the bond order matrix where
the sum refers to a pair of atoms, s and ¢, and is taken over all orbitals.
The second sum can be separated into two parts

M N
2 csjcjlt + 2 Caic;: = 0y (3-37)
J=1 f=M+1

where the first sum is taken over the M = N/2 occupied orbitals, and the
second over the unoccupied, or virtual orbitals. Taking the case s = ¢
first, equation (3-37) becomes

.+ 19 =1 (3-38)

where g, is the charge density defined (2-36) at atom s and g% is a similar
sum taken over antibonding, or virtual, orbitals. For AHs, these sums
contain squares of coefficients that are equal but may be opposite in sign,
and therefore

qs = q: =1 (3-39)

which proves that the charge density is unity for all atoms in an AH.
Applying a similar argument to the case s = ¢ gives

1+ 105 =0 (3-40)
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where p,, is the bond order between any pair of atoms s and ¢ and p;, is
a corresponding sum taken over the virtual orbitals. In AHs the products
csi¢;, for atoms belonging to the starred set carry the same sign in both
sums, and equation (3-40) can be satisfied only by the result

P =po=0 (s, t same set) (3-41)
However, when s and ¢ belong one to each set, then
Pt = =D& (s, ¢ opposite sets) (3-42)

satisfies the relationship. The results (3-39, 41, 42) for AHs represent
generalizations applicable to the bond-order matrix, of the property that
the charge density at all atoms is unity.

The same orthogonality relations (3-35) and (3-36) can be used to
establish relations between ‘conjugate’ solutions for perturbed systems
(8ot  0). The proofs are straightforward, depending upon the relations
between the antibonding, or unoccupied, levels and orbitals of one solu-
tion, and the bonding, or occupied, levels and orbitals of its conjugate.
The orthogonality relation (3-36) applied to the case s = ¢ gives

1, (=0, + 3q; (—0x) =1
or
H1 + Ag, (—dx)] + 31 + Ag; (—da)] =1

and, therefore,
Alh (_6“u) + Aq: (—6“14) =0

But since squared terms only are involved in defining gs,
g, (—du,) = ¢, (+0e)
by equations (3-31) and (3-32), and, therefore,
Ag; (—da,) = Ag, (+0e)

so that
Aql ('-6au) = ""Aqs (+6°‘u) (3'43)

and, therefore, Ag, is an odd function of da,.
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Applying the orthogonality relation (3-36) to the case s 7 ¢ gives

%pst (—a“u) + %P,”, ("‘(Silu) =0

Now the coefficients of antibonding orbitals v, (—da,) differ from the
bonding orbitals v, (+da,) where j' = N — j + 1 in the signs of coeffi-
cients of opposite sets, so that

pl (—da,) = +ps (+0a,) (s, t same set)
and
pl (—da,) = —ps (+6a,) (s, t opposite set)
and, therefore, finally
Pot (—0a,) = =pg (+00,) (s, t same set) (3-44)
= +p,; (+6,) (s, t Opposite sets) (3-45)

Since for the parent AH (equation 3-41) p,, is zero for s and ¢ in the same
set, and the value of p,, for s and ¢ in opposite sets is the same for perturba-
tions =+ 0a,, these last two equations can be written in the alternative form

Apy (—8%,) = —Apy (+80) (s, t same set) (3-46)
= +Apy (46a,) (s, t opposite sets)  (3-47)

The last result contains the particular case of the bond order referring to
adjacent pairs of conjugated atoms, proving that the change in this bond
order is an even function of da,, which in turn contains the first-order
result 7, = 0. Indeed all the properties of first and second-order theory
are included in the theory of finite changes A4 which, based upon the
secular equations themselves, goes much further by presenting simul-
taneously the properties of all elements of the bond-order matrix, and of
the energy levels and orbitals. Moreover these ideas can be extended to
include different modifications d«, at different atoms #, and the existence
of ‘conjugate’ solutions in such cases can be established.

Perhaps the simplest way of recognizing these properties in practice is
to obtain computer solutions for paired changes +40d«, applied to atom
u of some parent AH and to compare numerical values of the same bond
orders and charge densities in both calculations. It should then be possible
to recognize immediately equal and opposite changes Ag, at all atoms s
given by equation (3-43) and the bond-order relationships (3-46) and (3-47)
for all pairs of atoms s and ¢ and not merely neighbours. Having witnessed
these correspondences, details of the essential features of the proofs given
in this section should be clarified.
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The following data set provides an input to the Hiickel program of
Chapter 2 that gives two pairs of conjugate solutions obtained with the
changes da, = +1-08, +208 applied at position ¥ =1 in the given
naphthalene framework; the solution for the parent hydrocarbon is
obtained from the first calculation, NMOD = 0.

0001 NMOLS

010005 N, M
1 0 8 1
2 10 7 2 2
3010
4 0010 6 © 3
500000 S 4
6 000010
7 0000010
8 00000010
9 100000010
10 0001100010

0005 NDER

0000 NMOD

0001 NMOD

0101 — 1-000

0001 NMOD

0101 + 1-000

0001 NMOD

0101 — 2:000

0001 NMOD

0101 + 2-000

FIGURE 3-3

3.4 COMPUTER PROGRAMS

The subroutine ATAT computes atom-atom polarizabilities from the
perturbation formula
M

Ty = 42

j=1 k=M+1 €; — €

where N is the number of MO levels and orbitals, and M is the number of
doubly occupied orbitals of the ground-state configuration. The values are

CrsCusCricCut (-15)
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calculated in semimatrix form and stored in full matrix form in the two-
dimensional array PIRU with subscripts IR, IU corresponding to r and u
respectively. The subroutine contains its own output statements, which
print the polarizabilities =, , between each atom u and all other atoms r.
Considerable duplication occurs in molecules with symmetry, both in
the calculations and in the printed output. In naphthalene, for example,
there are only three symmetrically distinct atoms, namely 1, 2 and 9, and
the complete set of =, , could be computed by selecting this subset for
u (or IU) and running r (or IR) through the complete set r = 1,2...10.
This procedure implies either that parts of ATAT should be rewritten
for each new parent hydrocarbon, or that an additional array containing
selected values of u should be introduced as part of the data, and accessed
within the subroutine.

A. Computed results

The polarizabilities 7, ,, for naphthalene® as obtained from the subroutine
ATAT are presented in Table 3.1. It will be observed that the signs alter-
nate in passing from u through successive atoms r, and that, for compar-
able distances of separation, polarizabilities referring to atoms r and u of
opposite sets are appreciably greater than those referring to the same set.

MOLECULE NO. 1

oroOCcOoOOOR D
covocoocoms
OO0 ORO
POOOoOOoO0OO
HoO Do

[=R=N~—-N i~}

corRro

[=R =]

0
10
ATOM-ATOM POLARIZABILITIES

ATOM b4
-0,4428 0.2134 =-0,0177 0.1394 0.0232 -0.0064 0.0323 ~-0.0267 0.0889 -0.0036

ATOM .2
0,2134 «0.4049 10,1096 -0.0177 -0.0064 0.0326 -0.000%1 0.0323 -0.0073 0.0486

ATOM 3
=0.0177 0.1096 -0,4049 0.2134 0.0323 -0.0001 0.0326 ~0.0064 0.0486 -0.0073

ATOM 4 .
0,1394 -0.0177 0.2134 -0.4428 -0.0267 0.0323 -0.0064 0.0232 ~-0.0036 0.0889
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ATOM 5
0.6232 -0.0064 0,0323 -0.0267 -0.4428 0.2134 -0.0177 0.1394 -0.0036 0.0889

ATOM 6
~0,0064 0.0326 -0,0001 0.0323 0.2134 -0.4049 0.1096 -0.0177 0.0486 -0,0073

ATOM 7
0,0323 -0.0001 00,0326 -0.0064 -0.0177 0.1096 ~0.4049 0.2134 -0.0073 0.0486

ATOM 8
-0,0267 0.0323 -0,0064 0.0232 0.1394 -0.0177 0.2134 -0.4428 0.0889 -0.0036

ATOM 9
0.0889 -0.0073 0,0486 -0.0036 -0.0036 0.0486 -0.0073 0.0889 -0.3298 0.0765

ATOM 10
-0,0036 0.0486 =-0,0073 0.0889 0.0889 -0.0073 0.0486 -0.0036 0.0765 -0.3298

END

B. Listings

. SUBROUTINE ATAT(N,M,ADIAG,C)

DIMENSTON ADIAG(30),C(30,30),PIRU(30,30)
KLOW=M+1
DO 12 IuU=1,N
DO 12 IR=1,1U
$=0
DO 10 J=1,M
RJUJ=C(IR,J)#C(IU,J)
DO 10 K=KLOW.N
TERM=C(IR,K)*C(IU,K)/(ADIAG(J)-ADIAG(K))

10 S=S+RJUJ=TERM
PIRUCIR, TU)=5=4,

12 PIRU(IU,IR)=S#4,
WRITE(2,100)

100 FORMAT(//27H ATOM-ATOM POLARIZABILITIES)
DO 14 Jy=1,N
WRITE(2,101)IU

101 FORMAT(/6H ATOM ,14)
WRITE(2,102)(PIRUCIR, U}, IR=1,N)

102 FORMAT(10F8.,4)

14 CONTINUE
RETURN
END

3.5 PROBLEMS

1. Determine atom-atom polarizabilities for naphthalene using the
NUCK matrix of Figure 3-3. Observe how the signs of =, , alternate in
passing from u through successive atoms r. Note that for comparable
distances of separation the positive values, corresponding to % and r in
opposite sets, exceed in absolute magnitude those appertaining to u and
r in the same set. These properties can be associated through the relation-
ship

6qr = 777.146“14
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with the ‘law of alternating polarity’, and, in the theory of chemical
reactivity with ortho-para and meta-directing properties.

2. Apply the modifications d«x, = +40-1258 to the naphthalene molecule
with « in turn equal to 1, 2 and 9.

Establish that the polarizabilities =, , are obtained to about four signifi-
cant figures from the approximation formula

Ty =2 Aqr(aau)/ému

by comparing the results so obtained with those determined in problem 1.

Repeat the calculations with larger values of de,, say +0-250, and
establish that the accuracy in computing =, , falls off.

Note that

Tru (+ 6“14) = Ty (-6au)

for all r, u.

3. Obtain Hiickel solutions for the data set given in Figure 3-3, and

(i) Confirm the ‘pairing’ properties listed in Section 3-1 for the AH
obtained from the setting NMOD = 0.

(ii) Confirm the ‘pairing’ properties of conjugate solutions for related
modifications & d«, listed in Section 3-3, and verify that

Aqs (—ba,) = '—A% (+6°‘u)
Apy (—0a,) = —Apy (+0a,) (s, t same set)
+Apg; (+6a,) (s, t opposite set)

for all atoms s and bonds s—¢.
4. Compute charge densities, free valences, bond orders and atom

atom polarizabilities for azulene

4
2 3 5

10 9 8 7

Verify that the =, , do not alternate in sign in passing from u through
successive atoms 7.

5. Apply the modifications da, = +, 428 to a peripheral atom u of
azulene, analogous to those applied to naphthalene in Figure 3-3. Compare
the results obtained with those found fot naphthalene, and verify that the
properties characterizing ‘conjugate’ solutions are not found for azulene.
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Applications of Hiickel Theory

Many aspects of experimental work on conjugated molecules can be inter-
preted by MO theory in its simplest, Hiickel, form. Clearly complete
agreement with experiment cannot be expected since the theory is based
upon a simple model of the w-electron system alone, but many different
types of applications demonstrate the effectiveness of the model, and
frequently illuminate the nature and origin of physical and chemical
properties. Typical examples have been widely described in scientific
journals and textbooks. Streitwieser® has, for instance, provided an exten-
sive and valuable review which discusses, in some detail, applications to
the interpretation of dipole moments, bond lengths, nuclear quadrupole
and electron-spin resonance spectra, oxidation-reduction and ionization
potentials, chemical reactivity and electronic UV spectra. In most of
these applications the objective is to find correlations between quantities
defined in terms of a prescribed theoretical model and experimental
results, and the computer programs described earlier can, in general, be
used either directly, or with comparatively simple extensions, to calculate
the relevant quantities.

A few trial runs will develop familiarity with the method of specifying
conjugated molecules by means of the incidence matrix NUCK and the
modification techniques, and, thereafter, no problems arise in the practical
use of the programs. Some experimentation with ‘standard’ calculations
in which groups —NH,, —OH, —NO,, —COOH, —(l etc., are attached
to typical AHs, benzene, naphthalene, anthracene, can be recommended,
since they provide useful evidence of times of computation for planning
work systematically, and material for studying features characterizing
Hiickel solutions. It is important, of course, to recognize the appropriate
‘parent’ hydrocarbon which, when modified, yields the molecule whose

59
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OH C

o} C
N~

\c/

(a) (b)
FIGURE 4-1

solution is required, as illustrated in Figure 4-1 by the —COOH derivative

of naphthalene.
In calculations of this kind coulomb integrals for atoms X other than

carbon are expressed in the standard form
ax = o + hxf

and resonance integrals for bonds other than C-C, are written as
Px-v = kx-Yﬂ

where o and f§ are the carbon values. The parameters hy and kx_y are
introduced in the modification routine MODH as described earlier, and
appropriate values may be obtained from journals and books, including
Streitwieser’s carefully and extensively documented review,! which con-
tains the selected values given in Table 4-1.

Table 4-1
X N N N+ o} (o} o+ a
hx 05 15 2:0 10 2:0 2:5 2:0

X-Y C-N C-N N-O C-0 C=0 cC-da
kx-v 08 1-0 0-7 0-8 1-0 0-4

A considerable effort has already been devoted to the derivation of
appropriate parameters hy and kx_y for heteroatoms and associated
bonds by attaching various physical and conceptual notions to the inter-
pretation of coulomb and resonance integrals. In the context of computer
calculations, where results can be obtained rapidly, we prefer, in general,
to compute sets of solutions for ranges of parameter values, and to select
appropriate values retrospectively, by making comparisons between the
numerical results obtained and experimental observations. Computed
dipole moments, for example, restrict the ranges of plausible parameter
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values and can be used, in principle, for selection purposes, though com-
parisons with experimental results often raise problems (see Section 4-3).
This kind of exploratory approach means that it is unnecessary to give
interpretations to coulomb and resonance integrals which go beyond the
definitions (2-16) and (2-17), though it is useful, in practice, to visualize
these terms as being related in some way to electronegativities and inter-
actions between adjacent atoms respectively; ultimately some sort of
consistency amongst selected values must be found for the same atoms
and bonds in different molecular environments. In adopting this approach
we are not, thereby, rejecting the various interpretations that have, so far,
been advanced in attempts to give values to coulomb and resonance
integrals, but are simply shelving a lengthy discussion, comparable to that
given in Streitwieser’s excellent review,! in favour of parameter-scanning
techniques.

It follows from these last remarks, that, even in the simplest applications,
which aim to predict or explain experimental observations, computer
methods of calculation are frequently used to generate sets of solutions of
the Hiickel equations as relevant parameters are varied, and such investi-
gations usually develop into studies of the theoretical model itself in the
context of the given problem. Therefore, since application of the computer
programs to problems similar to those listed in the first paragraph of this
chapter is generally straightforward, and MO interpretations based on
computed results have been admirably described already,® the topics
discussed in the rest of this chapter are chosen to illustrate the use of
computers in studying properties of models and their bearing upon the
ultimate theoretical interpretation. The choices may, at first sight, appear
to be unrelated, and, from the point of view of the chemistry involved,
this is certainly the case. Within the same chapter, for example, we discuss
ideas relating to the localization of MOs (Section 4-2) and, elsewhere, the
nature of conjugation in phosphonitrilic chlorides and similar molecules
(Section 4-5). It is claimed that the former has some bearing upon the MO
interpretation of many physical and chemical properties of conjugated
molecules; and these ideas are, indeed, used in discussing d,—p,, conjuga-
tion in (PN);Cl,. Similar techniques are also used in Section 4-1 in examin-
ing the nature of mesomeric effects in conjugated molecules R-Y, where
R represents a parent hydrocarbon, and Y an attached group which
conjugates with R. Thus, the theme which connects the different sections
of this chapter is not, primarily, the physics and chemistry of the conju-
gated systems studied, but the design of experimental techniques for
investigating theoretical models by computer methods.



62 Computing Methods in Quantom Organic Chemistry
41 MESOMERIC EFFECTS IN CONJUGATED MOLECULES

Many substituent groups with m-type ¢(2p,) orbitals in the valence shell
conjugate with aromatic rings, and a valid formulation must include the
group orbitals explicitly in the linear combinations

v = D,

describing MOs. In consequence the dimensions of the secular equations
and the numbers of = electrons change from those appertaining to the
unsubstituted molecule, and new coulomb and resonance integrals for
atoms in the substituent group may also be introduced. If styrene (Figure
4-2a) is regarded as a derivative of benzene both the dimensions of the
secular equations and the number of 7 electrons changes from six to eight;
in contrast, the dimensions in aniline (Figure 4-2b) augment to seven,
and the number of = electrons to eight.

O~ O
\C \H

(a) {b)
FIGURE 4-2

Consider the data specification for aniline with an incidence matrix
NUCK describing the seven-membered bonding framework.

0001 NMOLS

007004 N, M
10 7
210 7%
3010 )
4 0010 NUCK (8011) 2
5 00010 s s
6 100010 i
7 1000000 |

0003 NDER

0000 NMOD

0001 NMOD

0707 — 0-500 LI X

0000 NMOD

0707 — 1-000 LJ,X
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Here, aniline is referred to the ‘benzyl’ skeleton, and the sequence of
modifications du; = 0, 0-58 and 1-08 generate firstly a solution for the
benzyl negative ion, followed by two solutions for aniline. The bond order
matrix is computed in subroutine PRS over the M = 4 lowest occupied
orbitals.

Results for planar 1-3-5 triaminobenzene can be obtained by bordering
the NUCK matrix for aniline, and adding modifications to appropriate
diagonal elements

0001 NMOLS
009006 N, M
7
X
NUCK 9X Xe
(aniline)
8 00100000
9 000010000
0003 NDER
0000 NMOD (hydrocarbon)
0003 NMOD
0707 — 0-500
0808 — 0-500
0909 — 0-500
etc.

In this case N = 9, and the number M = 6 of doubly occupied orbitals
accommodates the 12 7 electrons.

Some interesting density-distribution patterns emerge from the numeri-
cal results obtained for substituted molecules, which have some bearing
upon molecular properties. Consider the case of aniline, in which each
carbon atom of the ring contributes one electron, and the nitrogen atom
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two electrons to the m-electron system. The nitrogen atom donates =-
electron density to the ring, which appears as an increased charge density
at the ortho and para positions, though, oddly enough, the density at the
meta position is less than the value in benzene.

H H O\ /O 1.752
N7820 N7g23
938 984
1.088 .898
997 .999
1.072 .894
SaN=/3 SaN =f3; Sao=28
FIGURE 4-3

In the case of nitrobenzene charge is withdrawn from the ring, and
primarily from the ortho and para positions. In general, an alternating
effect is generated by mesomeric substitution in AH which is similar to
that produced by hetero atoms, as described in Chapter 3, in which atoms
which belong to the same set as those that lie ortho and para to the position
of substitution are influenced more than those of the opposite set. Com-
parable changes are also found in bond orders in both mesomeric substitu-
tion and hetero atom replacement. The prediction of properties which
depend upon charge densities and bond orders at positions in the ring
(other than the substituted position) often, therefore, follow similar
patterns in both cases.

Corresponding similarities cannot arise in the description of spectro-
scopic changes in the two cases. The effect of hetero atoms is simply to
shift but not change the number of energy levels of a parent AH, whereas
addition of a mesomeric group increases the total number of orbitals and
levels. The changes in energy-level diagrams can then be interpreted use-
fully in terms of a hypothetical ‘fusion’ of levels along the lines described
in Chapter 2, especially with the aid of appropriate computer calculations.
Such calculations have a direct bearing upon the interpretation of spectro-
scopic properties usually attributed to charge-transfer effects, and sets of
computer solutions obtained as appropriate parameters are varied provide,
as outlined below, a useful means of identifying ‘charge-transfer” spectra.

The observed transitions of a conjugated molecule R-Y have sometimes
been explained by the use of perturbation methods in terms of the MOs
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of the parent molecule R and of the mesomeric substituent Y. This ap-
proach has the merit of interpreting the observed spectra for the combined
mr-electron system R-Y by reference to that of R, so that the influence of
the group Y may be recognized. In particular, it is often possible to classify
transitions into ‘local’ excitations, that are largely confined to R (or Y),
and ‘charge transfer’ excitations across R and Y. The MO bases of R and
Y may not, however, be appropriate when m-electron delocalization
between the two systems is appreciable, and characteristic properties of
the spectra may, as a result, be obscured. The MOs of the combined system
R-Y are then more suitable, and may be obtained from the standard
computer programs for the Hiickel method. It is still possible within this
description to identify ‘local’ and ‘charge-transfer’ transitions when these
arise, and to provide a more realistic interpretation than that given in
terms of separate R and Y orbital bases. Indeed, since parameters can be
varied easily and systematically within a single computer run, a simple
set of calculations obtained by reducing in steps towards zero, the reso-
nance integral of the bond joining R and Y will provide information on
‘local’ and ‘charge-transfer’ excitations, in more detail than can be pro-
vided by perturbation methods.

Several examples illustrating the properties of mesomeric substitution
as discussed in this section are given in the form of problems at the end of
the chapter. These and similar examples deserve careful study, since the
computer solutions provide a wealth of information on how MO theory
‘works’ in practice, and particularly how it describes ground state and
spectroscopic states of combined systems R-Y. The practical use of
computer programs within this kind of context can convey many facets of
the MO description, in particular, how the energy levels of combined
systems R and Y interact, and how this interaction is reflected in the
amplitudes of the corresponding MOs. It is highly desirable, if spectro-
scopic properties are to be investigated, to include the subroutine
TRMOM described in Section 4-4. The results obtained from this program
as the resonance integral between R and Y is varied systematically show
how intensities of allowed transitions change as conjugation effects
increase or diminish, and frequently provide interesting information on
associated polarizations.

42 VARIATIONS OF « AND j

So far the effects of variations of parameters « and # have been studied in
terms of perturbation theory, with special reference to the definition of
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polarizability coeflicients, but this does not exhaust the available informa-
tion on properties of the secular equations of the Hiickel method. In
particular certain, constraints operate that condition the nature of the
solutions obtained when parameters are varied. These constraints are
implicit, but are not specifically introduced in variations described by
perturbation methods; as a result it is not possible to recognize, in such
techniques, the influence of the constraints upon the form of solutions.

It is useful to introduce initially the idea of an energy band for AHs,
within which all levels lie. Then, as coulomb integrals are varied, for
example, all levels, with certain well-defined exceptions, are constrained
to change towards limiting values which also lie within the band, and can be
identified with energy levels of fragments of the original molecule, usually
called ‘residual’ molecules. The variations considered in this section will
be treated in a purely hypothetical fashion, though they relate directly to
similar variations introduced, in perturbation and other methods, in
describing molecular properties related to m-electron systems.

Consider firstly, the bounds for Hiickel energy levels of AH. For linear
polyenes CyH, , , the levels are given by?®

€ = o+ mp
where
m;=2cos[jr/((N+1)] (j=12,3...N)

with bounds —2 << m; < +2. As N becomes large, the levels can be
visualized as forming a band within these bounds. For cyclic polyenes,
the corresponding formula for the levels®

N N
m; = 2 cos(2nj/N) (j=0,:t1,...d:[-5—1:| E)

yields similar bounds for the band, and for the linear polyacenes®

m; =1, 31 + V9 + 8 cos(j/(N + 1)) ]

~1, —3[1 + V9 + 8 cos(jm/(N + 1)) ]
with bounds —3(1 + V17) <m, <} + V17) or, approximately

—2:5 < my <2-5. It can be shown that, for graphite* —3 <m,; <3,
and these may be interpreted as general bounds for AH.
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A. Changes of coulomb integral

In an AH all coulomb integrals are equal to « the chosen zero of energy,
and all resonance integrals f are the same; the energy levels are distributed
symmetrically about « (Figure 4-4), and the charge density at each conju-
gated atom is unity. Consider the effect of changing the coulomb integral
o, at the rth position, where (equations 2-44, 45)

% = o 4+ Oa,
and

S, = h,B

Any atom r of an even AH defines a corresponding ‘residual molecule’
RM, as the odd AH obtained by excluding atom r from the original conju-
gated system. The secular determinant of the RM, can be obtained by
crossing out the rth row and column of the determinant A(e) of the original
system (equation 2-19). Denote the reduced determinant by A,.(¢) in
agreement with the notation used earlier; then the energy levels of the
RM, are obtained from the roots of

Ar.r(e) =0

and the MOs by solving a corresponding set of secular equations for each
root. It can be proved that, for all possible RM, corresponding to all
conjugated atoms r of the system, the energy levels ‘separate’ those of the
parent AH as shown in Figure 4-4; the positioning of the levels depends
upon which atom r is chosen. A central level always lies in the zero of
energy «, and the corresponding MO is usually termed the ‘non-bonding
orbital’ NBMO (Chapter 3, Section 3-1), In fact, the polynomial A, ,(¢)
contains odd powers of e only, giving a root € = 0, and the structures of
energy levels can be readily understood, at least intuitively, in terms of
related ideas discussed already in Chapter 2.

The same set of energy levels for the residual molecule RM, appear on
both the left and right-hand sides of Figure 4-4, and relate to variations of
da, of opposite signs, as described below. The line AA’ lies at 45° to the
horizontal axis on which 8, is measured, provided the € and da, scales,
both of which are measured in units of 8, are the same.

Suppose now that 4, is increased positively from the value zero, so that
&% becomes increasingly negative. Then the following properties character-
1ze solutions of the secular equations.5-8

(1) All energy levels are lowered. The lowering of the deepest level ¢,
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FIGURE 44

is limited only by the magnitude of d«,, and tends to the ‘asymptote’ AA’
as da, — —oo. The remaining levels are lowered towards those of the
RM, as limiting values, as shown in the left side of Figure 4-4.

(2) The MOs change so that y, which corresponds to the lowest energy
level €; becomes increasingly localized at atom r, and the amplitudes of
all other MOs at atom r are reduced; in fact, all other MOs tend increas-
ingly towards those describing the RM,. These conditions are achieved by
shifts in the positions of all the nodes of the MOs; a node of each MO
‘migrates’ until it cuts the bonds connecting atom r to the RM.,. In a sense,
therefore, the number of nodes embraced by the RM, is, in the limit,
reduced by one, and the correct nodal character over the RM, is thereby
preserved.

(3) The charge density ¢, at atom r increases; this implies that the
increase in density of the lowest orbital y, at atom r exceeds the decrease
in density at the same atom, of the remaining orbitals. The limiting density
q, = 2 is obtained for d«, = —c0.

The effects described in (2) are sketched in Figures 4-5(a) and (b) for
the three lowest levels of a linear chain of N-conjugated atoms, in which,
for simplicity, the modified atom » = N is taken as a terminal atom. The
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horizontal axis identifies the positions of atoms, labelled 1,2,... N,
within the molecule. Since the potential, though non-uniform in Hiickel
theory, assumes a similar form around each carbon atom, the same axis
may be used, purely symbolically, to identify modified regions. Thus a
lowering da, in coulomb integral at the terminal atom r = N is recognized
by the ‘well’ day sketched in Figure 4-5(b).

Y5

\_/

¥

1 1 i 1
s =1 2 3 N
FIGURE 4-5(a)

The remaining horizontal lines provide axes for the diagrammatic
representation of the MOs. If the amplitudes ¢, are plotted as vertical
line segments at each atom position, as shown for a few atoms s, then the
MOs o, are represented by the envelopes. These diagrams are not drawn
to scale, nor should they be identified with similar diagrams used in free-
electron theories. They are simply representations which depict the changes
in MOs described above, particularly the tendency towards ‘localization’
of a single orbital within the region r = N, and the simultaneous preserva-
tion of the correct nodal character of each orbital over the residual mole-
cule.

The modifications of MOs of a linear chain due to changes in coulomb
integral of a terminal atom can be sketched easily. It is interesting, how-
ever, to pursue the problem further by producing similar diagrams when
the modified atom r lies within the body of the molecule. Computer cal-
culations based on a NUCK matrix for a linear chain of say N = 10
atoms, in which the coulomb integral of the rth is modified in the subroutine
MODH in large steps, da, = 2, 48 and 6f say, will provide a clear account
of the emergence from the band of an ‘impurity’ level, and of orbital
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FIGURE 4-5(b)

localization within the region of atom r. Essentially similar polarization
properties apply also in two and three dimensions, but these are difficult
to visualize since the nodal properties must be referred to two and three
coordinate axes respectively. The changes in MOs are then virtually im-
possible to sketch, but can be checked and recognized when appropriate
computer calculations have been made.

We now return to consider changes in the energy-level diagram which
lie to the right side of Figure 4-4, and are obtained by making &, negative,
and hence d«, positive, a change of coulomb integral opposite in sign to
that producing the left side of the diagram. In fact, the diagram is sym-
metrical about the origin, da, = 0, in the sense that antibonding levels
on one side are mirror images in the zero of energy, of bonding levels on
the other side—a result already established in Chapter 3, and described
there in terms of ‘conjugate’ solutions. Clearly, the uppermost level ey
emerges from the ‘band’, and is restricted only by the value of da,, while
the remaining levels change towards those of the same residual molecule
RM,. The MO 1y, which has (N — 1) nodes now becomes increasingly
localized in the region of atom r, and the remaining MOs change towards
those of the residual molecule.

Variations of a coulomb integral are therefore associated with a pro-
gressive localization of a MO in the region of the modified atom r and a
simultaneous decrease in amplitude at the same position of all other MOs,
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and this process of localization is ultimately accompanied by the emer-
gence of the corresponding energy level from the ‘band’. These ideas
obviously extend to the modification of two or more coulomb integrals
which bring about partial localization of two or more orbitals at modified
atoms, and the emergence of the same number of energy levels from the
band.

These properties find their origin, of course, in the MO formulation.
The orthogonality or independence of s makes it possible to describe
and recognize the influence of the Pauli exclusion principle in controlling
the w-electron distribution; it means that polarization processes occur
physically so that not more than two electrons, with opposed spins, may
occupy the same region of space.

B. Changes of resonance integrals

The idea of localization of orbitals can be pursued further, in the same
purely exploratory way, as properties of the secular equations, by varying
other parameters.

Suppose, firstly, that the resonance integrals associated with a conju-
gated perimeter atom r and its two neighbours s and ¢ are reduced from
the standard carbon value § according to the formula

Bro=kB (o0=s,1)
and k = 1->0. The energy levels ‘contract’ from those of the parent
AH towards those of the RM, defined by excluding atom r as shown in
Figure 4-6.

The innermost pair of levels produce, in the limit when & = 0, a doubly
degenerate level with energy € = « = 0. The set of MOs change, as
{c—» 0, towards those of the RM, except the two ys corresponding to the
innermost pair of levels, which retain a uniform distribution over the
complete parent hydrocarbon. Alternative descriptions may be obtained,
however, by taking orthogonal combinations of this pair of MOs when
k = 0; in particular, sum and difference combinations yield the NBMO
of the RM, and a 7 orbital confined to atom r. It is, therefore, legitimate to
v1§ualize some form of ‘localization’ at the centre of the band associated
with the reduction of resonance integrals between a conjugated atom r
and its neighbours.

The changes in energy levels have been described above without refer-
ence to their occupancies by = electrons. When k > 0 the bonding levels
that lie below the zero of energy « are clearly doubly occupied in the
ground state; but for k = 0 the allocation of = electrons to the least
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FIGURE 4-6

bound level becomes ambiguous, since two levels are available for two =
electrons, and more than one possible 7-electron configuration with re-
sultant spin zero, possesses the same total m-electron energy. In such
situations Hiickel theory breaks down, and the problem can be resolved
only by invoking CI methods. It is, of course, unrealistic to assume that
Hiickel theory fails only for exact degeneracies; the method must break
down for near degeneracies also, and situations of this kind arise not
infrequently in theoretical models employing the method.

C. Bond ‘localization’
Consider now a change in resonance integral f,, of a perimeter bond

joining atoms r and s given by 5
g r

Brs = kB 4

where k is assumed to increase from the value 1 in the parent to larger
values. Two levels eventually emerge from the band, one above and one
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below. The MOs associated with these levels increasingly acquire the
forms

WIower oC [cr¢r + cx?ss + A; cd.‘ﬁl]
"/’upner o [C;¢, + c;¢3 + 2 ; C;.¢l]

where ¢ e > eyl
¢~ —c,>|c;]  (taking ¢ positive)

The results obtained imply that the emerging levels become increasingly
analogous to the levels of a ‘localized’ diatomic = bond associated with
atoms r and s, and are strongly bonding and antibonding due to the large
value of B,,; indeed, when normalized, the coefficients ¢, and ¢, (and ¢’

and —c}) tend towards the diatomic value of 1/V2.

Another way in which a ‘diatomic’ 7 bond r-s can be localized is by
reducing the resonance integrals §,; and f,, towards zero. In the limit,
when f,, = f,, = 0 two energy levels associated with a diatomic = bond
connecting atoms r and s take the values 48 as in ethylene, and ¢, = ¢, =

¢ =—c=1 /\/5. It is possible, in both forms of bond localization, to
regard the m-electron fragment obtained by excluding atoms r and s as
the appropriate residual molecule, and confirmation of these descriptions
should be sought by carrying out sets of computer calculations with

appropriate variations of bond parameters.

D. Some areas of application

The various ‘processes’ of localization discussed above, though at first
sight hypothetical in character, are frequently implicit in descriptions of
chemical and physical properties of m-electron systems. Indeed many
applications of the MO method refer to changes in m-electron configura-
tions which are made under constraints similar to those outlined above.
Take, for example, the simple case of replacement of a carbon atom by
a heteroatom such as nitrogen in pyridine, quinolene, and similar mole-
cules. The replacement results in a shift of m-electron charge towards the
N atom, which is, however, composed of an increase in density at the
N atom of the m-electron MO of lowest energy, and a decrease in density
at the same atom of all other MOs. Clearly, the increase of the lowest
orbital must exceed the total decrease in density at the N atom of all other
orbitals to ensure a net flow of charge towards the nitrogen atom. A
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similar change in w-electron distribution occurs in the MO description
of the polarization produced by approaching ionic reagents. According
to the isolated molecule method the w-electron charge shifts produced by
a neighbouring charged reagent brings to the position under attack an
increased density of one MO, depending upon the sign of the charge
carried, and the densities of all other MOs at the same position are
simultaneously reduced (Chapter 5).

Resonance integrals may be assumed to change when rotation about
conjugated bonds occurs. Take, for example, the case of stilbene and as-
sume that large groups (e.g. CHj) attached to positions 3 and 5 do not

2 3
. 4 13
AN
6 5 14

conjugate with the ring, but prevent planarity, which is relieved by rotation
about the bond 4-13. The axes of atomic orbitals ¢,(2p.) and ¢:5(2p.)
are then no longer parallel, and rotation can, therefore, be represented as
a reduction of the resonance integral

Ba-1z = .f¢4(2Pz)hw¢13(2Pz) dr
or

Bs-15 = B cos O

where B is the standard carbon resonance integral, and 6 the angle be-
tween the axes of the ¢(2p.) atomic orbitals on atoms 4 and 13. It is
useful to examine by computer calculations changes in w-electron con-
figuration as B,_,, is reduced systematically in steps towards zero; in the
limiting case the solution describes two conjugated fragments which cor-
respond to benzene and styrene w-clectron systems. It is interesting to note
that throughout these changes the charge densities g, at each atom r
remain unity, whilst individual orbitals and levels change towards those
of the fragments. We can operate the ‘process’ in reverse and easily deduce,
from the ‘repulsions’ amongst energy levels that the lowest excitation
energy in stilbene is smaller than that of both benzene and styrene. Thus
rotation about a ‘single’ = bond in stilbene is associated with a shift
towards the blue end of the spectrum.

Although planarity is usually relieved by rotation about ‘single’ bonds
which are weaker than partial double bonds, it is interesting, nonetheless,
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to examine from a theoretical point of view what happens when f,5_,, is
reduced systematically towards zero. This problem is left as an exercise
(problem 8 at the end of the chapter) for the reader; here we note simply
that, in the limit as ;5,4 — 0 the w-electron configuration must describe
two ‘benzyl’ w-electron systems. Each benzyl system has an energy level
lying in the zero of energy and, therefore, rotation about a partial double
bond, in stilbene, for example, is associated with a shift to the red end of
the spectrum.

Mulliken® has given descriptions of hyperconjugation in the transition
state of electrophilic reactions by drawing upon the equivalence between

! !
‘\\ X ‘\\ @ X
Cron @ '
H A OH
u u
r s r S

(A) (8)

the o-bond complex (A) and the pseudo 7-bonded system (B), as described
later (Chapter 5). Two electrons are withdrawn from the benzene system
to form a o-type bond with X, the incoming electrophilic reagent, and
therefore, in the equivalent w-electron model, the transition-state con-
figuration is described in terms of four = electrons associated with the
pentadienyl residual molecule, and two with the pseudo 7 bond. Hyper-
conjugation is then described in terms of a limited delocalization effect
operating between the two m-electron fragments, and is represented
formally by introducing small resonance integrals 8,; = B,, between atom
r and its neighbours ¢ and u in the residual molecule. Mulliken assigned
a large resonance integral to the pseudo = bond r-s, to retain within r-s
a high degree of double bond character when hyperconjugation is intro-
duced, and the theoretical model is, therefore, closely related to the form
of bond localization described in Section C.

Brown’s” definition of bond localization energy which has been used
as a reactivity index (Chapter 5) for describing the reactions taking place
at conjugated bonds, is also based on a model which is closely related to
the description of bond localization given in Section C. It is, however,
characteristic of theoretical interpretations of reactivity in conjugated
molecules, as presented hitherto, that, although modifications in -
electron distributions are assumed, associated changes in electron energy
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levels and orbitals are seldom described. Ultimately, some form of localiza-
tion, perhaps partial localization, of orbitals must, however, develop to
prepare for spin-coupled electron-pair bonding with the incoming re-
agent at the position of attack. Within this contect, therefore, the emer-
gence of levels from the ‘band’ and the associated localization of orbitals
as described above may enhance, and possibly provide essential features
of physically acceptable theoretical models.

An important area of application which can be mentioned here only
briefly, concerns the MO theory of surface states.?-1%-** The potential at
surface atoms differs from that within the body of the solid, and surface
states are associated with levels that, as a result, emerge from the energy
band. The levels that emerge and their associated orbitals can be enumer-
ated and identified in relation to the complete set of orbitals and levels
for the lattice by extending the qualitative description given earlier for a
one-dimensional model. Consider, for example, the case of a two-dimen-
sional rectangular lattice with sides containing M and N atom sites. The
MOs .., for the lattice can be classified by the subscripts which identify
the number of nodes referred to rectangular areas which lie parallel to the
lattice planes, where m=0,1,2,... (M —=1) and n=0,1,2,...
(N — 1). Suppose that, initially, the same potential applies at all lattice
sites; then assume that the potential is lowered equally at all atoms in one
side containing N atoms. The N energy levels associated with the sequence
of orbitals

Yoos> Yo15 Yo25 Yo3s - - » YPon-1

emerge successively from below the band as the surface potential is
lowered. Each orbital y,, is nodeless in a direction perpendicular to the
modified edge with an amplitude variation, in this direction, similar to
that depicted for a modified end atom of a linear chain, by , in Figure
4-5(b). Thus the number of surface states which are associated with
emerging levels and partial orbital localization at surface atoms, is identi-
cal to the number of modified surface atoms. These ideas are readily
extended to modifications of more than one surface in two and three-
dimensional lattices. Ultimately, however, the magnitude of modifications
in surface potentials which produce surface states which are associated
with energy levels that emerge from the band, can only be determined by
a more complete theoretical investigation. The purpose of these brief
comments is simply to show that useful information concerning the
enumeration and origin of surface states can be obtained by adapting
and extending the idea of orbital localization as described earlier.
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In this section we have indicated the importance in certain areas of
application of calculating the patterns of energy-level and orbital changes
implicit in theoretical models when parameters vary, and when the exist-
ence of computing facilities enables this to be done rapidly and extensively.
It would be no exaggeration to suggest that this procedure should be
followed for all m-electron MO problems, even for those that can be
solved approximately and rapidly by perturbation methods, since the
complete solutions provide so much more information.

4.3 DIPOLE MOMENTS IN CONJUGATED MOLECULES

The main purpose of this section is to outline the theoretical basis on
which the m-electron dipole moment of a conjugated molecule is calculated
in the subroutine DIMO listed at the end of the chapter. However, the
w-electron moment, when computed automatically by the program,
should be used with discretion, not merely because Hiickel theory appears
tf’ exaggerate, in certain circumstances, inequalities in the charge distribu-
Fxon, as indicated in the case of azulene discussed later, but also because,
in making comparisons with experiment, real problems arise in separating
the observed moment into 7 and o components. The procedure for finding
components is often more difficult than generally supposed, especially
when hetero atoms with lone-pair electrons participate in conjugation,
as indicated later.

The contribution to the total dipole moment of a conjugated molecule
of the m-electron system in the ground-state configuration ¥, is given by

Hy =€ f Yol —3ZR, + 3r ¥, dr é-1)
s i

whefe R, is the position vector of the sth conjugated atom and r, that of
Fhe ith 7 electron. Z, is the effective nuclear charge at atom s and is unity
In a neutral atom contributing one = electron to the system. The term

7= [visrov,ar @2)
i
represents the centre of gravity of the w-electron distribution in the

ground-state configuration, and has components parallel to the coordinate
axes, for example

%= f ‘F;(gxl)‘l"o dr (4-3)
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with similar expressions for 7 and 2 such that
F=VE 472 +1, (4-4)

The first term in the bracket (4-1) can be taken outside the integral, and
represents the centre of gravity of the effective charges. It can t?e shown
that, when the ground-state wavefunction is introduced, in either the
product or determinantal form, the expression (4-3) reduces, because of
orthogonality amongst the MOs vy, to

%= ‘szixw, dr @-5)

where the summation runs over all doubly occupied orbitals. Expanding
each y in terms of atomic orbitals ¢4(2p-)

N
vi= 2 Cups (4-6)
g=1
gives
N
%= 3 q.R; @7
g=1
since the cross terms
fdxd, dr o))

are assumed to be zero, in accordance with the overlap approximation

introduced in Hiickel theory. In equation (4-7) R} is the‘af component of
R,, the position vector of the sth atom, and g, is the associated m-electron -

charge density. . /
For a neutral atom s contributing one = electron to the conjugated

system, Z, = 1, and
py = e2(qs — DR; 4-9)

is the x component of the total moment pu,, calculated as the sum of
products of net charge (g, — 1) and the x coordinate at each atom.

Similar expressions determine ¥, and uZ, which is zero for a planar
molecule, and hence

e = VGEP + (P + WP @10)

The subroutine DIMO listed at the end of this chapter, calculgtes the
dipole moment for planar-conjugated molecules from the expression

= V(@2 + @) (4-11)
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- It can be called in the usual way by the Hiickel main program as indi-
cated later, provided atom coordinates are available. Provision is also made
for inclusion of Z, values other than unity, which apply when an atom
contributes zero or two 7 electrons.

Carbon atoms in AH are computed, in the Hiickel method, to be
electrically neutral, since the effective unit positive charge at each nucleus
in the o-bonded framework is neutralized by a corresponding m-electron
density of unity. Computed values of charge densities in non-alternants,
heterocyclics, and substituted molecules are not unity, and net dipole
moments, due to asymmetries in w-electron charge distributions, result.
These n-electron dipole moments should, in principle, provide either a
useful test of the theory when compared with experimental results, or a
means of deducing appropriate parameters, according to the context. The
model works quite well in practice, though certain applications present
rather stringent tests, and the computed results can then be far from satis-
factory. For example, for azulene, Hiickel theory computes a m-electron
moment of about six Debye Units, and no obvious source of o-bond
moment exists that can result in a total moment of about 1D to compare
with that observed experimentally. Hiickel theory fails to prevent the

a
2 3 5
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Charge densities in azulene; un ~ 6D.

build-up of excessive charge densities in various regions of the molecule,
by neglecting interelectron repulsions amongst = electrons, and SCF
theory (Chapter 6), which includes these repulsions explicitly, demon-
strates the magnitude of the error by reducing the calculated m-electron
moment to less than 2D. However, if the resonance integral, 8,_g cor-
responding to the long bond bridging the molecule, is reduced from the
standard carbon—carbon value B, in the Hiickel description, the calculated
dipole moment diminishes correspondingly. The effect can readily be
recognized, since, as this particular resonance integral is reduced towards
zero, the ‘molecule’ is progressively transformed into an AH with unit
charge density at each atom and zero dipole moment. Thus deficiencies in
the calculation of dipole moments by the Hiickel approximation are
mainly inherent in the method itself, but may also be parameter-dependent.

However, additional difficulties always arise when comparisons are
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made with experimentally determined dipole moments, since the observed
moment must be decomposed into ¢ and « contributions. Consider the
case of pyridine (Figure 4-7) where the o-bond framework is formed by

4
S N
S

(b)

(a)
FIGURE 4-7
sp? trigonal hybrid atomic orbitals, with axes lying in the molecular plane
at 120° separation. The hybrid orbitals of carbon atoms external to the
hexagonal ring form C-H bonds, and the corresponding nitrogen hybrid
accommodates the ‘lone-pair’ electrons. In making comparisons with
calculated m-electron moments it is necessary to separate o and = contri-
butions to the total observed dipole moment of 2-21 Debye Units. The
o-moment contribution originates largely as the resultant moment of the
lone-pair electrons on the nitrogen atom and of the C,—H bond opposite,
since the remaining o-bond moments cancel, or are comparatively small.
The moment due to the lone pair lobe and the corresponding two positive
charges located on the N nucleus is around 3+5 D, and that of a trigonal

C,—H non-polar bond is about 2:0 D. In both cases these are computed
from the spatial distribution of two electrons and the centres of gravity .

of the two corresponding positive charges; the large C-H bond mome
is, for example, attributable to the highly asymmetric trigonal lobe of the
C-bonding orbital (Figure 4-7b). Thus the maximum value of u, in
pyridine is of the order
Yy =22 — [3:5=20] =07D
In fact C-N o-bond moments (C = C,, Cs) could reduce this value by
an unknown amount, and the percentage uncertainty in g, is, therefore,

comparatively large. _
When N substitution is represented by the modified coulomb integral

oy = o + Ooty

with
doy = hyf

it is found that u,, is effectively linear with respect to variation of Ay over
the range 0 < iy < 0-5; then u, can be written in a form, approximate
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to the first order in oy

M [pyridine] = 2216 hy Debye Units.
Whl'Ch covers the r.egion of the expected value. The constant 2216 is
derived from the dimensions and geometry of pyridine, assuming equal
bond length_s of 140 A. When hy =1, u, (exact) = 2-083 D which
shows that higher order terms are small even for this comparatively large
value of hy.

It may }:)g helpful to note, at this point, that traditional vector methods
for combining bond moments do not deal explicitly with lone-pair mo-
ments, and. the coptributions of bonds defined by the distribution of
electron pairs forming bonds and their corresponding positive charges.!2
In ammonia, for example, the observed moment of 1-5D is resolved into
components directed along equivalent N-H bonds, which are then assumed

H+/H/rj\”+ W/ \ y

(a) (b)
to be ionic (a), with polarity N"H*. In fact, the observed moment can
be accqunted for almost entirely in terms of the spatial distribution of
lone-pau: electrons (u,, ~ 3:5D) and covalent electron-pair bonds (tpeng ~
2D), which lie (b) roughly along tetrahedral directions. The traditional
me'Ehf)d lumps together lone pair and electron-pair bond moments in
dermpg .N-H vector components which are assumed to arise entirely
from ionic .bonds, and, though the origin of bond moments in this inter-
preFatlol? is generally unacceptable, vector addition of components
d.CI'lVCd in this way appears to produce satisfactory values for resultant
dipole moments. However, in molecules like aniline where lone-pair
electrons. participate to some extent in conjugation, the validity of the
method is less obvious. Aniline is not planar, though the properties of
the molecule are largely conditioned by delocalization of the lone-pair

N
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electrons over the adjacent ring, and, therefore, subdivision of the ob-
served dipole moment into component parts requires careful consideration
of the principles invoked.

Thus although traditional vector methods apparently work satisfactorily
in practice, it may be important in certain applications to examine the
origin of dipole moments more closely in terms of charge asymmetries,
and charge shifts, such as occur in m-electron systems and ionic bonds.
Problems can certainly arise in subdividing observed moments into ¢ and
7 component parts that allow comparison with calculated estimates of

m-electron dipole moments.

4.4 TRANSITION MOMENTS IN 7-ELECTRON SYSTEMS

The two main features characterizing w-electron absorption spectra are
the frequencies and intensities of absorption, and these are related, since
the intensity is defined (equation 4-16) theoretically in terms of the
frequency.

Consider the ‘excitation’ process in which a = electron is transferred
from an occupied orbital of the ground-state configuration to an un-
occupied, or virtual, orbital to produce an ‘excited’ mr-electron configura-
tion. In Hiickel theory the energy of excitation Ae from the ground state is
simply the difference in energy of the levels of the two orbitals concerned,

Al > k) =€ — € “12) -
where i is the orbital doubly occupied in the ground state, and k* th /
virtual orbital, denoted by a prime. -

The corresponding frequency v, - of absorption is given by
Aei > k) =hv 4-13)

or, in terms of wavenumber # (cm~?) and wavelength 4 by
Ae(i — k) = hewy_,, = hefd 4-14)

where ¢ is the velocity of light, and h is Planck’s constant. The quantity
used to characterize the transition intensity is the oscillator strength f.
This dimensionless quantity is related to the observed intensity distribution
in the absorption band, by the expression

Sovs = 2;2? f £(5) d9 ~ 432 x 107°f&(%) d7 4-15)
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where £(?) is the molar extinction coefficient, measured at wavenumber #.
An expression for the oscillator strength can be derived theoretically in
the form

_ 87%mc)\ _ . e
Jineor. = h $0? = 1-085 x 10'5Q (4-16)

where
0= fTe;c(;r,)To dr 4-17)

is the transition moment connecting the ground-state configuration ¥,
and the excited configuration W,,,. The summation is taken over the
position vectors r; of all the electrons concerned, in this case, the = elec-
trons. Q is a vector quantity with components Q,, Q, and Q, given by

QI = J‘Fa;c(le)‘yﬂ dT (4-18)
with similar expressions for Q, and @, and
0=V0i+ Q2+ Q2 “4-19)

If the transition is G-fold degenerate, then the expression (4-16) is
generally multiplied by G on the right-hand side.

The excited m-electron configuration W(i — k') differs from that of the
ground state V', by replacement of the occupied orbital y, by the virtual
orbital y,- as implied by the energy of excitation (4-12). It can be shown
that in this case the expression (4-18) reduces, because of orthogonality
amongst the MOs ¥, to

0. = V2fypexyp, dr = Vamg, (4-20)

and similar expressions are obtained for O, and Q.. It may be noted that
whereas X in (4-5) represents an average value taken over all doubly
opcupied m-electron MOs, as expected, a similar reduction from (4-18)
gives (. as an average value between two MOs only, namely the two
orbitals involved in the excitation ‘process’.

The transition moment Q is zero when all its components are zero
apd this condition defines a so-called ‘forbidden’ transition, of zero inten:
sity. Such conditions are the origin of selection rules for spatial parts of
the wavefunction. In molecules with geometric symmetry, the MOs Py
and v, which determine components of Q, themselves belong to some
Ssymmetry species, and selection rules for transitions can be determined on
}nspection by group theoretical rules. However, in the context of comput-
ing these techniques are seldom of value. It appears that, in general, each



84 Computing Metheds in Quantum Organic Chemistry

symmetry type must be programmed individually for application to
appropriate molecules, which, more seriously, cannot be modified, since
the assumed symmetry is, generally, thereby destroyed. Group theoretical
methods are, in fact, of doubtful value in computing, and it is usually
simpler and preferable to write general routines which evaluate oscillator
strengths for all transitions specified, including those that turn out to be
forbidden.

We now turn to a consideration of the use of the subroutine TRMOM
for calculating intensities and polarizations of w-electron transitions in
conjugated molecules within Hiickel theory. It is well known that the
Hiickel method fails to provide a theoretically valid calculation of energies
of excitation in AH, but since transition moments are easily calculated
from the eigensolution of the secular equations we may enquire whether
any useful information can be salvaged by incorporating TRMOM. The
failure of Hiickel theory stems from the symmetrical distribution of
energy levels about the origin « = 0 which separates bonding and anti-
bonding levels (Figure 4-8).
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According to Figure 4-8(a) the transitions of lowest energy involve
‘excitations’ denoted by arrows 1, 2, 3 and 4, in that order. The transition
energies Ae,, Aeg are equal, due to the symmetry of levels about o = 0,
thus giving rise to a degenerate condition, shown to the left side of Figure
4-8(b) where the excited ‘states’ are shown relative to the ground state
GS. Hiickel theory can go no further, but the CI methods, which are
treated in the last chapter, show that the degeneracy is resolved when -
electron-repulsion terms are included explicitly, and the resulting splitting
can be large, as represented above CI in Figure 4-8(b).

Characteristic features of the observed ultraviolet (UV) spectra of
polycyclic hydrocarbons were first recognized and classified by Clar*?
and subsequently by Platt and Klevens.'* Three main bands are generally
observed, which in order of increasing energy of excitation are the « (weak),
p (medium) and B, ' (strong) bonds in Clar’s notation, and it is now
known that these bonds arise essentially from the interactions amongst
excited configurations W, (i — k’) as represented schematically in Figure
4-8(b). In molecules containing three or more aromatic rings, such as
pentacene, for example, the p band may fall below the « band.

Although Hiickel theory cannot reproduce the energies of excitation
correctly when degeneracies arise, as indicated in Figure 4-8, it is pertinent
to enquire whether any useful information relating to spectroscopic
problems can be derived from the calculation of transition moments
within Hiickel theory, by the program TRMOM. However, before dis-
cussing results obtained from TRMOM it is necessary to consider the
question of units for calculating energies of excitation. In formulating the
secular equations in Hiickel theory all energies are expressed in units of g,
the standard carbon resonance integral, and energy levels themselves are
calculated in terms of multiples of . Some value of § must be assigned,
therefore, to match observed spectra, since 8 is generally interpreted as
an adjustable parameter. Because benzene is highly degenerate in the
Hiickel approximation it is sensible to adopt a value that matches the
non-degenerate (A — A’) transition of naphthalene, which, in accord-
ance with Figure 4-8(a) is to be identified with the p band. This band
occurs around 36,000 cm~* and a ‘round’ figure of § = 3:6 eV produces
(in TRMOM) a corresponding theoretical value. On substituting this
value for # in equation (4-16) and calculating Q for the two-dimensional
plane of naphthalene from equation (4-19), assuming a uniform C-C bond
length of 1-40 A, the value obtained for the oscillator strength fis 0-52.

The results quoted in Table (4-2) are obtained directly from the com-
puter program TRMOM, for naphthalene, for the transitions i-—k’

4
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corresponding toall possible nine ‘excitations’ involving i = 3,4,5 and k' =
6, 7, 8. These comprise three non-degenerate and three doubly degenerate
excitations in the Hiickel approximation, and the four transitions i = 4, 5
and ¥’ =6, 7 give the excitation energies Ae; = 35,900 cm™?, Ae, =
Ae; = 47,000 cm~! and Ae, = 58,000 cm~! depicted in Figure 4-8,

Applications of Hiickel Theory

Y

which, following CI yield the «, p, f and §’ bands.

Table 4-2
Naphthalene transitions ¥(i — k)

i k' Aedcm™Y) mg. mg. Sineor.
5(A) 6'(A) 35,900 0 0-820 0-5233
5(A) 7'(B) 47,000 1-041 0 1-1048
4(B) 6'(A) 47,000 1-041 0 1-1048
4(B) 7(B%) 58,000 0 0-700 0-6170
5 8 55,800 0 0 0

3 6’ 55,800 0 0 0

4 8’ 66,900 0 0 0

3 7 66,900 0 0 )

3 8’ 75,700 0 0-641 0-6752

Thus although Hiickel theory cannot resolve degeneracies energetically,
the method provides valuable information on intensities and polarizations
which can be used effectively in identifying spectroscopic states.

The method can be applied in an interesting way for the complex case
of benzene where four-fold degeneracies occur for transitions involving
the levels A, A’, B and B’. The energy levels and MOs of benzene are
well known and can be usefully represented in the following form.

Energy-level indices: 1-5 occupied, 6'-10" virtual, in ascending order.

Now consider the calculated intensities f = 1-1048 of the lowest degene-
rate excitations. Although Hiickel theory cannot resolve these energetically,
the sum and difference combinations

1
Y, = — — B’ Y(B— A
\/2[‘1’(/1 B) + ¥ (B— 4]

1

V= —=[¥4—B)-¥B—~4)]
V2

that correspond respectively to the « and f bands of Figure 4-8(b) yield,

on combining the calculated component intensities appropriately

fm =0
fﬁ =2’21

which match the values obtained by more sophisticated methods of
calculation.® Indeed the agreement goes further. More advanced methods
indicate that the polarizations of absorption for « and § bands are parallel
to the x axis, and of the p, §’ bands, to the y axis, in accordance with the
interpretation of the Hiickel intensities given above.
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FIGURE 4-9
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The coefficients of atomic orbitals in the MOs are the numbers attached
to corresponding atoms multiplied by the normalizing factors N;; ¢; are
the orbital energies. The MOs of the two degenerate levels € = +8 are
not unique, since mutually orthogonal combinations of each pair are
equally valid. In fact, in the JACOBI diagonalization routine arbitrary
combinations are obtained, and must be transformed to produce the
symmetry orbitals presented above.

The results of Table 4-3 were obtained for benzene from the computer
program TRMOM. All nine possible single ‘excitations’ are included.

Table 4-3

Benzene transitions; Hiickel orbitals
i k’ Aecm™?Y) mg mf. Sineor.
3 4’ —0-372 0-593
3 5 58,086 0-593 0-372 0-6176
2 4’ —0-593 —0-372
2 5 —0-372 0-593
3 6’
1 4 87,129 0 0 )
2 6’
1 5
1 6’ 116,172 0 0 0

The orthonormal eigenfunctions generating the results of Table 4-3 as
obtained in the JACOBI diagonalization process were not the symmetry
orbitals (Figure 4-9) of the molecule. These can be produced in practice
by introducing a small perturbation (as part of the data), to resolve the
degeneracy, in for example, a diagonal element. Thus the modified element

a1=a+h1ﬂ

can be introduced, where 4, is small and not zero as in benzene. The
results of Table 4-4 were obtained with 4, = 0-001.

The two transitions 3 — 4’ and 2 — 5" are now polarized unambiguously
paralle] to the x axis, and 3 — 5, 2 — 4’ are parallel to the y axis; the
results differ, in this respect, from those given in Table 4-3. The introduc-
tion of a small perturbation in du«, is an example of a simple technique
which can be applied generally to resolve degeneracies, and provide a
simplified description based on symmetry orbitals. However, the results
obtained in Table 4-3 are, in principle, more realistic, since the implied
arbitrariness in directions of polarization relates correctly to the absence
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Table 4-4
Benzene transitions; Hiickel symmetry orbitals
i k’ Aecm™?) mg. m. fthenr.
3 4 58,076 |  —0-700 0 0-618
3 5 58,086 0 0-700 0-618
2 4’ 58,086 0 0-700 0618
2 5 58,095 | 0-700 0 0618
3 6’ 87,124 0 0 0
1 4’ 87,124 0 0 0
2 6’ 87,133 0 0 0
1 5 87,133 | 0 0 0
1 6 116,172 0 0 0
4
1
6 2
X
5 3
4

of uniquely specified coordinate axes in the benzene plane; the modifica-
tion da, defines axes, and conditions the form of solution obtained.
Now the «, p, B and 8’ bands are derived from the four lowest, degener-
ate ‘excitations’ given in Table 4-4, which shows how the corresponding
configurations W'(i — k") combine in pairs, according to the direction of
polarization of the components. These combinations are given in Table
4-5 with assignments, polarizations, and f values. The excitation energies
quoted in this table are obtained from an independent CI calculation
(Chapter 7) and are included simply to give a complete assignment.

Table 4-5

Benzene transitions: combinations of configurations

Band Wavefunction Adcm~Y)  Polarization f
o« B—>5)—Q2—4) 39,000 y 0
P 2-5"+3B—->4) 43,000 X 0
B R—->5—-3->4) 56,000 X 1-23
B B-o5)+2—4) 56,000 y 1-23

Thus, although Hiickel theory cannot calculate excitation energies Ae
correctly, it obviously is capable of providing useful information on
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intensities and polarizations which can be related to the theoretical
description of spectroscopic states.

It is interesting to pursue the problem further by introducing modifica-
tions to coulomb integrals which can apply to pyridine and other N
derivatives of benzene. It is possible to trace, at least approximately,
changes in component intensities from which changes in the «, p and 8, 8’
bands can be deduced. It will be noted, for example, that both the « and
p bands become allowed, but with small intensities, and that since the
UV spectra of pyridine and other N derivatives of benzene do not differ
dramatically from that of the parent molecule, the CI comparable to that
in benzene must operate.

It is obvious, from the previous discussion, that the calculations ob-
tained from TRMOM within Hiickel theory, begin to encroach upon
territory usually associated with the CI problem (Chapter 7). This is a
valuable property of the method, and not one to be discarded because the
description is incomplete, since it provides a useful account of the nature
of the CI problem and of its solution.

4.5 d,-p, BONDING

The properties of molecules containing atoms with valence shell d-orbitals
provide, in certain circumstances, evidence of conjugation effects involving
d,-p, bonding. The most celebrated examples are the phosphonitrilic
halides which were studied originally by Craig and Paddock,®-*7+18 and
later by Dewar and his associates'?; both investigations were carried out
in terms of the Hiickel method, and conflicting conclusions were reached
about the nature of the bonding. In both cases group theoretical methods
were used in setting up the Hiickel secular equations describing 7-bonding,
to simplify the algebraic processes and to clarify the orbital description.
The same problems can, however, be solved by the standard computer
programs, by following the customary practice of constructing an inci-
dence matrix NUCK which specifies appropriate interactions between
neighbouring atoms.

Although these molecules fall outside the class of systems generally
considered for inclusion here, they provide a particularly interesting
example of the value of the computational approach both for problem
solving, and as an aid to resolving questions concerning the interpretation
of theoretical models. In particular, solutions obtained by computer
methods demonstrate that a unique MO description of the bonding cannot
be defined, and that Dewar’s model, which is described in terms of
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localization within P-N-P ‘islands’ is, nonetheless, equivalent to conjuga-
tion embracing the complete hexagonal ring.

The simplest ring molecule of the phosphonitrilic halide series is the
trimer with a six-membered ring composed of PN bonds of equal length,

CL CL
\P/
N~ SN

| |
CL—P. P—CL
CL CL

which can, for theoretical purposes, be assumed planar, in the first instance,
and comparable in structure, therefore, to benzene. The two chlorine
atoms attached to each phosphorus atom lie symmetrically above and
below the plane of the ring.

Let local coordinates be constructed at each P atom, with the z axis
perpendicular to the plane, and the y axis bisecting the NPN angle. Then
the d-type atomic orbitals that are, in principle, available for 7-bonding in
the six-membered (PN); ring are the 3d;, and 3d,, orbitals. These have
similar ‘shapes’ with axes lying in perpendicular planes, but are character-
istically different in the way they overlap adjacent N(2p,) atomic orbitals.
Whereas d,,, orbitals match N(p,) orbitals in the regions of effective over-
lap, d,, match on one side of the local yz plane, and mismatch on the
other (Figure 4-10). Resonance:integrals between d, ., and p, are, therefore,

FiGURE 4-10
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always negative, and between d., and p, positive on one side and negative
on the other side of the local yz plane.

In the model proposed by Craig and Paddock'®-2! for describing
d.—p, bonding in (PN);Cl; and similar molecules, P(3d, ) orbital participa-
tion in conjugation was ignored, and 7-electron MOs were constructed as
linear combinations of three P(3d,,) and three N(2p.) atomic orbitals.
The reasons for neglecting d,, orbital participation were based upon the
influence of the adjacent Cl ligands on d-orbital size and effective electro-
negativity, and are explained in the original paper2?; they do not concern
the subsequent calculation of d,,~p, m-bonding. The energy-level diagrams
in Figure 4-11(a, b) for the six-membered (PN); ring determined by this
model, show an ‘inversion’ with respect to the form of energy levels for
benzene in Figure 4-11(c), and these results can easily be confirmed by
computer calculations, as described later. Obviously the energy scales for
(PN); and for benzene in Figure 4-11 are different since the units of

. P _2B
3 — — — —
— ——-B
a:.q.___’:':.“_ _________________________
— —B
V3B — —— _ 28

{a). (b) (c)

energy, 3, the resonance integrals for the two systems, are different. The
results of Figure 4-11(a) are based on the assumption that coulomb
integrals for d,, and p, orbitals are equal. Under these conditions the
innermost pair of levels is doubly degenerate with energy ¢ = « = 0 and,
as a result, difficulties arise in the allocation of six = electrons to the
available four orbitals. If one = electron is arbitrarily allocated to each
e = 0 level, a theoretically acceptable distribution with charge densities
equal to unity at each P and N atom is obtained. The degeneracy, and
therefore, the corresponding ambiguity, is removed when a,, # «,
(Figure 4-11b) but then, assuming N is more electronegative than P,
charge distributions are obtained in which gy ~ 1} and gp ~ %. This
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uneven charge distribution persists when the difference in coulomb inte-
grals is small, but not zero, and the description is then theoretically un-
realistic. This problem provides a further manifestation of the failure of
Hiickel theory in describing degenerate situations where the allocation of
electrons to orbitals is ambiguous, and any interpretation based on this
kind of solution must be suspect. Ambiguity in the occupation of the
lowest degenerate pair does not arise since four # electrons are available
to complete the shell. Craig and Paddock confirmed the existence of
delocalization, or =-type bonding in d,,~p, systems, analogous to that in
p—Pp- Systems but with the inversion of energy levels as indicated in
Figure 4-11.

The model proposed by Dewar and his associates differs from that of
Craig and Paddock by the inclusion of P(d,.) orbitals which were com-
bined in sum and difference forms with P(d,,) orbitals to give a pair of
d, type orthonormal orbitals of the form

1 1
d-n-a = :;/’;(dyz + d;.); d:— = E(duz —d;2) (4-21)
for each P atom. Each d, orbital overlaps efficiently p, orbitals of just

one of the two adjacent N atoms, as indicated in Figure 4-12 by the dis-
position of the axes a and b relative to the P-N bond directions. The

AZ

d, 6 =15°
FIGURE 4-12

d,—p, problem is formulated in Dewar’s model in terms of a
resonance integral

B* = j$(d)hab(p.) dr (v = a, b) “422)
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which by reason of the combination (4-21) is V/2 times the resonance
integral 8 used in Craig and Paddocks results (Figure 4-11). For simplicity
an idealized model is chosen, in the first instance, in which all coulomb
integrals are taken to be equal. The bonding is then described in terms of
three independent and equivalent three-centre P-N-P bonds, allylic in
character, each accommodating two  electrons. Conjugation is interrupted
at each P atom, since the transmission of delocalization effects depends

primarily upon overlap of dZ, d? orbitals, which is zero.

)
vP
N

A general (PN), ring system can, therefore, be visualized in terms of a
o-bonded framework with localized P-N-P =-type bonding superposed,
and aromatic character, which depends upon delocalization throughout
the framework, is accordingly vitiated. The energy levels of the system
(PN); are equivalent to those for allyl, repeated three times, namely
e=0, :!:\/iﬁ*, where f* is the resonance integral of equation (4-22).
Planarity is not essential, since puckering of the ring should not, in this
model, modify greatly the resonance energy. The experimental evidence,
to the extent that it can discriminate between the two models, appears to
favour that of Dewar and his associates. For example, the UV spectra
of cyclic (PN),X,, polymers are similar, whereas cyclic polyenes exhibit
large shifts towards longer wavelengths with increase in molecular dimen-
sions, that are characteristic of delocalized electron systems.

1,2
P
9 N N 3
78 P P 45
N

6
FIGURE 4-13

We can now return to explore the nature of the m-bonding as described
by the solutions emerging from computer calculations. The atomic
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orbitals are labelled according to the sequence shown in Figure 4-13
where labels 1, 4, 7 identify P(d, ) orbitals, 2, 5, 8 identify P(d,.) and 3, 6, 9
identify N(p,) orbitals. An idealized model, in which all coulomb integrals
are taken to be equal, is adopted in the first instance, as in Craig and
Paddock’s and Dewar’s models. The incidence matrix NUCK defining the
molecule is then written in the usual way.

0

SO0 O0CO—O
OCOO = m-=O
CO—=,OQ
CO=O

0
10

100

10000110

Each off-diagonal element 1 is formally changed to —1-0 in the sub-
routine INPT so that energy levels are computed in units of 3, the reson-
ance integral, assumed to be the same for both d-type orbitals. This
representation must be changed to 410 in the modification subroutine
MODH for resonance integrals referring to mismatched d,,, p, orbitals,
the appropriate modifications being

0302+ 01000
0605+ 01000
09 0 8+ 01-000

The computer solution obtained from this specification gives nine
energy levels, composed of three triply degenerate levels, e, €5, €3 = 28;
€4, €5, €g = 0; and e;, g, € = —2f. The six available = electrons occupy
the triply degenerate bonding levels, €, , 3 = 28 in pairs with coupled
spins. The charge density at each atom is unity, but is ‘shared’ equally at
the P atoms between d., and d,, orbitals,

qn = 1; qe(d;.) = 0-5; qr'(dyz) =05

The bond orders are modulus unity in each bond, but ‘shared’ between
d,, — p,and d,, — p, so that

p@.. — p.) = +05;  p(d,, —p,) =05

When adjacent 4., p, orbitals mismatch, corresponding bond orders are
—0-5, and the contribution to the total w-electron energy is obtained, for

O 00N WA W=

0
1
0
0
0
0
0
1
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these bond orders, by multiplying by —pB. The ground-state distribution
may be represented in the usual way by charge densities and bond orders
attached to atoms and bonds (Figure 4-14).

Although the system of energy levels obtained from the computer
solution is the same as that calculated by Dewar, since, by equation
(4-21, 22), f* = V' 28 the MOs themselves are different. Indeed, the form
of MOs for the degenerate situation, as they emerge from the computer
solution, cannot be anticipated, since it may depend upon the numbering
system used in formulating the NUCK matrix, and on various factors,
including the word length, involved in the processing during diagonaliza-
tion. This arbitrariness in the form of MOs for degenerate situations
creates problems of identification, but has the merit of demonstrating that
the orbital description is not unique. In any case, it is always possible to
transform the MOs to a form which provides a ‘better’ description of the
molecule; in particular, the ‘localized’ MOs of the P-N-P islands of
Dewar’s model can be obtained in this way, though, again, this description
is not unique.

Another important description is that which reflects the full symmetry of
the (PN), hexagon. It is possible to remove the degeneracies described
above and to extract the symmetry orbitals from computer solutions by
applying small modifications to diagonal elements similar to those intro-
duced to remove degeneracies in benzene, as described in Section 4-4.
If we denote by @, (j = 1,2, . ..9) the MOs corresponding to the levels
¢; which reflect the hexagonal symmetry of the molecule, then one pair,
®, and @, involves N(p,) and P(d, ) atomic orbitals only, and is obtained
in the form

S
U "‘\/g@’l + 3 + bo £ P + b7 £ ¢o)
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where the superfix simply identifies the sign to be taken in the MO. These
two orbitals have precisely the same analytical form as the pair of MOs
of benzene (Section 4-4) which describe the lowest bound and the highest
unoccupied levels with energies ¢ = +28 (Figure 4-9). The remaining
seven MOs are rather more difficult to interpret, but can be conveniently
expressed in terms of group ‘orbitals’ for P; and Nj, as indicated below.
Although the introduction of these group orbitals begins to create an
impression that group theoretical methods are implicit in deriving the
solution, this is not the case. The group orbitals simply provide a compact
notation for describing and identifying the MOs, which are obtained in
numerical form from the computer solution, with no emphasis on grouping.

P P
VAN w4
P P P P

N N

FIGURE 4-15

Orthonormal group functions for an equilateral triangle carrying
equivalent atomic orbitals at each apex, may be written in the form

1A/3 -2/f6 0
1/«/3& /3 1//6&'1/@ J//éA-%/é
(a) (b) (c)

FIGURE 4-16

These apply to each of the three atomic-orbital systems Pg(d;,), Ps(d,.)
and N;(p.) independently. The identification (a, b, ¢) = (1, ys, ¥s) will be
made, the N(p,) set of s being unprimed, P(d,.) primed once, and P(d;,)
primed twice. Then the remaining molecular orbitals of the (PN); -
electron system can be written in the form

03,0, = Vszi wziJ3W3

1 3
(D+,(D_ = —= iJ- ”:*; = 4
3 8 \/2"/’3 8tp2 2\/21’)3
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with three orbitals describing the triply degenerate level lying in the zero
of energy €, = €5 = € = 0

O, =y
. V3,
O; =y, + —y;
2
. V3,
(I)e=%')”3—~'2—1p2

The form of the MOs @, (j =1, 2,...9) is, for present purposes, of
importance because it emphasizes that each orbital embraces the six-
membered ring, and implies conjugation, or delocalization of the =
electrons throughout the same region. This property is underlined by the
familiar orbitals ®, and @, which, as indicated above, are equivalent in
form to benzene MOs.

Thus d,—p,, bonding in the (PN), ring system can be interpreted either
in terms of localized P-N-P °‘islands’ with, effectively, no conjugation
effects operating between islands, as suggested by the model due to
Dewar, or, alternatively, as fully conjugated systems. The two interpreta-
tions are equivalent and complementary.

We propose now to outline a set of experiments which have the effect
of taking d-orbitals out of conjugation, and provide a link with the benzene
solution, and with Craig and Paddock’s model for (PN);Clc. By ignoring
either d,, or d,, orbital participation in conjugation the original 9 X 9
matrix problem is automatically changed to 6 X 6 and the link is not
achieved. Here we propose to reduce, in the first experiment, d,, orbital
participation progressively, within the 9 X 9 matrix problem, by increasing
systematically the three coulomb integrals

o, = o+ hzzﬂ

where o is the coulomb integral common to the remaining P(d,.) and
N(p.) atomic orbitals, § the common resonance integral, and 4. is made
progressively negative. The discussion given earlier in Section 4-2 indicates
that when the three coulomb integrals «,, are made increasingly electro-
positive, three levels emerge eventually above the ‘band’, and the cor-
responding MOs become increasingly ‘localized” as Py(d;.) group orbitals.
The remaining P(d,.) and N(p.) orbitals participate in conjugation which
increasingly resembles, in character, the conjugation found for benzene.
Thus the six energy levels, excluding the three levels that emerge above the
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band change towards the limiting values +28, + 8 and + 8, which charac-
terize the benzene system (Figure 4-17). The levels ¢; = 28 and ¢; = —28
and the corresponding ‘benzene-like’ MOs @, and @ of the original d,—p,,

FIGURE 4-17

system, in fact remain unchanged throughout this process. At the same time
charge densities and bond orders also manifest changes towards a benzene-
type configuration with charge densities gy = ¢,, = 1, and pyp = 2/3
(Figure 4-18).

In a second experiment d,, orbital participation in bonding is dimi-
pished, in a similar manner, by increasing progressively the three-coulomb
integrals

aye = o + hy.fB

In this case three levels associated increasingly with Pa(d,.) orbitals
only, emerge above the ‘band’, and the remaining levels change towards

those obtained by Craig and Paddock, namely +£V/38, +v/34, 0, 0 as
limiting values (Figure 4-19).
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FIGURE 4-18

FIGURE 4-19
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The changes in charge densities and bond orders may be represented in
the form of Figure 4-20.

20r
15F
1 [ -
10
__0e67
05 ' 5 0557
4
] ] ] 2 r-~-"“1‘:--‘.~.. 1
0 1 2 3 4 5 ©

Sa},,

1, qN; 2, 7,75 3, Ixz+ 4, p3’= 10433 5, p32=-p53
FIGURE 4-20

The limiting values qy = 11, ¢.. = % do not represent a satisfactory
description of the charge distribution, and are due to the failure of Hiickel
theory to deal adequately with the assignment of = electrons in the neigh-
bourhood of the degeneracy e = 0 which also applies in Craig and
Paddock’s model (Figure 4-11) as described earlier. If one = electron is
arbitrarily assigned to each of thetwolevels which coincidein the degenerate
situation, an acceptable even charge distribution with gy =g¢q,. =1 is
obtained, but a small perturbation recreates the anomaly. The origin of
the problem and details of the discontinuity in the charge distributions
can best be studied by examining the corresponding orbital and energy-
level changes in these experiments.

The calculations described above, in which parameters of the equations
are varied, are made possible in a practical sense largely by the availability
of high-speed computational methods. Both sets stem from a model in
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which all coulomb integrals are equal, a,, = «,, = «,, and which can be
described in terms of the symmetry orbitals @, (j = 1,2,...9) which
imply a fully conjugated six-membered ring, or of Dewar’s P~-N-P ‘islands’.
Connexions are then made with Craig and Paddock’s model, and with a
solution similar to that of benzene, by increasing «,, and «,, respectively,
thereby reducing participation of the corresponding atomic orbitals in
d,—p, conjugation. The results provide an apt comment on theoretical
arguments concerning definitions of aromaticity and conjugation. Clearly
d.—p, conjugation in phosphonitrilic polymers can be interpreted as being
non-conjugated in the sense of the ‘island’ description, and, simulta-
neously, as being fully conjugated.

4.6 COMPUTER PROGRAMS

Pi-electron dipole and transition moments are calculated from some
specification of coordinates of the conjugated atoms in the (x, y) plane of
the molecule. To provide simplified handling of data a subroutine CORDS

is introduced in which atomic coordinates are selected from the hexagonal

grid of Figure 4-21. Grid coordinates are defined as multiples of 4/3//2 in

FIGURE 4-21

the x direction and as multiples of //2 in the y direction, where / is the
(uniform) bond length. Atom 1 has grid coordinates (0, 2), atom 2 is (1, 1),
atom 3 (1, —1), atom 4 (0, —2) and so on, and the complete set of grid
coordinates, given in Table 4-6 for the 54 atoms represented in Figure 4-21
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is read, in FORMAT (4012), into the arrays IX, IY so that corresponding
elements identify a grid point.

Table 4.6
Data cards for the arrays IX, TY

First card for IX (40 atoms)
+0+14+140—-1—1404+14+24+24343+4+24+24+14+0—-1—2—-2—-3—-3-2
—2— 140+ 14243+ 3+4+4+5+5+4+4+3+3+24+140

Second card for IX (14 atoms)
—1—2~3—3—4—4—5—5—4—4—3—-3-2—1

First card for IY
+2+1-1-2—14+1444+5+44+24+1-1-2—4—
+4+5+8+T7+8+T+5+4+24+1—1-2—4-5
Second card for IY (14 atoms)
—~7—8—7—5—4—2—1+1+42+4+5+7+8+7

Atom coordinates (x;, y;) are computed within the subroutine CORDS
by multiplying grid coordinates for selected molecular frameworks by
V/3EL/2 and EL/2, where EL = 1-40 is taken to be the uniform bond
length in Angstrom units. Since the hexagonal grid may be required for
several successive calculations, involving different molecular frameworks,
input of grid coordinates IX, IY conveniently precedes initiation of the
outer loop in the main program.

The use of the hexagonal grid of Figure 4-21 is fairly obvious. Naphtha-
lene, for example, can be defined by the following sequence of numerical
labels

10 11 12 13 03 04 05 06 01 02
or by
25 26 08 07 24 23 51 52 53 54

and so on. The chosen set of N labels, where & is the number of conjugated
atoms, is read under FORMAT (4012) into the array NATM and the atom
coordinates are processed by extracting corresponding IX and IY values.
The sequence in the chosen set is immaterial at this point. It is important,
however, that the incidence matrix NUCK that defines the bonding in
subroutine INPT should match the sequence. For example, both sequences
for naphthalene match the following bonding scheme for NUCK
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9 1
P Y
7 5 3
6 4

but the sequence
54 24 23 51 52 53 25 26 08 07

represents a reordeﬁng of the second set, that matches the NUCK bonding
scheme )

The same NUCK would match the ‘skew’ sequence for naphthalene
24 07 01 06 22 23 54 25 26 08

though computed values of x and y components of dipole and transition
moments obtained from the programs described below would be different.
Resultant moments are always the same in magnitude, and in directions of
polarization referred to molecular axes, when different basic frameworks
are chosen, though components and polarizations referred to grid co-
ordinates may be different.

At first sight, specification of a molecule in terms of hexagonal grid
coordinates should dispense with the framework definition given by the
incidence matrix NUCK. However, ambiguous situations can arise from a
grid definition, for example, as between cis-stilbene and phenanthrene

and these are resolved by the NUCK specification.
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DIMO (p. 117)
The argument list of the subroutine DIMO that calculates the dipole
moment due to the w-electron system, contains N, the number of conju-
gated atoms, the arrays X and Y that hold the coordinates (x;, y;) of the
i=1,2,...N atoms, and PRS, the bond-order matrix. The subroutine
calculates and prints EMU, the n-electron dipole moment, and compo-
nents SX, SY parallel to the coordinate axes. The dipole moment is calcu-
lated in accordance with the overlap approximation which takes into
account diagonal elements PRS(I, I) only of the charge distribution.
Additional statements are introduced in MODH to allow modification
of elements of the array Z(I) of effective nuclear charges from the initial
values Z(I) =1 set in PAHY. These instructions constitute the loop
initiated by statement 22 in MODH. Dipole moments are then calculated
from the net charges at each conjugated atom

P =PRS(I, I) — Z(I)

TRMOM (p. 118)
The subroutine TRMOM calculates transition moments and oscillator
strengths for single ‘excitations’ between specified 7r-electron energy levels.
It contains a program segment for the automatic selection of levels that
is primarily intended to simplify input data, and can be applied to parent
AHs and related modified molecules. The significant transitions are those
of lowest energies involving ‘excitations’ amongst levels that lie imme-
diately on either side of the zero « of energy. The subroutine argument
LVLS contains, on entry, a preassigned integral value that specifies the
levels to be taken into account; for example, if LVLS = 3 all transitions
between the three highest occupied and the three lowest unoccupied levels
will be computed. For naphthalene this specification computes the transi-
tions (i — k) in which i = 3,4,5 and k&’ = 6,7, 8 and for anthracene
i=35,6,7and k' = 8,9, 10. The total number of transitions selected by
LVLS is stored in MINK, and is notionally given by MINK = (LVLS)2.
The argument list of the subroutine contains N, the number of conju-
gated atoms, LVLS the specification for selecting levels, C, the two-
dimensional array of MOs, ADIAG, the array of energy levels, and X, Y,
the arrays of atomic coordinates. The subroutine computes and prints for
each transition

LL — lower index i
LH — higher index &’
TERM — excitation energy
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XMIK — m}, x component of the transition moment.
YMIK — m}, y component of the transition moment.
OSC — oscillator strength

TERM and OSC are calculated with the formal introduction of g =
3:6 eV in the FORTRAN statement SBETA = 36, which is chosen to
match the observed transition energy of the p-band of naphthalene, as
described earlier.

MAIN program (p. 116)
A modified MAIN program that reads the grid coordinates IX, IY and

later calls DIMO and TRMOM is presented.

Additional notes
The hexagonal grid cannot be used for non-alternants like azulene and

certain other molecules, though most alternants with mesomeric groups
attached can conveniently be referred to a hypothetical parent alternant.
Nitrobenzene can, for example, be associated with the sequence

10 11 12 13 03 02 09 08 29

and a corresponding incidence matrix NUCK which generates a HUCK
matrix that can be modified by the introduction of appropriate parameters
for the NO, group in MODH.

It will be necessary, when the hexagonal grid does not apply, to replace
CORDS by a routine reading (x, y) coordinates directly, and to omit
input of the grid arrays IX, IY.

Similarly, the simplified specification of LVLS must be used with care
in certain situations, though it will always operate, provided the levels
called for are available. If replacement is necessary, a program segment
reading the indices i of occupied orbitals into the array LL, and corres-
ponding indices k” of unoccupied orbitals in the array LH, must be pro-
vided to replace the selection routine in TRMOM that precedes initiation
of the loop that begins DO 18.

The program segments concerned with the hexagonal grid and with the
LVLS routine are introduced simply to reduce the quantity of input data.
They are easy to use, effective in practice, and reduce the risk of error.

Data Set 1
The following set of data will compute m-electron energy levels and orbitals,
charge densities, bond orders, free valences, atom-atom polarizabilities,
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dipole moments, excitation energies, components of transition moments
and oscillator strengths for

(a) naphthalene, quinolene and isoquinolene
and (b) benzene, pyridine and pyrazine
using the parameter day = 0-585.

First card for IX

Second card for IX grid coordinates (4012)

First card for I'Y

Second card for I'Y

0002 NMOLS (number of parent hydrocarbons)
0005 LVLS

010005 N, M

0

10

010

0010 NUCK ! 2 3
00010 (8011) 10 4
000010

0100010 9 7 S
00000010 8 6
000000010

1000000010

10 11 31 32 33 34 12 13 03 02 NATM (4012)

0003 NDER

0000 NMOD hydrocarbon
0001 NMOD quinolene
0101 — 0:500 L], X

0000 1, X Z modification
0001 NMOD

0202 — 0500 I,J,X isoquinolene
0000 1J, X Z modification
0003 LVLS

006003 N, M
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—_-OoO OO O
OO OO
OO

O = O

0
10

06 22 23 24 07 01

0003
0000
0001
0101 — 0-500
0000
0002
0101 — 0-500
0404 — 0-500
0000

Data Set 2
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1

NUCKk © 2
som) 5

4

NATM (4012)

NDER

NMOD hydrocarbon
NMOD

I,J,X pyridine

1J, X

NMOD pyrazine
LI X

L)X

11, X

The following data set computes the quantities listed in Data Set 1 for
aniline. Two calculations are performed with the parameter sets

(a) day = 1-08,
(b) doy = 1:58,

IX, IY cards
0001

0003
007004

- QOO =0
QOO O=O
OO ~O
SO~ O

O -0

[’

(=]

ﬁC—N = 0'713a Zy; =2
Bo-x = 0'7.3, Zy =2

grid coordinates

NMOLS
LVLS
N, M
.
X
NUCK 1
8011) 6 2
5 3
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07 24 54 25 26 08 01 NATM (4012)
0002 NDER

0002 NMOD

0701 — 0-700 Bo-n

0707 — 1-000 day

072:0 I, X Zy =2

0000

0002 NMOD

0701 — 0-700 Bo-n

0707 — 1-500 day

072:0 I, X Z; =2

0000

It should be noted that the technique for selecting ‘excitations’ auto-
matically, according to the value of LVLS, omits, in the present case,
three excitations involving transfers from the lowest bound level ¢, to the
three antibonding levels €. (k' =5, 6, 7). The calculation is, in fact,
confined to the nine transitions y(i — k') in which i = 2,3,4 and k' =
56,7

The results obtained from Data Set 1 can be compared with those given
in the text in Section 4. A section of this output describing the solution
for pyridine precedes the program listings.
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A. Results

MOLECULE NO, 1

“DOoOOoOAD
-1 -)
DOo-D
o

“a

-]

MODIFICATIONS
1 i 0,500

ENERGY LEVFLS
J= 1 2

-2:1074 ~1,1672
HUCKEL ORBITALS
1

J= 2

0.,520706 =-0.571374
0,418504 ~0.190609
0,361268 0.348B97
0,342849 0.597839
0,361268 0.348897
0.418504 ~0.190609

O AN+

TOTAL PI~ELECTRON ENEHRGY =

CHARGE DENSITIES

1:1952 0.9230
FRFE VALENCES
014247

ROND~ORDER MATRIX

1:1952 0.6537
0:6649 0.9499
=0:0770 =0,3306

DIPOLE MOMENT= 1.0936

0,4090
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~1.,0000

3

4 5
0.8410  1.0000

4 5

3
8.000000 0.545913 0.000000
~3.500000 =0.366024 ~0.,500000
-9,500000 -0,238101 0,500000
0.000000 0.566258 ~0,000000
8.500000 -0,236101 ~0.5006000
#.500000 -0.366024 0.500000

-8.5493
1.0045 0.9499 1.0045
0.3977 0.4022 0.3977
0,9238 -0.0225 0.6694
«0.022% -0,3306 0.0045
0.0591 0.6694 0.923¢
XMu= 0.8000 YHu= 1.0936

6
1.9337

6
-0.323073
0.3593128
-0.437110
0.452102

-0.437110
0.393128

0.9230

0.4090

1.0045
0.6649

0.0591
0.6537

-0.3261
1.0045
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TRANSITION MOMENTS

K ENERGY
4 53467,05
5 58086,.00
4 58322.86
5 62941,81
6 85202.82
4 85630.62
6 90058,63
3 90249,57
6 117366,38

) W G N N G A e

XINT YINT
0.732 0.000
n.000 G.700
0.000 ~0.697
n.654 6.000
0.053 -0.4000
0.000 0.032
~0.000 -0.011
~0.069 0.000
=0.000 =0.001

ATOM-ATOM POLARIZABILITIFS

0scs

0.6225
0.6176
U.6142
0.5844
0.0058
0.0019
0.0003
U.06094
0.0000

<0.3754 0.1477 =-0,0084 0.0969 -0.0084 0.1477

60,1477 ~0.3991 0,1588 -0.0058 0.1004 -0.0020

ATOM 1
ATOM 2
ATOM 3
-0.,0984 0.1588 =0,3976
ATOM 4
60,0969 =-0.0058 0.1561
ATOM 5
~0,0n084 0.1004 =0,0094
ATOM 6
0,1477 =0.0020 0,1904
END
REND:

TIME = 0001 29
A

0.1561 -0.0094 ¢.1004

=-0.3974 0.1%61 -0.0058

0.1561 =0.3974 U.1558

~0.0058 0.15838 -0.35991

111
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B. Listings

HUCKEL CALCULATIONS
DIMENSION X(96),Y(96),1X(96),1Y(96)

DIMENSION A(30,30),ADIAG(30),U(30,30),PRS(30,30),FV(30)

DIMENSION Z(30)

98
99

=3

10

18

10
98

READ(7,98)(IX(I),1=1,54)
READ(7,98)(1Y(I),151,54)
FORMAT(4012)
READ(7,99)NMOLS
FORMAT(I4)

DO 10 KMOLS=1,NMOLS
HRITE(2,100)KMOLS
FORMAT(1H1,13H MOLECULF NO.,14)
READ(7,99)LVLS

CALL INPT(N,M,A)

CALL CORDSIN,X,Y,IX,1Y)
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SUBROUTINE MOIDH{N,A,ADIAG,7)
DIMENSTON 4(30,30),ADIAG(30)
DIMENSION 7(30)
READ(7,99)4M0D
IF{NM0D)18,1%,19

19 WRITE (2,103)
103 FORMAT (///14H MODIFICATIONS)

DO 17 K=1,\40p
READ(7,100)1,J,X
WRITE (2,102)1,J,X

102 FORMAT(I3Z,?2X,13,3X,F7,8)

IF €1-J)15,16,14

READ(7,99)INDER

DO 10 KDER=1,NDER 16 ADIAG(J)=X

CALL PAHY.(N,A,ADIAG,Z) 60 TO 17

CALL MODH(N,A,ADIAG,2) 15 AlJ,1)=X

EPS=1E-16 G0 TO 17

NI1T=0 14 A(l,d)=x
17 CONTINUE

CALL SCOFTL(N,A,ADIAG,U,NIT,EPS)

CALL ORDR(,A,ADIAG,U) 22 READ(7,200) 1J,X

200 FORMAT(12,F3.1)

CALL PMAT(N,M,U,PRS)
CALL FVALCM,PRS,FV,A) WRITE(2,201)1J,X
CALL OTPTCN,M,A,ADIAG,U,PRS,FV) 201 FORMAT(I3,3X,F4,1)
CALL DIMDCN,X,Y,Z,PRS) IF(14)18,18,21
CALL TRMOM(N,M,LVLS,HU,X,Y,ADIAG) 21 72(10)=X
CALL ATAT(N,M,ADIAG,U) GO TO 22
CONTINUE 99 FORMAT(14)
STOP 100 FORMAT(12,12,F6.3)
FND 18 RETURN

END

SUBROUTINE CORDS(N,X»Y,IX,1Y)
DEIMENSION X(96),Y(96)»1X(96),1Y(96),NATM(96)
EL=1.40

X7=0.8660254#EL

¥T=0.5%EL

READ(7,98) (NATM(J),J=1,N)

00 16 I=1,N

IDsSNATMCD)

XCD)=IX(ID)#XT
YCI)=IY(ID)#YT

FORMAT(4012)

RETURN

END

SUBROUTINE DIMO(N,X,Y,Z,PRS)
DIMENSION X(96),Y(96,PRS(30,30)
DIMENSION 2(30)

EN=N

SX=0

8Y=0

DO 18 I=1,N

PzPRS(I,1)-2(1)

SX=SX+PxX ()

18 SY=SY+PaY(I)

EMU=4,772SORT(SXaSX+SY*5Y)
SX=4,77#SX

SY=4,77#SY
WRITE(2,109)FMU,SX,SY

109 FORMAT(/15H4 DIPOLE MOMENT=,F8.4,2X,5H XMU=,F8.4,2X,5H YMU=,FB,4)

RETURN
END

113
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SUBROUTINE TRMOM(N,M,LVLS,C.:X.Y,ADIAG)
MENSION C(30,30),X(96),Y(96),ADIAG(30} v
giHENZION LL(6;),LH(64).XMlK(bﬂ).YMIK(GQ):TERH(64).OSC(64)

=1

BO 10 J=1,LVLS

MD=M+1
MT=M

1F(J~1)17,17,11

17 LH(I)=MD
LLCI)Y=MT
G0 70 10
11 KUPP=J-1

DG 12 K=1,KUPP

I=1+1
LH(I)=Mey
k(1) =MT
I=l+1
LH(I)=MD
LL () =M=KUPP
MT=MT=1

12 MD=MD+1
I=1+t
LL{I)=M=KUPP
LH(1)=Mey

106 CONTINUE

MINK=LVLS#LVLS
DO 18 T=1,MINK

SJEELLD
JK=LH(D)
SX=0

SY=90

Do 27 L=1,N

C1=C(L,J1)*ClL,JIK)

SX=SX+C1aX(L)
27 SY=SY+ClaY(L)

XMIK(1)=SX
YHIK(I)=SY
SBETA=3,6 )
TERMCI)=(ADTAG(JK)=ADIAG(J1)) #8067 .5%SRETA
18 0SC(1)=0,0000217#(SX®SX+SY#SY)#TERM(I)
WRITE(2,200)
WRITE(2,202)

DO 19 I=15MINK

YMIK(I),0SC(1)
9 WRITE(2 201)LL(I).LH(I),TERM(1);XﬁIK(I).
2%1 FORMAT(id,ZX.14.1X.F10.2.2X.FB.3,ZX:FB.3:JX.FB.4)

6 FORMAT(//19H TRANSITION MOMENTS)
232 :ORMAT(IZX:ZH 1,4%,2H K»3X,7H ENERGY,5X,5H XINT,5X,5H YINT,5X,5H 0

15CS)
RETURN
END
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4.7 PROBLEMS

Most of the problems presented below involve sets of calculations in
which parameters are varied systematically over prescribed ranges. In all
cases they can be accomplished in a single computer run, provided the
data is specified adequately and correctly. Several problems are quite long
and produce considerable output for inspection; they imply some experi-
mentation with parameter modifications, and are in the nature of small
projects that are comparable, in a sense, to laboratory work in experi-
mental sciences.

They are frequently stated briefly, and in outline only and, in certain
respects, in an imprecise manner. In this respect they resemble rather brief
laboratory notes that indicate a procedure but leave the planning and
implementation to the discretion of the investigator. For example, problem
5 is intended to promote a systematic study of the conditions under which
certain m-electron excitations can be justifiably interpreted in terms of
charge-transfer effects. The problem is stated in a naive form, that requires
some effort on the part of the investigator to formulate a series of calcula-
tions, based on previous experience, for some molecule of his own choos-
ing, which will help to illuminate ideas concerning charge-transfer effects
in conjugated molecules.

The problems are, therefore, intended to provide a basis for the develop-
ment of experimental work on the Hiickel model by computer methods.
It is hoped that they will generate ideas in different fields of applications
to conjugated molecules.

1. Compute Hiickel solutions for aniline and similar molecules having
the same parent benzyl framework (see Section 6). Apply the modification
parameter h; through the range 0 (0-5) 3-5; within this range 4, = 1.0,
2:0, 3-0 might represent —NH,, —~OH and —F substitution respectively.

2. Repeat problem 1 for - and S-naphthylamine. Observe the alternat-
ing polarity of net charges at successive atom positions r, measured by the
quantity (g, — 1).

3. Compute solutions for —~NO,, ~COOH, —C = O and other meso-
meric substituent groups in benzene and naphthalene (see Table 4-1), and
compare alternating effects produced by electron donating and accepting
groups.

4. Consider the form of the MOs involved in ‘excitations’ from highest
occupied to lowest unoccupied energy levels for each molecular species
considered in problems 3 and 1.

To what extent is it possible, if at all, to interpret the relevant excitations
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as charge transfer effects between R and Y where R-Y is the composite
m-electron molecule, and Y stands for —NH,, —OH, —F, —NO,,
—COOH, —CO? (Use the subroutine TRMOM to pick out forbidden
‘excitations’ and to determine the polarizations and intensities of those
that are allowed.)

5. In a series of calculations reduce the magnitudes . of resonance
integrals B* connecting R and Y systematically towards zero and note
the changes in orbitals, energy levels and transition moments. To what
extent are the transitions of the composite system R-Y best described as
charge transfer effects or in terms of ‘repulsions’ between interacting levels
of the components R and Y?

(Note:—As a first example examine the case of «-naphthylamine as
considered in problem 2. Take hy = +0-8 and vary f* = kf through
the values k = 1-0, 0-75, 0-5, 0-25 and 0-001. Repeat the calculations with
hy = +1-2).

6. Take a linear polyene with, say, ten conjugated carbon atoms, and
apply the modification da, = 8 with h, = 0, £2, 44, +6 to the end
atom r = 1. Observe how a ‘surface state’ emerges. Next, apply the same
changes d«, at both end atoms r = 1 and r = 10 simultaneously. Two
surface states emerge virtually together, as a degenerate pair. What
are the nodal characteristics of the corresponding molecular orbitals?
Transform these orbitals by taking sum and difference combinations to
give one orbital largely localized on atom 1 and the other on atom 10.

7. Compute solutions for naphthalene, applying the modifications da, =
h.B with b, = 0, £2, +4, and 4 = 1, 2 in turn. Observe the emergence of
levels from within the band, the ‘localization’ of orbitals, and ‘migration’
of nodes.

Note the relationships

Agy(dx,) = —Agy(—dx)
Psi(0a,) = —po(—da,) (s, t same set)
= +po(—0day) (s, t opposite sets)
F,(0o,) = +F{(—0a,)
that derive from the properties of ‘conjugate’ solutions, and, by including
the subroutines ATAT, DIMO, and TRMOM confirm the following
additional relationships that stem from the same source
7y o(+00,) =+, (—0,)
P+ 00,) = — pa(—00t)
S +00,) = fiyie(—0x)
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8. Compute solutions for stilbene

5 6 |
4 1 13 8 9

AN

3 2 19 7
12 N

10

and apply successively the modifications f,5,4 = kf with k = 1-0, 075,
0-50, 0-25, 0-001, 0; these changes might be used to describe, in the Hiickel
approximation, rotation about the central 13, 14 bond.

Note that the levels change progressively towards those of two ‘benzyl’
m-electron systems. Transform the MOs of the degenerate levels obtained
in the case k = 0 to ‘benzyl’ MOs by taking sum and difference combina-
tions. In what sense is a correct solution obtained, if at all, for the degene-
rate case?

9. Apply the same changes in k to the two ‘single’ bond resonance
integrals B, 13, B7.14 both simultaneously and separately, keeping f1a,14 =
B, and observe how the MOs change towards those of the benzene and
styrene m-electron systems.

Calculate the total 7-electron energies & = 2 ¢, in each case, and note
that the reduction in & is less for single than for the double bond.

10. Obtain Hiickel solutions for a transition-state structure for electro-
philic attack similar to that proposed by Mulliken in which four = electrons

3 2
1
3 y==T
l4
5 6

are assigned to the pentadienyl framework and two to the pseudo = double
bond. Apply a NUCK matrix describing the ‘benzyl’ framework and
introduce the modifications (in MODH)

/31.6 = ﬂl,z =0
51.7 = 2'5ﬂ

to transform to the proposed configuration.
Now introduce hyperconjugation to bridge the two -electron segments
5
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by increasing 8, , and B, ¢ together in systematic steps given by

.31.2 = ﬁ1.e = kﬂ

where k = 0-1(0-1)0-5.

Observe that hyperconjugation in this representation stabilizes the
system by lowering the total =-electron energy.

It should be emphasized that this simple treatment does not do justice
to Mulliken’s model which incorporated factors representing effective net
charges and introduced some degree of self-consistency.

11. Construct the NUCK matrix for (PN); using, for example, the
labelling shown

12p  \3
12y p%5
10,1P Ng
oN Pz

in which

¢, (r=1,4,7,100 represent P(d,;) atomic orbitals

¢r (r=2,5,8,11) s P(d..) 9 ’

¢r (r = 3, 6’ 9, 12) bl N(.pz) 2 b

Each element 1 of the NUCK matrix is converted in the input routine
INPT to —1-0 to comply with the sign of the resonance integral . Alter-
nate P(d;.)-N(p.) orbitals mismatch and the appropriate modifications

0503 4 1-000
0806 + 1-000
1109 4 1-000
1202 + 1-000

must be read in MODH.
Verify that the roots 42, 0 of a single ‘island’ are repeated with four-
fold degeneracy.
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Reactivity Indices in Molecular Orbital
Theory

The reactions of conjugated molecules have been interpreted in MO
theory in terms of reactivity indices associated with different models of
reaction processes. Such models are generally related, at least notionally,
to certain regions of a potential energy curve for the reacting species of
the form shown in Figure 5-1. Most indices refer either to region 4, which
represents the early stages of a reaction, or to region B, which represents a
transition state for the reaction. The reactivity indices associated with
models describing region A are, or can be, defined in terms of perturbation
formulae which describe modifications of -electron ground states of con-
jugated molecules, while the most important indices associated with
models of region B compute w-electron energy differences between ground
states and assumed transition state m-electron configurations. Of the
several reactivity indices defined within the framework of MO theory,
those associated with the isolated molecule model (Section 5-1A) which
refers to region 4, and the localization model (Section 5-1B), which refers
to region B, only will be considered in detail. Most other indices are
defined by similar techniques, though some are less securely based on
plausible physical models, and may incorporate parameter adjustments
that are questionable on purely theoretical grounds, as indicated by
Greenwood and McWeeny.!

The reactivity indices of the isolated molecule method are charge
densities, free valences, bond orders, and polarizability coefficients, and
all are computed by the programs presented earlier. Similarly, the -
electron energies required in applying the localization method, which are
particularly tedious to calculate by hand machines, can be obtained from
the same programs, from input data describing appropriate parent and
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residual molecules. Frontier orbital amplitudes (Section 5-4) are, incident-
ally, obtained from the same standard computer output, and most other
indices can be calculated by the addition of subroutines which use the
eigensolutions obtained from the main program.

Computer calculations can be used for studying reactivity problems in
two main areas of application. Firstly, in traditional calculations of
reactivity indices for the prediction or interpretation of the reactions of
conjugated molecules, and secondly to examine the properties of reactivity
indices and the models on which they are based. Correlations between
numerical values of reactivity indices and observed preferential positions
of attack in conjugated molecules have been extensively confirmed, and
widely described in the literature, and need not be repeated here. Many
references are, for example, given in Part III of Streitwieser’s monograph.?
However, attention has been drawn to discrepancies which can arise in
particular cases, and typical examples are considered in Section 5-2, not
least because the problems can only be resolved numerically, which implies
the use of computer methods. A later section (5-3), shows how computer
calculations can assist in providing a working understanding of the nature
of relationships between reactivity indices, in a situation where the analyti-
cal treatment may be difficult. The examples suggest that, in a wider
context, numerical techniques may offer an alternative, more accessible
approach than the analytical methods, in the study of theoretical problems,
at least until proofs are required. Discrepancies are not, however, con-
fined to anomalous predictions of active positions by reactivity indices.
Certain reactivity indices which apply to similar regions of the reaction
path are, apparently, mutually exclusive on conceptual grounds, though
these incompatibilities do not become apparent unless the appropriate
numerical calculations are made as shown in Section 5-4. A final section
examines the MO interpretation beyond the restrictions imposed by the
use of reactivity indices, and suggests a physical interpretation which sup-
ports the notion of localized w-complexes as proposed by Olah and his
associates.35

5.1 MOLECULAR ORBITAL THEORIES OF REACTIVITY

In the theory of absolute reaction rates, the rates are determined under
conditions of constant temperature and pressure, by the free energy of
activation

AF} = AH} — TAS?
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where AH? and ASt are enthalpies and entropies of activation. According
to the theory the rate constant in solution is given by

kT

— ~ AFY/RT
=—0
h

where k and h are Boltzman’s and Planck’s constants respectively. The
experimental Arrhenuis equation for the rate

k = Ae~AEoIRT
is expressed in terms of empirical parameters 4 and AE,, where AE, is
the experimental activation energy, which can be related to the thermo-
dynamic functions. For example, it can be shown that®

AHt = AE, — RT

so that
k= l_(ﬁT-' eAStIR - AHLIRT
gives
= _e_l_‘_I_'eAst IR o= AEq/RT
h
or

kT
A= _e_h_, eAStIR

It is assumed that, for similar reactions, entropies of activation AS{,
involving rearrangements of the o-bonded framework, are comparable
for different positions of attack in the same, or similar, conjugated mole-
cules, and that relative rates are primarily dependent upon the term
exp(—AE,/RT).

potential energy

reaction coordinate
FIGURE 5-1
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The activation energy AE, may then be subdivided into a term AE,
relating to the = electrons only, and a term AE’ representing all other
contributions to AE,. AE’ includes, for example, changes in o-bond
energies, steric and solvent effects, and is assumed to be the same for all
positions of attack, so that active positions are ultimately determined by
m-electron energy changes only.

A, The isolated molecule method

In their original work on orientation effects in benzene derivatives,
Wheland ‘and Pauling” assumed that electrophilic and nucleophilic reac-
tions take place preferentially at ring positions of high and low-charge
densities respectively, and verified the hypothesis by numerical calcula-
tions. In AHs the charge density g, is unity at all conjugated atoms r,
and active positions were then predicted correctly by the charge density
g, in a polarized molecule, given approximately by

qr' = g, + 7,00, G-1)

in which =, , is the self-polarizability of atom r, and where the change
de, in coulomb integral at the position r under attack was attributed to
the field of the neighbouring charged reagent. Coulson and Longuet-
Higgins embodied these, and similar ideas, in a general perturbation
theory of #-electron systems®:® in which the polarization (5-1) was related
to a corresponding approximate change 66 in m-electron energy given by

08 = q,00, + }m, 007 (5-2)

This formula provides a basis for determining active positions by -
electron energy changes expressed in terms of the reactivity indices ¢, and
Ty ye

A similar expression relates the free valence F, to an approximate
change dé€ in m-electron energy produced by changing resonance integrals
Brs and B,; between atom r and its two neighbours s and ¢; thus

8& = 2(V3 — F,)ép (5-3)

where 8f = 8f,; = 88,;. Such changes in resonance integrals may be
attributed physically to changes in hybridization at the position r under
attack associated with incipient o-bond formation with the incoming
reagent. No net charge shifts results from the process (5-3) when applied
to AHs, and the free valence is generally assumed to be a reactivity index
for radical reactions.
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The isolated molecule method applies to the earliest stages A of the
reaction process represented in Figure 5-1, where the molecule under
attack is exposed to the small changes da,, 68.

B. The localization method

The method, as originally presented by Wheland,'° described an activated
complex as a resonance hybrid of structures including

H S\ _H
)

(a (b)

FIGURE 5-2

In structure (2) the ionic reagent X lies close, but is not bonded to the atom
under attack, and may correspond to a polarized ground state analogous
to that described in the isolated molecule approach. In structure (b) the
reagent X is joined to the substrate by a roughly tetrahedral o bond,
and the atom r under attack is, in consequence, excluded from conjugation,
which is now confined to the corresponding residual molecule (Chapter 4-2).
Wheland proposed, in defining the localization method, that structure (b)
dominates the resonance hybrid to the virtual exclusion of all other
contributions, and that the ‘polarization’ or localization energy L, defined
as the difference in energy of the = electrons in the unperturbed ground
state and of the same number of electrons in structure (b) referred to a
position r under attack, provides a comparative measure of the ease of
attack. ,

Consider, for simplicity, applications to benzene, where the attacking
reagent may be electrophilic (E), nucleophilic (N) or radical (R) in
character.

In the three different types of activated complex (E), (R) and (N), two,
one, and no = electrons are withdrawn to form the new C-X o-bond at
the position r of attack, and the residual molecules carry in consequence
four, five and six = electrons respectively. The energy levels of the penta-
dienyl system, ¢ = 0, +4, ;l;\/sﬁ are necessarily. the same in each case in
the Hiickel approximation and the occupancies of levels are shown in
Figure 5-4.
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FIGURE 5-3

Wheland assigned an energy € = o, = 0 to each electron localized at
the position r under attack as shown in Figure 5-4, and consequently the
localization energies L}, L; and L, for electrophilic, nucleophilic and
radical attack are, for AH, the same. It is an obvious consequence of the
charge shifts that the residual molecules are positively charged, negatively
charged or neutral in the three cases (E), (N) and (R) respectively, al-
though, in the Hiickel approximation, energy levels are not modified
accordingly.

The assignment € = «, = 0 for localized electrons is purely formal; it
ensures that localized electrons at all positions r of attack are treated in
the same way, so that localization energies may be used for comparative
purposes. An alternative prescription that formally omits the energy of
localized 7 electrons, necessarily obtains the same localization energies

>k
<

(] (N) (R)
FIGURE 5-4
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since «, = 0; however this prescription does not strictly subscribe to
Wheland’s original concept of the activated complex as a resonance
hybrid of structures, each with the same number of = electrons. Either
way, it is important to recognize that localization energies, which are the
reactivity indices of this method, can be used for comparative purposes
only. Considerable care must be exercised in attributing physical concepts
to localization energies, since physical processes of localization are not
considered in formulating the method. For example, it appears impossible
to interpret a localization energy as the energy required to bring about the
localization of = electrons at the position of attack.

5.2 REACTIVITY INDICES IN PRACTICE

It is well known that, in general, reactivity indices of both methods predict
the same active positions in AHs, and in many derivatives and hetero-
cyclics, though discrepancies can arise in certain non-alternants, hetero-
cyclics and derivatives of AH; localization energies generally predict the
active positions correctly, but the reactivity indices ¢, and =, , for these
systems may fail. Take, for example, the non-alternant fluoranthrene
which has been quoted as a typical case illustrating the failure of the
isolated molecule method to predict the active position correctly.?-11-12

8 9
7 10
6 1
5 2
4 3
FIGURE 5-5

Electrophilic attack takes place preferentially at the 3-position, and,
to a lesser extent, at the 8-position. Of the appropriate reactivity indices
(Table 5-1) only the localization energy L, which is small at the 3 and 8
position, provides an acceptable description, and even here the 7-position
is anomalous; the reactivity indices of other methods also prove unsuc-
cessful (Reference 2, p. 347).
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Table 5-1
Position F, g- e L}
1 0-453 0-947 0-440 2-466
2 0-398 1-005 0-400 2:503
3 0-470 0-959 0-462 2-341
7 0-438 0997 0-427 2:371
8 0-409 1-008 0-410 2:435

Greenwood and McWeeny! showed that anomalies which occur in the
predictions of active positions by the isolated molecule method may be
resolved by considering carefully the implications of the basic formula
(5-2). The reactivity indices are slopes and curvatures that contribute terms
towards the variation of 66 with é«,, and cannot be compared indepen-
dently with experimental observations; only when g, is the same for all
atom positions, as in AHs, is it permissible to consider values of =,
separately. In all other cases both terms in (5-2) must be taken together,
and comparisons with experimental observations then necessarily invoke
some choice of magnitude for the perturbation parameter do,. When 6e,
is small, the leading term ¢,0x, dominates, and, in fluoranthrene, for
example, fails to correlate with experimental results. However when de,
is not small the contributions of both terms balance according to the
magnitude of d«,; the results obtained from equation (5-2) for fluoran-
threne, with do, = f and 2§, suggest (Table 5-2) that position 3 may
overtake the remaining positions in ‘activity’ measured by the approximate
energy change d&. Similarly the high ‘activity’ of position 2, predicted
by g, in Table 5-1 is correspondingly neutralized by the low value of m, g,
and the values 66 (d«, = 2f) predict, in fact, the same sequence as L7 in
Table 5-1. ‘

Table 5-2
Values of ¢ given by equation (5-2)
o, r= 1 2 3 7 8
B 1-167 1-205 1-190 1-210 1213
28 1-827 1-805 1-883 1-851 1-828

The results of Table 5-2 offer merely a guide to the solution for large
values of da, since the second-order term =, 602 begins to dominate, and
fails to predict active positions correctly. Clearly the truncation error of
the expansion formula (5-2) prohibits its use in these conditions, and
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calculations of the ‘exact’ change A&(d«,) become imperative. McWeeny
and Greenwood® have shown that the change do, = kf with k ~ 2 to 4
applied in turn to peripheral atoms of fluoranthrene, brings corresponding
‘exact’ m-electron energy changes A& (d«,) into agreement with the predic-
tions of localization energies L} given in Table 5-1. At the same time the
‘exact’ charge densities g, in the corresponding polarized molecules also
predict the same sequence of active positions.

1.013 N
0984 0896

1.003 1085
0983 0932

FIGURE 5-6

A second, comparable, example arises in the case of quinolene where
the uneven charge distribution stems from the presence of the nitrogen
atom. Electrophilic substitution occurs exclusively, and almost equally,
at positions 5 and 8, though the charge density distribution indicates
3 > 8 > 6.13:14.15 [ the parent hydrocarbon = ; > g 5 Which suggests
that the second-order term in (5-2) may, in the heterocyclic, favour the
5 and 8 positions at the expense of the 3 and 6, which carry large charge
densities. Numerical calculations® confirm this supposition; they show
that, as in fluoranthrene, ‘exact’ changes A&(d«,) and charge densities
q/(da,) in the polarized molecules predict the active positions correctly
when da, is not small. It is an interesting feature of the calculations that
large self-polarizabilities =, , at both the 4 position in quinolene and the
1 position in fluoranthrene, do not compensate for the corresponding
low-charge densities at these positions, which are correctly predicted to
be inactive by ‘exact’ results A&(d«,) and g,(dec,).

It follows that the reactivity indices g, and =, , cannot, on theoretical
grounds, be correlated with experimental observations, when considered
separately, except in the special case of AH for which ¢, = 1 at all atom
positions. For all molecules other than AH, both indices must be con-
sidered together, in which case values of da, must, necessarily, be specified,
and, according to the results quoted above, alleged discrepancies between
predictions of the isolated molecule method and experimental observations
may disappear. Clearly reliable information can be obtained only by
computing ‘exact’ changes A€(dx,) and Ag,(da,) by direct solution of the
secular equations, over ranges of da, values, for different positions r of
attack, and computer calculations then become imperative.
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5.3 THEORETICAL RELATIONSHIPS BETWEEN REACTIVITY
INDICES

Many numerical evaluations of reactivity indices belonging to both the
isolated molecule and localization methods, predict the same sequence of
active positions in AHs. Such correlations were found to be based upon
analytical properties of the secular equations,’® and Baba!® ultimately
established the conditions governing correlations in terms of the integral
expansions (3-23, etc.); Fukui and his collaborators!? summarized these
results and provided a comprehensive treatment expressed in terms of the
closed forms (3-26, etc.).

All reactivity indices correlate amongst themselves when calculated for
AHs, and therefore the reactions of these molecules provide no means of
determining the indices associated with given types of reactions. For
example, it is not possible to deduce from the reactions of AHs to what
extent the free valence is relevant to the case of ionic attack, since it
predicts the active positions correctly, like all other indices. In hetero-
molecules, however, the indices separate into groups characterized by the
dependence upon the hetero system itself, and discrimination becomes
possible when comparisons are made with experimental results. These
properties are discussed in the following subsections.

A. Reactivity indices in alternant hydrocarbons

Since the localization energies L}, L] and L, are, by definition, equal
when applied to AHs, the relevant correlations are between these indices
and those of the isolated molecule method. The following analysis out-
lines the treatment given by Fukui as it applies to electrophilic reactions.”

In the isolated molecule method ionic attack is described by the equation

08 = gq,00, + %71,_,60{,,2 (5-2)
where the change du, in coulomb integral at the position r of attack is

attributed to the field of the neighbouring reagent. According to equation
(3-20) the self-polarizability appearing in (5-2) can be written in the form

S f 362 dy (5-4)
a

and, for alternants, ¢, is unity. The ‘exact’ change A&(da,) corresponding
to ¢ in equation (5-2) is given by the closed form (3-29)

AE = g0, — - f In(l — Sa2y?G?) dy (5-5)
o
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where, again, ¢, = 1 and G, is the same term (3-28) appearing in (5-4).
Apply now the same change du, = d«, = d independently at two differ-
ent conjugated atoms r and s; if

ey K Ty (5-6)
then, since the same terms G,, G, arise in (5-4) and (5-5)
A& (bo,) < AS () 67

for all 6«. When |da] is large, an energy level associated with a MO largely
localized in the region of atom r (or s) emerges from the ‘band’, and the
remaining levels tend towards those of the corresponding residual mole-
cule. This condition associates A& (de) with a ‘localization’ energy, and
the identification becomes complete when |da| — oo, as described in
Chapter 4, Section 2.

Since A&(da,) - L* (Fukui) as da, - —oo for electrophilic attack,
where L} (Fukui) is the localization energy defined by Fukui’s analysis,
it follows that if

Ty K Tgs
which implies
A8 (ba,) < A&(Sas)
for all
dot, = St = dot
then as dou — —©
L7 (Fukui) < L% (Fukui) (5-8a)

Thus the relationship expressed by the inequalities (5-6, 7 and 8a)
ensures the correlation of reactivity indices =, , and L} (Fukui) describing
the electrophilic reactions of AHs. However, the analysis outlined above
requires careful consideration of the limiting processes introduced in
defining ‘localization’ energies, especially in the formal treatment of
energies assigned to localized electrons, as indicated by McWeeny and
Greenwood.! In particular, the localization energy introduced in Fukui’s
analysis cannot be identified with Wheland’s definition. In fact, Fukui and
his associates!” proposed a definition in which electrons localized at the
position of attack were assigned the limiting value oy of o, the coulomb
integral at the modified atom r. Then

L, (Fukui) = 2 fl(e; —e) + 2 — W) — € (5-9)
j=
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where ¢} are the levels of the residual molecule RM,, and ¢, are those of
the parent AH; j = M identifies the non-bonding MO of the residual
molecule, which contains » electrons (v = 0, 1, 2 for electrophilic, radical
and nucleophilic attack). In the case of electrophilic attack the two elec-
trons localized at the position r of attack are each, therefore, assigned the
limiting value o} = —co. The meaning of the formula (5-9) for electro-
philic attack can be deduced from the energy-level diagram (Figure 5-7)
associated with modification of the coulomb integral at the rth position,
which depicts the emergence of the lowest level €;, containing the pair of
= electrons associated with the MO o;. This MO becomes increasingly
localized at the rth position, and all other orbitals and levels change
towards those of the residual molecule RM,. Ultimately, for complete

localization ¢, attains the limiting o = — co.
e _ "band”
: limit
—— T
| !
] '
i ]
—L_—-—”//—
a=0_____ —
llbondll
limit

FIGURE 5-7
It will now be recognized that the inequality (5-8a) or
L?} (Fukui) — L? (Fukui) <0
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implies that the difference €,(r) — €;(s) in energy of the lowest, emerging
levels, becomes zero for complete localization, where each level is asso-
ciated with the same limiting value of coulomb integral. Thus although the
analysis is untidy, in the sense that it requires an unfortunate form of
definition (5-9), in which «f = —co for electrophilic attack, its meaning
is obvious from Figure 5-7.

Wheland’s localization energy is not based upon a ‘process’ of orbital
localization, but simply assigns an energy a = 0 to each localized =
electron. It follows that the two definitions may be related by the formula

L, — L, (Fukui) = 2 — »)(a — a})
where the right-hand side is constant for all positions r of attack, in the
same or in different AHs. Thus the inequality
Lt <L? (5-8b)
applies also to Wheland’s localization energy.

The expression (5-9) for the localization energy derived in Fukui’s
analysis is given in a general form applicable to electrophilic, radical and
nucleophilic reactions, and similar ‘processes’ of orbital localization are
introduced in establishing the definitions in each case. These different
‘processes’ have already been outlined in Chapter 4 (Section 4-2), and
can be clearly demonstrated in sets of computer solutions obtained by
appropriate variations of coulomb and resonance integrals which corres-
pond to the changes assumed in the analysis. Thus, although theoretical
techniques are ultimately required to establish the proofs, computer
calculations describing orbital localization provide an attractive means of
illustrating the analytical procedures which explain why the isolated
molecule and localization methods predict the same sequence of active
positions for AH. These correlations are a common feature of Hiickel
MO calculations and cannot be ignored by anyone using the methods.
Where the analytical treatment describing the relationships proves too
difficult or obscure, the reader has at his disposal simple computer methods
of investigation which provide an understanding of the nature of the
correlations, and of the principles involved in establishing the proofs.

B. Reactivity indices in heteromolecules

The theoretical results outlined in the previous subsection indicate that
reactivity indices of the isolated molecule and localization methods inter-
correlate amongst themselves when applied to AHs. However, the analy-
tical properties of the reactivity indices differ characteristically in their
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dependence upon parameters defining the Hiickel model, and these
differences appear to provide a means of unambiguously associating
indices with particular types of reactions of conjugated molecules. Since
these propetties can be verified numerically by means of computer pro-
grams described previously, it will be sufficient, for present purposes,
simply to state the relationships and omit the corresponding theoretical
proofs.*8

Assume that the coulomb integral o, at a site # occupied by a hetero-
atom is represented by a change da, from the carbon value «

oy, = o + Oot,

Then the various reactivity indices g,, 7, ,, F,, LT, L7 and L, for different
positions r of attack change from the values obtained for the parent hydro-
carbon, and the relevant properties are those that describe the change in
the indices in their dependence upon J«,. It turns out that the indices fall
into two groups, ¢,, LT and L] which depend upon the sign of da,, and
F,, L, which are independent of the sign of da,, and these are precisely the
groups associated respectively with ionic and free-radical reactions.
Experimentally the reactions themselves parallel the changes in indices
in their dependence upon electronegativities of directing groups, and, as a
result, identification of indices with particular reaction types becomes
possible.

The approximate change d¢, in charge density at the rth position due
to the change da, is given by

6qr = "r.uéau

Whether a prescribed change da, endows r with (say) electrophilic charac-
ter depends upon the sign of 7, which alternates in passing from position
u; but assume r is chosen for this to be true, so that g, is increased by dg,.
Then the change —d«, endows nucleophilic character at atom r and ¢,
decreases by dg,; this reflects a genuine property discussed in Chapter 3
of the ‘exact’ change

Ag(+0a,) = — Ag(—da,)

Analytical properties of the reactivity indices L* and L7 can, likewise,
be expressed in their dependence upon the change du, by the equation?®

AL*(+8a,) = AL (—ba,)

which implies that if the electrophilic index L} is enhanced by the change
da, then the nucleophilic index L7 is enhanced by the same amount by
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the change —da,. Unlike g,, neither LT nor L] is an odd function of
da,; in fact

AL} (+06a,) #= —ALY(—0ay,)
and
AL7(+0a,) # —AL7(—do,)

and the analysis relates different indices, L} and L7. '
In contrast the change 6F, in free valence is independent of the sign of

O,
O0F,(+6a,) = +0F,(—6a,)

and this reflects a corresponding property of the ‘exact’ change AF(dw,)
as described in Chapter 3. The reactivity index L, possesses a precisely
similar property

AL(+6a,) = +AL(—0a,)

Thus the reactivity indices of the isolated molecule and localization
methods fall into two groups which are distinguished by the analytical
dependence upon the sign of a prescribed change da,.

These properties can be illustrated and verified numerically by use of
the computer programs by applying equal and opposite changes o-da,
to the coulomb integral of any atom u of an AH. The numerical values of
the changes in the reactivity indices ¢,, F,, LT, L7 and L, for any other
atom r of the system, referred to the values obtained for the parent hydro-
carbon, will establish the results. A typical set of calculations applied to
the AH phenanthrene is presented in problems 3 and 4 at the end of this
chapter.

The simplest experimental evidence associating particular types of
reactions with particular reactivity indices is found in the reactions of
benzene derivatives, as studied originally by Wheland and Pauling.” The
ortho—para or meta-directing properties are directly related to the electron-
donating or attracting properties of a hetero atom or substituent group,
and the reactivity indices ¢,, L¥, L7 increase or decrease accordingly to
predict the active positions correctly. In contrast ¥, and L, change in the
same direction for all directing groups,.and radical reactions correspond-
ingly take place at the same positions, as predicted.”-*® The same general
principles are found to be applicable in the reactions of other conjugated
molecules.2°
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5.4 ANALYSIS OF MODELS BY COMPUTER METHODS

Computer calculations have been used, so far, for studying apparent dis-
crepancies between the sequences of active positions predicted by reactivity
indices of the isolated molecule and localization methods (Section 5-2),
and as a means of illustrating analytical relationships between these indices
(Section 5-3). We turn now to a different, though related, area of applica-
tion in which conceptual differences involving other reactivity indices
which correlate in predicting the same active positions in conjugated
molecules are investigated.

Most indices are defined in terms of coefficients appearing in perturba-
tion formulae, which do not, however, describe the modifications in
energy levels and orbitals associated with the perturbations assumed in
different models. As a result, it is seldom possible to investigate, in terms
of the definitions alone, questions of compatibility amongst indices, and
between indices and the physical interpretations claimed for them. On
the other hand, the secular equations can always be solved for prescribed
values of parameters appearing in perturbation formulae, and some form
of discrimination amongst different proposed indices and the associated
models may then emerge. As a first example, we discuss incompatibilities
between frontier orbital indices and those of the isolated molecule method,
both of which are assumed to refer to the early stages of a reaction mecha-
nism.

The frontier electron theory?! was originally based on the idea that
electrophilic reagents would react preferentially with the least bound pair
of « electrons of a conjugated molecule which are associated with the
highest occupied MO. The magnitude of the density of this orbital at the
position r is then adopted as a measure of the susceptibility of atom r
towards electrophilic attack. A similar criterion is adopted in the case of
nucleophilic reactions, where the frontier orbital is, however, the lowest
vacant MO. Frontier orbitals correspond, therefore, to the innermost pair
of energy levels, and both are assumed relevant in radical reactions. The
density distributions of frontier orbitals in AHs are found to predict, in
general, the same active positions as those of the isolated molecule and
localization methods, though no analytical relationships have been found
which account for this fact.

We shall consider the changes in frontier orbital distributions associated
with the formula

8¢ = q,ba, + ¥, B2 (5-2)
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which describes, approximately, m-electron energy changes during the
early stages of ionic reactions, according to the isolated molecule method,
in terms of the reactivity indices g, and ,. Solutions of the secular
equations which yield energy levels and orbitals show, uncquiv?gally, that
the frontier orbital density at atom r, which is the assumed position under
attack, always diminishes with increase of |da,| from zero; this_applies- to
any atom r of a conjugated molecule. Thus, although _fl:ontxer orbital
densities. in the unperturbed molecule predict active positions _correctly,
the assumption that this confers a special role in ionic reactions runs
contrary to the description given by the isolated molecule method, and to
the concept of polarization of = electrons by approaching charged re-
agents. The frontier orbital hypothesis is, therefore, concqptqally incom-
patible with the isolated molecule model as a criterion for ionic reactions,
and can be sustained only if polarization of 7-electron systems by incoming
charged reagents is rejected. This simple example provides a clear i.llus.tra-
tion of the need to look beyond numerical correlations amongst indices,
and to study the meaning and implications of the models. .

Frontier orbitals have been identified with another model?? embodying
the idea of hyperconjugation at the position of attack, which appears to
resemble a model of the transition state given by Mulliken and his asso-
ciates?®?* Computer calculations again provide the simplest means of
identifying the essential features which characterize, in terms of energy
levels and orbitals, differences between the two models.

FIGURE 5-8

The m-electron path of conjugation is extended in Fukui’s model 'by the
addition of a pseudo n-type orbital ¢2. associated with the attacking re-
agent X and the hydrogen atom H at the position of attack, as slfown in
Figure 5-8. The coulomb integral of ¢3, is «*, and the resonance 1t}tegrai
between ¢, and ¢, is f*. Fukui used perturba}tion methods, assuming
to be small, to derive an approximate expression

— 2
08 =3 L= pra g yor — ) (5-10a)
j=1 & — &

for the change in m-electron energy due to hyperconjugation. Yhe index. Jj
is taken over all MOs of the conjugated molecule under attacT, and v, is
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the occupancy; » is 0, 1 or 2 according as the reagent is electrophilic,
radical or nucleophilic. Fukui defines a quantity, the superdelocalizability
S,, by the expression

s (5 — )y

S, = (5-10b)

j=1 €;— &

which differs from the sum in (5-10a) in replacing «* by the coulomb integral
for a carbon atom. It is then argued that since |e; — «| is least for the
frontier orbitals, with energy levels which lie nearest to «, the summation
is dominated by the corresponding term, which for AHs yields

= %
%

where 4, = |¢; — a, and f denotes a frontier orbital. This equation is
assumed to give a theoretical foundation for the frontier orbital hypothesis,
based upon the reactivity index S,.

Cke -
( (b)

a)
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FIGURE 5-9

Mulliken’s model is based upon a m-electron transition-state structure
that resembles a Wheland hybrid, in which conjugation proper is confined
to the residual molecule, and where, for electrophilic attack, two electrons
are withdrawn to form a pseudo = double bond. The equivalence of the
o-bond structure (a) and a pseudo #-bond structure (b) is derived from a
similar correspondence describing the bonding in ethylene.25 Hyper-
conjugation is introduced as a perturbation bridging the residual molecule
and the pseudo 7 bond, both of which, nonetheless, must retain essentially
the same character in the resulting m-electron configuration. Mulliken
ensured this description by assigning a large resonance integral to the
pseudo 7 bond; certain SCF techniques were also introduced to provide a
more reliable account of net charges appearing within the residual mole-
cule as a result of the polarization of the m-electron system. Hyperconju-
gation is, therefore, superposed as a weak interaction within a w-electron
system already polarized, and the model is conceptually compatible with
the isolated molecule and localization methods. It is interesting to note
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that, preceding the introduction of hyperconjugation, the = electrons
localized at the position of attack are assigned energies appertaining to
the pseudo = double bond, and that this assignment replaces, in principle,
the formalism € — a, = 0 introduced in Wheland’s method.

A comparison of Fukui’s and Mulliken’s models of hyperconjugation
in the transition state can be obtained from computer calculations based
upon the same NUCK matrix, where r = 1 is assumed to be the position
of electrophilic attack within, for example, the parent AH benzene, and
position 7 identifies the site of the pseudo orbital ¢3.

0 7
10

010 1
0010 © 2
00010

100010 5 3
1000000 4

The number of 7 electrons in both models is six, so that N = 7, M = 3.
In Fukui’s model the unperturbed ground state of benzene is modified by
extending the path of conjugation to include ¢ on site 7 through a hyper-
conjugation effect. Thus, the appropriate resonance integral f7; = kB
will not take the normal carbon—carbon value, k = 1, which appears in
the NUCK matrix, but must be modified in subroutine MODH, by for
example,

0701 — 00:125  (i.e. Bz = —°125)

In practice, several calculations should be carried out, with Sy, =
0(—0-125) — 0-5 say, so that the changes in levels and orbitals can be
recognized more readily. Small values, f,, ~ —0-125 might then represent
a valid description of hyperconjugation.

Mulliken’s model (Figure 5-9) can be based on the same NUCK
matrix provided appropriate modifications are made in subroutine MODH.
The following modifications

0201 00-000
0601 00-000
0701 —2-500

imply that By = fs, =0 and B, = 2-58, and reproduce Mulliken’s
model without hyperconjugation, namely the appropriate pentadienyl
residual molecule with four = electrons, and a ‘strong’ pseudo = double
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bond between atoms 1 and 7. Following this first solution, the effects of
hyperconjugation can be introduced by setting B, = B¢ = ki where
|kB| is small. The following modifications might be applied in MODH

0201 — 00125
0601 — 00:125  (ie. Bay = Py = —0-125)
0701 — 02-500

though again, calculations for a set of values, 85; = Bg; = 0(—0-125) — 0-5
would illustrate the changes more clearly. Note that the same value 8y,
must be reset for each calculation. The parameters used in these calcula-
tions are compatible with those used by Mulliken; in particular, the large
resonance integral f,; largely maintains the double bond character of the
pseudo 7 bond. The results obtained from computer calculations confirm
that Mulliken’s model is consistent with polarization of the w-electron
system, as described in (5-2), which bring towards the position of attack
an increased density of the lowest MO, corresponding to the energy level
that emerges from below the band.

A few final comments must be added briefly to complete this study of
selected models by computer methods. The validity of certain assumptions
introduced earlier in deriving definitions of reactivity indices can. be
checked numerically and preferably by computer methods.

Firstly, the replacement of a* by « in (5-10a), which makes 4, the smallest
denominator, has neither theoretical nor physical justification; clearly an
alternative value could make a different denominator |e; — o*| smallest,
and enhance the corresponding term. Furthermore, the assumption that
frontier orbital terms dominate the sums (5-10b), following the questionable
assignment o* — a, for all atoms r of a conjugated molecule, can be
shown numerically to be invalid. Individual terms contributing to sums
appearing in perturbation formulae can, in all cases where similar assump-
tions are introduced, be computed, printed, and checked independently.

Next, an assumption that special roles can be associated with the largest
(possible dominant) terms of sums appearing in perturbation formulae
can always be checked computationally. Such assumptions are by no
means confined to the present context, and should always be treated with
scepticism. It is valid to quote the familiar case of the self-polarizability

M
Ty y = 42

j=1 k=M+1 € — €;

N 2,2
crkcrj

which appears in the formula (5-2) describing ionic attack in the isolated
molecule method. The smallest denominator is obtained for the frontier
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orbitals j = M, k = M + 1, and the corresponding term is the largest.
No special role can be attached to this term, since we know that the
frontier orbitals, and all other MOs, except the lowest when da, is negative,
or the highest when d«, is positive, diminish at the position r at which the
modification is applied. Indeed, the orbital increasingly localized at r is
always associated with large denominators appearing in the sum.

5.5 REACTIVITY INDICES AND LOCALIZED »-COMPLEXES
It was shown in Section 5-2 that application of the perturbation formula
8 = q,00, + }m, 0’

depends upon a specification of the parameter da,, except in the special
case of AHs, for which g, = 1 at all atom positions, and that discrepancies
between predictions of the isolated molecule and localization methods
disappear when de, is not small. An estimate of d, as a function of the
distance of separation between the position r of a conjugated molecule
and the reagent could, therefore, provide a useful measure of polarization
effects, and of the plausibility of the model. Brown®® has shown that the
change d«, due to a unit positive charge X* at a distance R from the
conjugated atom r can be identified with the interaction term

e
oo, = —— 5-11
a=—— (511
where e is the electronic charge, and e a dielectric constant of the medium.
At a distance R ~ 5 A° this corresponds to about 2 electron volts (assum-
ing € ~ 1) so that

dot, ~ 28

since B, the carbon—carbon resonance integral used in the description of
ground-state properties is around 1eV. This is a large value for da,,
comparable in magnitude to those values that remove discrepancies in
the isolated molecule description of the reactions of fluoranthrene and
quinolene, and it applies to distances R of separation equivalent to 3 or 4
bond lengths. At large distances of separation, the changes da, at atoms s
other than r become virtually equal to d«,, since R, ~R,, and it then
becomes difficult to understand how active positions can be physically
selected at those large distances of separation for which the perturbation
formula (5-2) is valid. Selection becomes plausible for close proximities
where the active positions are predicted correctly.
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It appears that experimental work indicating the existence of o- and
w-complexes as reaction intermediates has some bearing upon this prob-
lem, and can make a notable contribution towards a better understanding
of the physical significance of reactivity indices. The formation of a o-
complex between an electrophilic reagent and a conjugated molecule
involves bond formation at the position of attack by means of two electrons
withdrawn from the 7-electron system, with the formation of a physically
metastable structure which resembles the resonance hybrid introduced

+
\
\\ X
<C/<H

FIGURE 5-10

formally in Wheland’s localization method. Dewar’s description of a
w-complex?” involves interaction between the electrophilic reagent X*
and the complete 7-electron charge cloud, to form a loose addition com-
plex, represented symbolically in Figure 5-11 in which X * is not attached

+
X

FIGURE 5-11

to a particular atom; many complexes of this kind, involving aromatic
molecules and electron acceptors are known. It has been customary to
associate 7- and o-complexing with low and high transition states, respec-
tively, depending upon the reactions under consideration; alternatively,
a—cf)mplexing may be identified with a local minimum in the region of a
main maximum of a potential energy curve, and 7-complexing with earlier
stages of the reaction path.

Olah and his associates®-® deduced a form of potential energy curve
frox:n kinetic and orientation effects in the nitration of benzene, and certain
derivatives, by nitronium ions derived from NO}BF7 in which properties
characterizing ¢- and 7-complexing were identified. The relevant potential
energy curve is represented schematically in Figure 5-12 where the
relative heights and depths in the compound barrier must be interpreted
qualitatively.
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potential energy

reaction coordinate
FIGURE 5-12

The energy surface was described by reference to #- and o-complexing,
represented diagrammatically by the structures

The local minimum D in Figure 5-12 is identified with the o-complex
represented in Figure 5-13(b), and the barriers C and E on either side,

-
H H NO2

g \/
J U

(a) (b)
FIGURE 5-13

with transition states through which D is formed and destroyed. Olah
was led to deduce, from kinetic and orientation effects, the formation of
m-complexes between the aromatic substrate and the NO3BF ion, a'nd
relating to a region B in the potential energy curve on Figure 5-12. liJnhke
Dewar’s model the evidence required a form of localized #-complexing, as
described in Figure 5-13(a), with the reagent lying close to the position qf
attack, and experimental evidence indicated that m-complexing of this
kind determined the active positions. The barrier between the regions A
and B on the potential energy curve (Figure 5-12) is then associated in
Olah’s description with dissociation of the (NO,BF,)-solvent complex,
and the barrier leading to D, with separation of the ion pair; it may also
be necessary to add to this hybridization effects involving orbital re-
organization at the position of attack.
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If localized 7-complexing determines the active positions of a conjugated
molecule, as proposed by Olah, we may ask to what extent these ideas are
compatible with the prediction of active positions by reactivity indices.
Localized 7-complexing, which assumes that the reagent lies close to the
position r of attack, must be associated in the isolated molecule method
with large values of d«,, the perturbation parameter. These are precisely
the conditions under which the validity of the isolated molecule method of
prediction can be sustained; otherwise, correct active positions are pre-
dicted for small values of d«, only if the sequence of predicted positions
does not change with increase in d«,. Polarization of the m-electron system
in a localized 7-complex is also associated in this model with partial
localization of a w-electron pair at the position r of attack, and with a
lowering A&(dx,) in m-electron energy which could account, in part, for
the observed metastable 7-complex associated with the region of the
minimum B in the compound barrier. Thus the isolated molecule model,
when associated with a large change do,, unambiguously supports Olah’s
concept of localized m-complexing as the main factor determining active
position.

Computer calculations show that for any atom r in an AH, both energy
levels and orbitals change rapidly, initially, with changes from zero in
da,, and that for values |d«,| greater than about |38|, which would apply
to the description of localized =-complexes, the levels and orbitals already
closely resemble those of the corresponding residual molecule. It could,
therefore, be argued that the success of the localization method in pre-
dicting active positions in conjugated molecules may be attributed to the
close correspondences between w-electron configurations of residual
molecules assumed in defining the model used in the localization method,
and the w-electron distribution in localized w-complexes.

The various interpretations of the reactions of conjugated molecules
provided by different MO models have been the source of considerable
controversy. Since many descriptions and models ignore energy level and
orbital changes implicit in the definitions of reactivity indices, it is highly
desirable that computer calculations should be used to explore the full
implications of models, as demonstrated earlier. It is, to some extent,
irrelevant whether such investigations extend beyond the range of calcula-
tion usually associated with the models. What matters is whether the
investigations give coherence, and some degree of conviction to the
theoretical interpretation. In the present case, for example, neither the
isolated molecule nor the localization model is necessarily bound by for-
mal definition to rigid interpretation, and, when relaxed, both methods
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provide explanations of orientation effects which support the‘interprf:ta-
tion deduced from experimental work by Olah, based on localized

w-complexes.

5.6 PROBLEMS

1. Compute the charge densities, bond orders, free valences and seilf-
polarizabilities for phenanthrene using the programs of Chapter 2 with

14 1
12 13 2 3

a4
" 57

10 9 6 5

the additional subroutine ATAT. Note the correlation bet.wee.n t.'ree
valences F. and self-polarizabilities =, , that represent reactivity indices
for free radical and ionic reactions respectively.

2. Compute localization energies L, for phenanthrene from t?le total
m-electron energies of the residual molecules obtained by excluding suc-
cessively atoms r = 1, 3, 4, 5 and 6 from conjugation.

Note that

L, = &, (phenanthrene) — &,(RM,)

correlates inversely with F, and =, , as obtained in problem 1. .
3. Apply equal and opposite modifications, da, = +p, say, in turn to
the atom # = 1 in phenanthrene.
Confirm the following relationships
Aqr(+(s“u) = —Aqr(_aau)
AFT('*'(S“u) = +AFr(_6°Cu)
Apg(+6a,) = —Ap,(—da,)  (r, s same set)
= +Ap,(—day) (r, s opposite set)
for all r (and s), that identify odd or even dependence upon Soty.
4. Compute localization energies L*, L and L, for peripheral atoms r

for equal and opposite modifications d«, = =+ f applied to the atom u = 1
in phenanthrene.
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Denoting by AL,(d«,) the change in localization energy
ALr(a‘xu) = Lr(a‘xu) - L,—(O)

between the parent hydrocarbon and the modified molecule for all atoms
r, establish the relationships

AL} (46a,) = —AL;(—da,)
AL(+6a,) = +AL/(—0ba,)

and confirm, by comparing the results obtained in problem 1, that ionic
and free-radical reactivity indices fall into two groups, according to their
dependence upon da,.

5. Suppose the effect of an electrophilic reagent forming a localized 7
complex at the position  in a conjugated molecule can be represented bya
modification da,. Obtain Hiickel solutions for da, = 0, B, 36, 58 and
— oo for positions r = 1, 3, 4, 5 and 6 in phenanthrene. Plot the changes in
energy levels in each case, and determine whether the localization energies
L7 predict the same sequence of active positions as A& (de,) for all values
of da,. Trace the corresponding changes in MOs obtained for modifications
da, at each atom r. At what stage of modification, if at all, does it become
possible to recognize resemblances with those of the corresponding residual
molecules ?
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The Self Consistent Field Method

The Hiickel method has been used exclusively so far, in the interpretation
of physical and chemical properties of conjugated molecules. The formu-
lation was based first upon the assumption of 7o separation, and then in
terms of an ‘effective’ hamiltonian for = electrons, assuming a = electron
moves in the field of a s-bonded framework and some averaged field due
to the remaining = electrons. Further approximations were introduced
subsequently to simplify the form of the equations, by neglecting overlap
and all resonance integrals other than those referring to neighbouring
conjugated atoms. It is proposed now to change the theoretical method by
reintroducing m-electron repulsion terms explicitly according to equation
(2-2) whilst retaining the remaining approximations of the Hiickel method.
This modification represents a modest advance on basic Hiickel theory
which, nevertheless, produces significant theoretical developments that
provide a better interpretation of certain physical phenomena, and, usu-
ally, improved agreement with experiment. The theoretical developments
are associated with the formulation of approximate SCF-CI methods
which broaden the scope of theoretical interpretation, which is still based,
however, upon the use of determinantal wavefunctions defined in a basis
of linear combination of atomic orbitals (LCAQ) MOs.

As stated in the Introduction, we are not primarily concerned here with
the derivation of the SCF equations, but with computational matters
relating to their solution and application. A brief outline of the theoretical
foundations of Roothaan’s equations appears, therefore, at the beginning
of this chapter, and is followed by a description of the simplifications and
rearrangements of terms introduced by Pople, Parr and Pariser, in applica-
tions to m-electron systems, which lead to a form of equations similar to
those obtained in Hiickel theory.

The experience gained earlier in solving problems expressed in terms of

147
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Hiickel theory, will make it possible to discuss similar SCF problems
quite briefly. This chapter, therefore, includes sections which deal briefly
with both analytical properties of the non-linear SCF equations, and with
selected applications. The most important properties of the SCF equations
are those previously described in terms of ‘conjugate’ solutions in Hiickel
theory. Precisely similar properties are obtained in SCF theory, of which
those associated with the pairing properties for even AH are a special
case. Conjugate solutions can be observed in computer calculations based
upon systematic variation of parameters, and, as in Hiickel theory, they
provide a description from which properties of SCF perturbation coeffi-
cients can be deduced.

A brief discussion in Section 6-2 on core and electron-repulsion integrals
refers essentially to the scheme adopted in the computer programs listed
at the end of the chapter, and largely ignores the many investigations
devoted to this topic in the literature. In brief, we believe that, on the basis
of previous experience, obtained in studying applications of the Hiickel
method, the reader is well equipped to conduct his own computer-based
experiments using the SCF programs. However, it is useful to draw atten-
tion to the existence of  conjugate’ solutions, not only for their intrinsic
theoretical relevance, but also in the context of planning computer calcula-
tions systematically and economically.

It should be emphasized that both this chapter and the following, which
introduces CI methods, deal exclusively with closed-shell ground states, in
which an even number of = electrons is assigned to MOs in spin-coupled
pairs.

The SCF Equations
The hamiltonian operator for a system of n 7 electrons moving in a o-
bonded framework can be written in the form

h(1.2,3,..m = Sha®+3 3 ©D
i=1 i>f=117if
where
hoes®) = =495 + V) ©2)

represents the ‘core’ hamiltonian, which comprises a kinetic energy term
and the potential energy of a  electron in the field of the o-bonded frame-
work stripped of the » electrons. The summation over the 1/r,, repulsion
terms is taken between all pairs of 7 electrons, and the potential energy
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term V can be written as a sum over terms associated with the N-frame-
work ions

V=73V, (6-3)

a=1
Antisymmetric wavefunctions ¥ are constructed in determinantal form,
from MOs p taken as linear combinations
N

v=3cs (6-4)

r=1

of the N _atomic #(2p.) orbitals, and the energy of a given -electron
configuration ¥ is then given by

J¥*h,(1,2,3,... 0¥ dr
fY*Y dr (6-5)
The SCF method now seeks to describe a closed-shell groundAstate by
means of a single determinant that minimizes the energy, where the
adjustable parameters are the coefficients ¢, of the orbitals ¢,. A single
determinant functions ¥, for 7 = electrons is constructed by assigning the

elllectrons formally, in spin-coupled pairs, to M MOs of the form (6-4) so
that

& =

¥, = ___1= (NP (Dpa(1)p1) . . . Yu(D)Pu(l)
V! pi()3:QpaD)522) - . . yu)Pu(?)

PP (M)pa(n)Pa(n) . . . Yu()yy(n)
or, more briefly

Fo = [lpi(DP:2)p23)7=(4) . . . yuln — Du(n)]| (6-6)
The energy &, of the configuration ¥, is then given by

M M
fo = 21=211i + . ;1(2"4/ - KU) (6-7)

with
L= f 2D eore(Lpi(1) dr(l)
1
T, = f VIO i pD de(1, D) (6-8)

Ky = f vy éw,(z)wfa) dr(l, 2)

6 (36pp.)
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The energy E of (6-7) (or (6-5)) is minimized with respect to variation of
¥',, where the change

O = Zé[, + Z(‘SJ iy — 30K, (6-9)
is subject to the orthogonality constraint
JOyy; dr + fpi(dy)dr =0 (6-10)

The constrained minimization problem of (6-9, 10) can be expressed
otherwise in terms of a set of non-linear equations, known as Roothaan’s
equations?

Shes = €2Sscs (s=12,...N) (6-11)
with
hra =f;s + zthu[(rsltu) - %(”]su)] (6'12)
it u

and the familiar auxiliary definitions
Y = Dcp, (6-13)
Ses = [t dr (6-14)

Ni2
Pt'u = 22 C:,L‘u,- (6-15)

j=1

where the ‘bond orders’ P,, are now found for all pairs of conjugated
atoms ¢, # and not neighbours only, and where

Fo = 38501 drC) (616)
wsin) = [ [ap@—p@ a0 @1

Pople? and simultaneously Pariser and Parr? introduced simplifications
that ultimately reduced Roothaan’s equations to a form comparable to
those of Hiickel theory. Firstly, overlap integrals S,, and all framework
‘resonance’ integrals f,, between non-neighbouring conjugated atoms were
ignored. Then, for consistency, all electron-repulsion integrals that depend
upon the overlap of charge clouds were similarly ignored, which leaves
as non-zero only the two-suffix terms

(7159 = 70 = [ [Br0BO 4@ 81,2 619
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The equations then become

Shecs =ec, (r,s=1,2...N (6-19)
with
hyy =ﬁr + 3P, Vre z Pyyrs (6-20)
s#r
and
hn = ﬁrs - %Prsyrs (6'21)

where f,; = f,, is introduced to parallel Hiickel nomenclature. The
diagonal term f;, which according to (6-2, 3) is given by

f = [$2(D[—V2 + >": V(Db (1) dr(1)

can be partitioned into two terms

Jor = o1 (D[=1V] + V(DIg(1) dr(1) + Jr(DI EN le(l)]‘ﬁr(l) d=(1)

s#r=

N
=w, + (| 3 Vir) (6-22)
8Fr=1
where o, refers to the framework ion r only. Collecting terms in (6-20)
gives

N
hrr = w, + %Prryrr + ;éz 1[Pss'yrs - (I'I Vslr)] (6'23)
SFr=

Bearing in mind that the integral (r|¥,|r) represents the potential energy
of an electron in the atomic orbital centred on atom r in the field of the
screened ion at position s, and that y,, represents the energy of repulsion
between two electrons in orbitals in the same two atoms, Pople suggested
that both integrals could be approximated by the inverse distance law,
and wrote

Psayrs - (r]V,[r) = (Pys — Z; El' (6-24)

s
where R,, is the distance of separation between atoms r and s, and Z, is
the effective, screened, charge at the framework ion s. Since, in fact, the
repulsion integrals enter, in part, as adjustable parameters, it has been
found more acceptable to write, instead of (6-24)

Pss)’rs - (rl Vslr) = (Pss - Zs))’rs (6'25)

6a
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and the final form of the matrix elements A,, becomes
by = o + §Pryn + sg' (Pss = Zo)¥rs (6-26)
hrs = Brs — 3Prs¥rs (6-27)
which, with the reduced form of Roothaan’s equations
Shcs=¢€c, (r,s=1,2,...N) (6-19)
s

define the SCF equations for n-electron systems.

6.1 SOLUTION OF SCF EQUATIONS

A formal resemblance between Hiickel (2-22) and SCF equations (6-19)
can be established by interpreting diagonal elements 4,, as coulomb inte-
grals, and h,, when r and s are neighbours as resonance integrals in the
SCF scheme, and writing

SCF
hy — a5

By — B3CF = B,y — 3Pysy:s (for r, s neighbours)

Similarities between the two methods are particularly relevant in applica-
tions to AHs. For example, charge densities P, in the SCF method are
found to be unity and the resultant sum in (6-26) for the remaining atoms
s % r of the conjugated system is zero, since Z, = 1. The eigenvah'les €
appearing in equation (6-19) are also found to be distributed symmetrically
about the value

o+ 1y ' (6-28)

which represents the leading terms in (6-26) particularized for carbon
atoms, and corresponding eigenvectors are paired, as in the Hiickel
method (Chapter 3, Section 1). A zero of energy may therefore be fixed,
analogous to that (x = 0) introduced in the Hiickel meth?d, by sub-
tracting the term (6-28) from each diagonal element, so that, in general

“S?F = do, + %(P ¥ = 7) + 2 (Pys — Zs)'yrs (6-29)
s#r
where 8w, = w, — w; then a5°F = 0 for AHs, as in the Hiickel case.

McWeeny extended the analogy further, by adopting 4., = ﬂsg“: = —479eV
for neighbouring atoms in benzene (P,, = §) as the unit of energy
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equivalent to 8 in Hiickel theory. For AHs, in general, the SCF resonance
integral

SerF = ﬂrs - %P rsVrs

that refers to neighbouring atoms only, then differs marginally from unity,
and the remaining off-diagonal elements

- %P rsyrs/ 479 (6'30)

are small, or zero if r and s belong to the same set, when P,, = 0. The
scaling and change of origin (6-28) bring SCF matrices for AHs into close
numerical correspondence with those obtained in Hiickel theory, and
resemblances in computed solutions are explained by these similarities.
For AHs the main differences in computed solutions are due to non-zero
off-diagonal elements (6-30) between non-neighbouring atoms. Indeed
details of differences in the form of solutions which may be of physical or
chemical significance, can often be traced back directly to difference in
matrix elements. Thus the scaling technique proposed by McWeeny*
demonstrates features characterizing differences and similarities between
the two theoretical methods more clearly and effectively than conventional
computational procedures which adopt, for example, electron volts as
energy units. It is, therefore, rewarding to explore SCF solutions in terms
of McWeeny’s transformation even though practical units may ultimately
be preferred; this can be achieved in using the SCF computer programs
described later, by dividing matrix elements of h by the scaling factor 4-79.

However, resemblances between scaled and adjusted SCF and Hiickel
matrices and solutions, should not disguise the essential structural differ-
ences of the equations. Matrix elements in the SCF method, expressed
(6-26, 27) in terms of P, are ultimately dependent (6-15) upon the form of
the MOs (6-13). Thus h cannot be prescribed until the solution coefficients
are themselves known, which implies that the equations (6-19) are non-
linear in the coefficients. The essence of SCF theory is, in fact, that inter-
actions of electrons, as expressed in the matrix elements of h, depend upon
the MOs they occupy, and therefore upon the solutions themselves,
defined as that set of MOs which minimizes the energy in the sense of
variation theory. An iterative method of solution must, therefore, be used,
initiated by a trial bond order matrix P’ (or trial orbitals ¢’) that permits
the construction of a matrix b’ according to the formulae (6-26, 27); this
must then be modified in some systematic way to converge towards h.
The method used in the SCF computer programs described later employs
diagonalization techniques iteratively. A trial matrix b’ is diagonalized to
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provide new vectors ¢’ and a new bond-order matrix P’ from which a
new matrix h’ is constructed; the process is repeated iteratively until
successive matrices h’ agree within prescribed limits, when b’ is equal to h
within the limits specified. The program obtains a trial bond order matrix
P, for initiating the iteration process, by diagonalizing the core frame-
work matrix with diagonal elements given by w, and off-diagonal elements
by B, between neighbours, all other elements being zero. For AHs all
w, — @ = 0 are equal and f,, — B are the same, and, therefore, regardless
of scaling, orbitals and bond-order matrices P’ of the Hiickel approxima-
tion are obtained for constructing the first h’. Hiickel orbitals are not,
however, obtained from this process for other types of conjugated
molecules.

6.2 SCF CORE AND ELECTRON REPULSION INTEGRALS

It is useful, at this stage, to attempt to give meaning to terms appearing
in the matrix elements of h. For example, the term w, of equations (6-22,
26) can intuitively be considered in terms of a Schrodinger equation

[—1V2 + Vb, = 0,

associated with the local core atom r, whose eigensolution may be inter-
preted as describing a valence state of the conjugated atom, with ®, an
atomic valence state ionization potential that can, in principle, be esti-
mated from experimental data. The factor (P, — Z;) is the effective net
charge at atom s, and (P, — Z,)y,, the potential at r due to the net charge
at s; the summation in (6-26) therefore represents the total potential at
r due to net charges at all other conjugated atoms. Correspondingly, the
term P,y,, represents a potential energy of repulsion due to a m-electron
charge density P,, at the local core atom r. The integrals f,, are ‘resonance’
integrals referred to the core framework, and —3P,y,, takes the form of
an exchange energy.

Electron-repulsion integrals may, in principle, be determined theoretic-
ally from the basic formula (6-18) or by semi-empirical methods. For
interatomic distances r;; exceeding 2-80 A° Parr® and Pariser® proposed a
formula

7-1975 D, — D/}z)“* ( {Dt + Dfr)”]
= 1 b L M 6-31
Vi r [(1 + { 2ry + + 2ry; (3D

54
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based upon the classical interaction of two uniformly charged spheres of
diameter
4-597
D, = Z X 10-8 cms (6-32)
w.hcre Z, is the effective nuclear charge for the 2p, atomic orbital ¢,. For
distances less than 2-80 A an extrapolation formula

vy =§yu + ) +ary; + brl (6-33)

was Proposed, with parameters ¢ and b determined by fitting the values
obtame.d from (6-31) at r = 2-80 A and 3-70 A. For large distances of
separation, when ry; > D, equation (6-31) reduces to the simple form
) 14-4
b (6-34)
The one-centre integral y,; is sometimes evaluated from ionization poten-
tials 7; and electron affinities 4, according to a relationship

vu=1I— 4 (6-35)

proposed by Mulliken.®

. Resonance integrals §,, may be derived from a proportionality rela-
tionship

B _ Su
B S

Where B and S are ‘standard’ carbon-carbon resonance and overlap
integrals. The standard f is generally obtained by fitting theoretically
determined transition energies, predicted by SCF-CI methods, to observed
spectroscopic states. More specifically, Parr and Pariser” adjusted § and
the relevant electron-repulsion integrals ,, to reproduce exactly the three
lowest singlet and the lowest triplet excitations in benzene, and obtained
the results

Vi1 = 11’35; Yia = 7'19; Y1z = 5'77; Vi = 4'97; ﬂ = —2-37 (6'36)

all values being expressed in eV. These are the largest y,, integrals, and
therefore the most important, for any AH, and the proposed scheme that
supple{nents (6-36) with y,; calculated for larger distances of separation
according to (6-34) or (6-31) is adopted for use in the computer programs
for SCF-CI calculations described later.
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Precise details of the principles invoked in developing the scheme for
evaluating SCF integrals as outlined above, have largely been igno'red,
but can be found in the original accounts given by Parr and Pariser.
Various alternative procedures have also been proposed, but the present
scheme is chosen for application simply because it is known to work well
for AHs. )

Certain important precautions must be made in choosing parameters for
heteroatoms and conjugating mesomeric groups. Consider ﬁr_st the form'al
replacement of a conjugated carbon atom by nitrogen as illustrated in
pyridine. The nitrogen atom is isoelectronic with carbon in the sense that
it contributes one electron to the w-electron system, and tl_le effective core
charge Zy at the nitrogen atom, when the molecule 1s stnppcd. of = elec-
trons, is unity. In contrast, the nitrogen atom in aniline contributes twp
electrons to the m-electron system, and the effective I.luclear charge is
Zy = 2. Similarly, ionization potentials used in assigning values to the

H\++/H
N
-+
b4 N
+ + + + + +
+ + + + + +
+ + +
(a) benzene (b) pyridine (c) aniline

core charges
FIGURE 6-1

parameters wy must refer to singly and doubly ionized valence.st‘ates of
pitrogen in pyridine and aniline respectively. Dewar and Paohm-8 have
discussed, in detail, the derivation of SCF parameters for both kinds of
nitrogen atoms, as they occur in melamine, and have proposed the set of

values (in eV)

Core ion Wy PYNN
N+ 14-63 12-27
N++ 27-53 14-09

which demonstrates the appreciable difference in values of wy obtained

for different valence states of conjugated nitrogen atc'oms‘ )
It should be noted, in passing, that plausible solutions can be obtained

by adopting, incorrectly, parameter values for N* (provided Zy = 1 is
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also used) in situations referring to doubly ionized nitrogen atoms, as in
aniline. The SCF equations are then incorrectly defined, but the results
obtained may appear to be acceptable. It is not always the case, especially
in earlier SCF studies, that sufficient information has been published to
confirm the validity of formulation for doubly ionized conjugated atoms,
and these circumstances should be examined with care.

6.3. PROPERTIES OF SCF EQUATIONS

The SCF equations are non-linear in the coefficients c,; that define the
solutions, and, therefore, differ significantly from the linear equations of
the Hiickel method. Yet analytical properties can be deduced,? describing
parametric variations about solutions for parent even AHs, that are,
somewhat surprisingly, virtually identical to those found for the simpler
method. These properties will be outlined briefly, and without proofs
attached, but their importance should not, as a result, be underestimated.
If a prime deficiency of the Hiickel method is the explicit neglect of elec-
tron-repulsion terms, so that the averaged m-clectron field cannot operate
to prevent excessive charge concentrations, then the success of the simpler
method in describing ground-state properties can be attributed to the
agreement in analytical properties between the two methods. For then
similar results can always be obtained from the two methods simply by
relating magnitudes of parameter variations.°

A. Even alternant hydrocarbons

Consider first the SCF description of AHs. It is possible to prove that
P,, =1 for all atoms r, and that the levels are paired about the zero of
energy (w + 3y), by the methods already described in the context of
Hiickel equations. Thus, briefly, assume that an eigenvalue ¢, referred to
the zero w + }y of energy, and its associated vector

v = Scube + Sy 6-37)

are known, where the two summations in (6-37) refer to starred and un-
starred atoms respectively. Then €; = —¢, with an associated vector

v, =3c.b, — P (6-38)

is also a solution of the equations, that can be established by inspection,
following the technique already described in the case of the Hiickel
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method. Orthogonality conditions and pairing relationships then establish,
as before, that

P,=1
and
P,=0 (r,ssame set)

Pople proved that P, =1 by an alternative method in which the
secular equations were formally solved iteratively, showing that if P = 1
for all r at the nth stage of iteration, then P®} ¥ = 1; the proof followed
inductively by establishing the result for n = 1.

It is an interesting feature that the two proofs are theoretically inde-
pendent. The first describes a property of the SCF equations, and the
second an iterative procedure which maintains the condition P{} = 1 for
all » as n— oo, but there is no evidence that P™ converges to a unique
solution, which can be identified with that implied in the first proof. The
fact that many different starting points P’™ in which P/, # 1 apparently
converge towards the same numerical ‘solution’, in practical applications,
inspires confidence in the procedure, but does not ensure theoretical
evidence of uniqueness. In fact ‘solutions’ are progressively corrupted, in
practice, by rounding errors as n, the number of iterations, increases.

B. Properties of perturbation coefficients

It is possible to investigate next, properties of changes in solutions due to
changes in the parameters , and y,, at the uth atom position in an AH,

and to write
aP" SCF
wSCF (= —) (6-39)

1.y awu

for the atom-atom polarizability, for example, in a form analogous to
that used in Hiickel theory. Non-linearity again plays a central role in
deducing #3°F since an effective change 6P, must be determined self-
consistently; thus the change k., in the diagonal element h,, is not simply
dw, but depends upon the solution P(dw,) itself according to equation
(6-26), with a corresponding dependence for all other elements of h.

In spite of the problems associated with non-linearity it is possible to

derive analytical properties of the finite changes A4 (4 = P,,, P, etc.)

Ad=73 2 (3—“’-‘-) ook (6-40)

k=1 Ei 660’1:
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that depend upon the existence of ‘conjugate’ solutions analogous to those
obtainefl in the Hiickel method. It is, however, useful to express these
properties in terms of a2 modification at the uth position generalized to
lnc_lude variations dw, and dy,, in both parameters, and to write

Ohyy = 0wyt 3Pyubyuy (6-41)

where the prime indicates that part of the total change in the matrix
element ., that contains the parameter changes. Then, denoting by +

and — the changes +6h,, and —0h,, the following analytical properties
can be proved®

(@ APy(+) = —AP(-)
(i) Py(+)= —P(~) (r,s same set)
= 4P, (-) (r, s opposite set)
(i) AF(+) = +AF(-)
(iv) e(+) = —en_ji1(—)
M () = ciyogia()
() = —Cy_yi1(=)

Th‘ese properties express the existence of ‘conjugate’ solutions corres-
ponding to modifications +4hk,, and are a generalization of the ‘pairing’
theorem for SCF equations as established by Pople for AHs. In particular
Qroofs can again be developed in two independent ways,® firstly as proper-
ties qf the SCF equations, and secondly by induction, based upon an
iterative method of solution where uniqueness is not established theoretic-
ally. These properties (i)~(v) are analogous to those found for the Hiickel
method, and explain why both methods describe similar changes in n-
electron configurations when parameters are modified correspondingly.

."l'he results (i)~(iii) provide descriptions of the properties of the polariza-
bility coefficients of the SCF method; they imply that

o%pP,, oF,,

oh, 7 oh,,

oP,, .

n, (s, ¢ opposite sets)

%P,

e e (s, t same set)



160 Computing Methods in Quantum Organic Chemistry

are all zero, and that the properties of the charge densities P,,, bond
orders P,, and free valences F, with respect to variation of the electro-
negativity parameters, are precisely similar in the Hiickel and SCF methods.

6.4 VARIATIONS OF PARAMETERS o AND y

We have already shown, within the context of Hiickel theory., how compu-
tational techniques can be organized to demonstrate analytical pr(?pel‘tles
of the method, and similar procedures are applicable in studying the
relationships (i)—(v) of the previous section. It is often .the case that
numerical demonstrations of the existence of such properties, which are
readily obtained from computer calculations, are more easily undterstood
and recognized than theoretical methods of analysis, though ultlmatc?ly
such methods are essential in establishing proofs. However, the precise
way in which a general modification dk,, may b_e appli?d in Practlce, to
study to the relationships (i}~(v) is not obvious, since dh,,, which depends
upon P,,, cannot be specified a priori, but must be Qeduced from l.cnown
solutions of the SCF equations. There is, in fact, a simple way of circum-
venting this problem which depends upon properties of the net change
oh,, as follows. o

Suppose that the parameters o, and y,, at the uth p(‘)Sltlon in an even
AH are to be varied, and consider the form of the matrix elements

hyy = 0w, + %(Puuyuu - ‘}’) + E(PSS - ‘)y“’
By =0+ 3Py =Dy + ZPu—Z)pn (¢ #u)
s#T

by = B — FPssVer (6-42)
where all atom positions r other than u are associated with the carbon
values o, . Assume now that prescribed modifications dw}, 0y, generate
a solution P*. Then the same solution P* satisfies the SCF equat10n§ for
any pair of modifications expressed in the general form ey, dyuu provided

8w, + 3Ps0Yu = b0 + APaSYS (6-43)

where the same element P2, of the common solution P* appears on both
sides of the equation. The proof is obvious, since none of the elements 'of
h are changed by the substitution (6-43). Suppose we now take the specu_ll
case in which the framework integral associated with atqm u alone is
changed by dw], so that oy} =0; then the same solution P* holds

rovided
! dwl = dwj + ¥P20YS, (6-44)
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A similar condition applies to the special case dwil = 0, éy!!. The rela-
tionship (6-44) means that all possible solutions for all modifications can
be generated by changing core integrals w, only, since all pairs of values
dw,, dy,, generating the same solution can be deduced from

dw, = dwf + }P,.0p. (6-45)
where P,, is an element of the common solution P.

These properties clearly promote systematic planning of SCF computa-
tions in terms of w, variations only, and permit a marked economy of
time and effort for solving equations which, in principle, allow independent
variation of two parameters w, and ., per conjugated atom.

The analysis has further implications. Coulomb integrals in Hiickel
theory are generally associated with relative electronegativities of the
conjugated atoms r. Assume that a solution of the SCF equations for a
given conjugated molecule is generated by a prescribed set o, Vv Of
integrals associated with the r = 1, 2, ... N conjugated atoms. Then any
alternative pair w;, y,, of values associated with any rth atom that satisfies

w; + §Ppy,, = ©, + $P,y, = h,, (6-46)
will generate the same solution. The same charge density P,, is associated
with the rth site, and P,, varies systematically with h,, rather than with
o, OF yy,; it follows that A, may usefully be interpreted as the electro-
negativity parameter in SCF theory. Unlike Hiickel theory, the SCF
electronegativity 4, depends, as it should, upon the charge density P,, at
atom r, and must change when the same species of atom X, characterized
by the same pair wg, yxx of parameters, is sited in different molecules.
Thus the electronegativity of a conjugated nitrogen atom X = N is
different in pyridine, quinolene, acridine, and so on, just as the associated
charge densities Pyy are also different. Alternant hydrocarbons provide
an exception to this rule, since all carbon atoms are associated with the
same pair w, y of values, and P,, = 1 throughout.

This definition of electronegativity must be revised in systems for
which Z,, the nuclear charge, is not unity; as indicated in the final section
of this chapter which discusses SCF m-electron calculations for borazine.
In such cases the sums appearing in equations (6-42) which represent the
total potential energy term at atom r (or u) due to the net charges at all
other conjugated atoms, dominate the matrix elements and largely deter-
mine the electronegativities of conjugated atoms. It becomes necessary,
therefore, to interpret a concept of electronegativity in terms which relate
not only to a given atom but also to its site in the molecule. The electro-
negativity, which is, in effect, an affinity for distributed charge is, in the
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SCF description, dependent not only upon the parameters wx, Yxx which
characterize an atom, but also upon the total potential field at the site
occupied by X, which itself is determined by the m-electron distribution.
These properties emerge quite clearly from the study of computer calcu-
lations based upon variations of the parameters w,, ¥, They appear in
spectacular form in molecules like borazine, which is discussed in the
following section, for which Z, takes values different from unity.

Finally we refer briefly to the calculation of polarizability coefficients
in the SCF method, which can be determined in practice from solutions
of the SCF equations, using the standard programs, for small changes of
the parameters. Numerical values of changes AP,,, APy, AF, due to equal
and opposite modifications +dew, (or éh,,), which confirm the analytical
properties (i)}-(v), and the existence of conjugate solutions, can be used
to find m, ,, for example, as the slope at the origin
_ AP,(dw.)

Teu =

B, (6-47)
The numerical technique (6-47) assumes a small change éw, so that
higher order terms are negligible, and AP, is effectively linear to the
accuracy required with respect to variation of dw,. In practice this means
applying a limit |0w,| 3> 0-258 to achieve a traditional accuracy to three
decimal places in 7, ,. Polarizability coefficients 7, , of the SCF method for
benzene, naphthalene, anthracene and phenanthrene were originally com-
puted in this way by Greenwood and Hayward,® and were subsequently
confirmed in a perturbation formulation by Diercksen and McWeeny.**

6.5 APPLICATIONS OF SCF-MO METHODS

Changes in the description of ground-state properties of conjugated
molecules due to the inclusion of electron-repulsion terms in the SCF
method are, generally, less pronounced than the effects produced upon
spectroscopic states, where degeneracies are resolved, and the pattern of
levels frequently drastically changed when CI techniques are employed.
This section discusses two examples only that illustrate the influence of
electron-repulsion terms upon the ground-state 7-electron configuration.

A. Cyclic polyenes

Ground-state Hiickel solutions obtain the same bond orders for all bonds
of a cyclic polyene.*? This result stems, characteristically, from the fact
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tl}a the Hiickel method is a nearest-neighbour approximation that cannot
distinguish, for example, between the hexagonal framework of a molecule
like:(a) cyclo-octadecanonaene C,gH,4 and (b) a ring on which eighteen
C atoms are distributed at equally spaced intervals.

FIGURE 6-2

Longuet-Higgins and Salem'® discussed, by an approximate SCF
method, the structure of cyclic polyenes in relation to bond-alternation
effects. There is evidence to suggest that in large linear polyenes successive
bonds alternate in length, and similar effects were proposed for the cyclic
polyenes to explain discrepancies between theoretical predictions and
observed spectroscopic states. Longuet-Higgins and Salem simplified the
§CF calculations by adopting a model in which all electron-repulsion
integrals y,, referring to non-neighbouring atoms r and s were set equal
to zero, and assumed to be absorbed within appropriately chosen nearest-
neighbour terms. This nearest neighbour approximation necessarily re-
px:oduces equal bond orders for the symmetrical molecule C,gH,g of
Figure 6-2(a). However, the SCF method itself describes properties of =
electrons associated with atoms and bonds in their dependence upon the
molecular environment by including explicitly terms corresponding to
npn-neighbouring interactions. As a result, it distinguishes between the
six ‘outer’ and twelve ‘inner’ bonds of C;3H, 5, and calculates two different
bond orders, as demonstrated by Murrell and Hinchliffe.2* Applications
to _CmHm and other cyclic polyenes therefore, provide useful examples
which show that ground-state properties can be examined satisfactorily
on.ly 1f the molecular environment is adequately taken into account, and
this, in turn, implies the explicit inclusion of non-neighbour interactions.

It turns out that the numerical values of the two bond orders calculated
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by the SCF method for C,sH,s do not agree, in sequence, with the experi-
mentally observed bond lengths if traditional bond order/length relation-
ships are invoked. Murrell and Hinchliffe attempted to account for the
apparent discrepancy in terms of o-bonding effects. There is, how}ver,
abundant evidence to show that, although empirical bond order/léngth
curves, derived from many different conjugated AHs, suggest a consistent
relationship, bond orders within the same AH seldom predict observed
bond length sequences correctly, and, therefore, invariably produce dis-
continuous curves when plotted one against the other. As an example,
Table 6-1 quotes experimentally observed bond lengths in anthracene in
column A for comparison with bond orders computed by various theoreti-
cal methods.

Table 6-1
Bond lengths and bond orders in anthracene
Bond A B C D E
1-2 1-368 0-737 0-842 0-771 0779
34 1-399 0-606 0632 0-612 0-622
1-1 1-419 0-586 0-449 0-550 0-539
33 1-428 0-485 0-548 0-510 0-494
2-3 1-436 0-535 0-418 0-498 0-500

X-ray crystallography (Cruickshank)*®

Hiickel bond orders (Coulson)*®

SCF bond orders (Pritchard and Sumner)*”

. SCF bond orders (Hall)'®

Adjusted Hiickel bond orders (Coulson and Golebiewski)'®

muowy>

Discrepancies are found between the sequence of Hiickel bond orders
(column B) and observed bond lengths in anthracene, and these are re-
peated in naphthalene and, characteristically, in many AHs. Correspond-
ing SCF results obtained by Hall produce a smooth order/length curve
in this case, in calculations that are reproduced by the computer programs
that follow in Chapter 7, and use Parr-Pariser parameters; the earlier
SCF calculations of Pritchard and Sumner use different electron-repulsion
integrals which account for differences in computed bond orders. Coulson
and Golebiewski employed a Hiickel method in which resonance integrals
B, for different bonds r—s were adjusted systematically to preserve a con-
sistent relationship with predicted lengths. Comparable bond order/length
curves are obtained for anthracene (and naphthalene) from Coulson and
Golebiewski’s results and from Hall’s calculations, though parameter-
adjustment techniques are absent from the latter, which depend upon a
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nsistent adjustment of the =-electron distribution only in satisfying
the SCF equations.

Most of the evidence, therefore, suggests that the bond order/length
relatipnship is not a universal criterion, and may break down when applied
to individual AHs. The situation is somewhat different in Coulson and
Golebiewski’s technique which imposes a bond order/length relationship
in foﬁmulating the method. However, this method runs into difficulties
when applied to C,5H, s, where it predicts, as a nearest neighbour approxi-
mation, equal bond lengths. Returning, therefore, to the original C,gH,¢
problem, there is no reason to interpret the SCF solution as an anomalous
result which calls for a remedy. )

B. Borazine B;N;H,

Mention has already been made of the need to ensure that valence state
parameters, particularly w, and Z,, are correctly chosen for atoms other
than carbon which participate in conjugation. Borazine provides a compact
and useful illustration of the method of formulation, and manifests
certain analytical properties that describe further interesting features of
SCF theory.

Borazine forms a hexagonal structure like benzene, with N and B
atoms in alternate positions; boron atoms contribute no electrons, and
nitrogen atoms two electrons to the m-electron system, which in the sense
of having six = electrons can be compared or contrasted with that of
benzene. In fact some flow of m-electron charge from nitrogen to boron
atoms must be visualized, and the molecule can, tentatively, be described
by an uneven w-electron charge distribution of the form

.

O
I

XN

FiGURE 6-3

B
|
+N

+

In the SCF equations (N = nitrogen, B = boron)
by = dox + HPunywn — ¥) + g(Pss —Zyys  (6-48)
hf, = dws + ¥(Pesyss — ) + SZJPss ~ Z )y (6-49)
hes = Brs — 3P,yys s’ (6-50)
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Z = 2 for nitrogen atoms, and zero for boron, and the term, o + 3y

which fixes a zero of energy corresponding to a conjugated carbon atom,

can be introduced for convenience. The core integrals w, refer to doubly
jonized nitrogen and neutral boron nuclei, and should be determined
correspondingly. Davies?® obtained solutions for borazine based i tlally
upon the valence-state parameters (in eV)

N @p VNN VBB

28-85 8:53 1541 821

though these were adjusted to obtain acceptable solutions.

The purpose of the treatment presented below is not to find a plausible
solution for borazine with parameter values completely specified, but to
illustrate properties of the analytical framework in which solutions may
be found. This approach provides not merely for economy, and for a
systematic approach to computational studies, but, simultaneously, im-
proved grounds for judging the quality of proposed solutions. In the first
place an idealized solution identical with that obtained for benzene is
deduced, which provides a reference conﬁguratlon for describing the
nature and properties of solutions obtained by varying parameters describ-
ing the system.

Assume, for convenience, that the y,, and f,, for borazine can be
assigned, in the first place, the values (6-36) used in benzene. Then the
SCF benzene solution Py, with, for example, P,, =1 and P,, = § for
neighbours, will satisfy the equations for B;N; provided the parameters
are adjusted to make Ayy = hgp = 0. For a N atom the sum in (6-48)
takes the value

2x(1=0)x 719 +2 x (1 —2) X 579 + (1 —0) x 497 =781 eV
(6-51)

so that if
then hyy = 0. Similarly the sum in (6-49) takes the value

2x (1 =2 X T19+2 X (1 —0) X 579 + (1 —2) X 497 = —781 eV
(6-53)

so that if
dwp + }(yes — y) = +7-81eV (6-54)
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then Apg = 0. For this ‘idealized’ situation, therefore, the benzene matrix
Py is the solution of the SCF equations for borazine and, clearly, the
same solution is obtained by the particular choice of parameters

YN8 = VBB = V5 dwg = —owy = T-81 eV.

In fact, ‘conjugate’ solutions referred to Py can be generated most simply
by variation of the parameters wg and wy only, though the same solutions
apply also to appropriately chosen pairs of values (wg, yg) and (wy, Yay)
as demonstrated earlier for AHs. The properties describing ‘conjugate’
solutions can be expressed in terms of the variation

b = (wg — wy) — 1562
by the following relationships
AP, (+6w) = — AP, (—dw)
P, (+6w) = +P,(—dw) (r, s opposite sets)
= —P,(—dw) (r, s same set)

F(+6w) = +F(—bw)

These formulae are associated with corresponding relationships between
energy levels and orbitals for ‘conjugate’ solutions which are analogous
to those obtained for AHs, where the reference configuration Pyy is
obtained when dw = 0.

The analogy can, in fact, be carried further. Atom-atom polarizabilities
for benzene, and other coefficients relating to the use of perturbation
methods could, in principle, be applied with equal validity to the reference
configuration Py in borazine. It is unlikely that such a procedure could
be of significant practical value, although changes of opposite signs in core
integrals dw for nitrogen and boron atoms could be considered to yield
approximate solutions for borazine.

A set of numerical results for borazine, obtained from the computer
programs listed at the end of Chapter 7, are quoted in Table 6-2. These
apply to changes dw = +1 eV which illustrate some of the properties
expressed in the formulae referred to above.

The form of the diagonal elements given in (6-48) and (6-49) again raise
interesting aspects of the SCF description of relative electronegativities.
Clearly, a difference wg — wy = 15-62 ¢V in framework parameters gives
a uniform charge density distribution with Pyy = Pgg = 1, and Py = %,
corresponding to hyy = hgg = 0. The contributions (P;, — ZJ)y,, to the
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Table 6-2
Borazine SCF solutions

wp 7-81 7-81 6-81 7-81 8-81

Wy —7-81 —681 —7-81 —-8-81 —7-81

S0 0 -1 -1 +1 +1

% —8-705 —8-210 —9-210 —9:210 —821
€4 = €5 —5-595 —5-125 —6-125 —~6-125 —5-125
e = € 5-595 6125 5-125 5-126 6125

€ 8:705 9-211 8-211 8:211 9-211

Pxx 1-0 0-877 0-877 1-123 1-123

Pon 10 © 1123 1-123 0-877 0-877

Py 0-667 0-662 0-662 0-662 0662

diagonal elements, as detailed in (6-51, 53), show that n-electron charge
released from nitrogen to boron atoms produces, in reverse, strong negative
potentials at nitrogen atom positions which counterbalance the strong
local positive potentials at the same positions of the framework; and the
effect is reversed at boron atoms. In consequence, differences wgz — wy
in framework parameters must, with the parameters used above, exceed
around 15 eV for the nitrogen atoms to retain charge densities exceeding
unity. Clearly, then, relative electronegativities cannot, even approxi-
mately, be related directly to framework parameters w,, but depend upon
both the local field at r and the w-electron charge distribution throughout
the rest of the molecule. In particular the electronegativity of a conjugated
atom X depends upon its environment in the molecule, and cannot be
regarded as an invariant property of the atom.

6.6 NOTE ON PROGRAMS AND PROBLEMS

Programs for computing SCF energy levels and orbitals and other quanti-
ties describing the ground-state configuration in the SCF approximation
are given at the end of Chapter 7. These programs are designed to form a
suite of programs that include CI calculations as a sequel to the SCF
solutions. It is desirable, in planning the computations economically, to
apply the SCF eigensolution directly to construct matrices of the CI
problem; data and parameter cards defining the SCF-CI project are also
advantageously introduced within the same procedure. The SCF-CI
project is, therefore, best treated as a single problem and for this reason
specifications of data for solving particular problems are also postponed.
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Configuration Interaction and
Excited States

The calculation of spectroscopic states of AHs by CI methods resolves
degeneracies which arise in the Hiickel and SCF descriptions. These
degeneracies stem from the pairing properties of levels and orbitals as
described in previous chapters, and their resolution in the CI method
invariably produces descriptions of spectroscopic states broadly in agree-
ment with experiment, and markedly different from those predicted by the
simpler theoretical methods.

This chapter contains, in the first part, a brief outline of the techniques
involved in formulating the CI problem for w-electron systems. Formulae
for the matrix elements of the w-electron hamiltonian operator defined in
a basis of single orbital replacement configurations derived from a SCF
ground state are quoted. These formulae form the basis for computer
programs which are listed at the end of the chapter and solve the =-
electron CI problem by calculating singlet and triplet excitation energies
and states. However, no attempt is made to reproduce the derivation of
the equations and formulae, and, as in previous chapters, it is assumed
that the relevant analysis will be sought in other texts.

The CI programs are linked to follow the set of SCF subroutines
mentioned in the previous chapter to form a SCF-CI package, which is
particularly easy to use in practice, since the form of input data is virtually
identical with that already introduced in applying programs of the Hiickel
method. The main new problem encountered in applying the programs lies
in interpreting the results. The first part of the program output is straight-
forward, since it presents the solution of the SCF equations and prints
SCF energy levels and orbitals, charge densities, bond orders, free valences
and dipole moments. However, the output for the second, CI stage is more
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complicated, and is, therefore, discussed in some detail, with special
reference to the results obtained in practice, for naphthalene, and, by way
of comparison and contrast, for quinolene.

Numerical values of matrix elements for naphthalene, as obtained from
the computer programs, are given in Table 7-2 and a solution of the cor-
responding CI problem is reproduced in Table 7-3. These results, and all
those that follow in the rest of the chapter, refer to the description of
excited singlet states only. However, corresponding results for excited
triplet states are obtained and printed automatically by the programs.
Normally the program prints the solution of the CI problem in terms of
state energies E; and wavefunctions ®, with transition moments and
polarizations, but it is useful to be able to refer back to the CI matrix
itself (Tables 7-2 and 7-5) to illustrate the nature of the problem, and to
gain an understanding of the properties of solutions obtained from the
method.

Following the treatment of naphthalene, a similar analysis is applied
to the molecule quinolene. This examines the effect of heteroatom substitu-
tion in removing degeneracies associated with the parent hydrocarbon in
the SCF approximation, and its influence on the corresponding CI solu-
tion. A later section describes the computation of transition moments for
singlet excitations with special reference again to naphthalene and quino-
lene, and shows how the results obtained can be correlated with coefficients
appearing in the wavefunctions describing excited states. A final section
shows how to prepare input data for a few chosen m-electron calculations.

7.1 THE CONFIGURATION INTERACTION METHOD

The method describes a state @ of a system of n  electrons as a linear com-
bination of configurations ¥ each of which represents an assignment of
the 7 7 electrons to an available set of MOs v, so that

0 =3CY, (-1)

The configurations ¥, chosen for inclusion in the expansion form (7-1)
depend, in practice, essentially upon the nature of the problem to be
solved. Singlet and triplet excited states of conjugated molecules, which
are discussed in this chapter, can be approximated effectively by choosing
appropriate configurations W' (i — k) corresponding to transfers of a =
electron from an occupied MO v, of the ground-state configuration ¥, to
an unoccupied, or virtual orbital y,.. Self-consistent field MOs ¥, calcu-
lated by the methods described in Chapter 6, will be used exclusively for
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constructing configurations W (i — k"), where (equation 6-6)

Yo = |ly:(DP:Q) . .. pi@Pp + 1) . .. puln — Dyu®||  (7-2)
represents the SCF ground-state configuration. For an even AH M, the
number of occupied orbitals will be equal to N/2, where N is both the
number of molecular and atomic orbitals, and # = N. Replacement of
the occupied orbital y; by a virtual orbital v, used in constructing singlet
configurations ¥'(; — k') can be achieved in two ways, depending upon
spin assignments, and W'(i — k) is, therefore, described by two Slater
determinants

1
Y = \/—5 (i (D$:2) . - pil Pl + 1) . .. pun — Dyy(n)||

— P12 - . . @i + 1) - . . puln — Dypu(m)]|]  (7-3)
Pi-clectron states are determined in the CI method by minimizing the
expression for the energy
fO*h,(1,2,...n)0 dr

JO*® dr
with respect to variation of the coefficients C, of the formula (7-1), where
h, is the operator (6-1)

E =

74

hn(l’ 2’ 3’ . z kcore(’) + z (7'5)
i>f 1 " if
Minimization of the form (7-4) corresponds to solving the eigenvalue
problem

h,® = EO (7-6)

where the matrix elements of h are given, in the basis of configurations
¥, by

by = [¥ih,(1,2,...n)¥, dr 77

Simplifications in the form of h result from a choice of SCF MOs for
constructing configurations ¥,. In the first place, matrix elements Ay
connecting configurations ¥'(i — k’) (7-3) resulting from single replace-
ments, and the ground state V', are zero. The eigenvalue problem can,
therefore, be reduced by omitting ¥, from the expansion form (7-1),
provided the lowest excited states are expressed as linear combinations
of single-orbital replacement configurations only. This restriction has an
additional advantage in that all single replacement configurations are
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easily identified and can, for a large range of molecules, be included auto-
matically in the computer calculations. Thus, for AHs, when the para-
meter named LVLS in the computer program is given a value equal to
the number of unoccupied energy levels, all possible single-replacement
configurations, which are MINK = (LVLS)? in number, are automatically
included in the CI expansion (7-1). The problem is less well defined when
higher order replacements are taken into consideration, since the con-
figurations must be selected intuitively from the large number that arise
in practice. This does not imply that higher order ‘excitations’ involving
two or more replacements are unimportant, especially in modifying
predictions in regions of higher excitation energies, but that restriction to
single replacements provides a well-defined theoretical framework, which
works effectively in practice, and can be accommodated satisfactorily
on a medium-sized computer.

The matrix elements 4;; for single replacements based on SCF orbitals
take a simple form that can be derived by the methods described by
Condon and Shortley and others.2:3:4:5 It is convenient to adopt E,, the
energy of the SCF ground state as the zero of energy by effectively sub-
tracting E, from all diagonal terms of the CI matrix h, so that®-®

G - K |hyli — K> = AEy. + (K'|K'i) (1-8)
with AE, = e — & — [(ik'|ik") — @k'|k'i)] (7-9)

where the + and — signs refer to singlet and triplet configurations respec-
tively. The off-diagonal elements are given by®-®

G K hgj— Iy = —[GUK) — GUIKD)] £ GPG)  (7-10)
with the same rule for signs. In the formula (7-9) ¢; are SCF orbital
energies, and (Au|vp) are electron-repulsion integrals expressed in terms of
SCF MOs v, y,, . . . etc. These integrals are obtained by transformation
from the given basis of atomic orbitals, that simplifies, in the overlap
approximation, to the form

(Aulvp) = Zcrlcrucsvcspyrs (7-11)
Ts

where 7,, are the electron-repulsion integrals (6-18) referring to atomic
orbitals ¢,, ¢s.

The relevant matrix elements (7-8) and (7-10) are calculated in a com-
puter program described later, and the CI matrix h is diagonalized to give
state energies E; and wavefunctions ®; by the JACOBI routine used
previously. Implementation of the computer programs represents a fairly
straightforward extension of the SCF programs.
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A. Alternant hydrocarbons

The inﬁ.uence of CI in determining excited states in conjugated molecules
can be illustrated most simply by the reference to the resuits obtained in
some particular application.

Consider the case of naphthalene, which, by the methods described in

the previous chapter, yields the SCF orbital energies €; quoted, in eV
in Table 7-1. ’

Table 7-1
SCF orbital energies for naphthalene V)
J 1 2 3 4 5
[ 10 9 8 7 6

[ F946 + 757 F 656 I 5-40 + 437

The SCF orbital energies ¢; are distributed symmetrically in pairs
about the chosen zero of energy w + 1y with occupied bound levels
& ( ;= 1,2,...5) negative, and unoccupied levels & (j=6,7,... 105
positive.

The CI matrix constructed from the nine possible single replacements
amongst SCF MOs describing the six innermost levels, i = 3,4, 5 and
kK’ = 6,7, 8 is given in Table 7-2. o

The computer program described later defines a data record LVLS
essentially similar to that used in the Hiickel programs which selects
automatically all possible single replacement configurations from amongst
the 2 X LVLS innermost SCF MOs; these are (LVLS)? in number. For
example, the maximum value of LVLS in naphthalene is 5, corresponding
to five occupied levels i = 1-5 and five unoccupied &’ = 6’~10’, and this
choice selects all 25 single replacement configurations that car’n be con-
structed for the molecule. The matrix elements given in Table 7-2 were
obtained from the computer program by setting LVLS = 3, which selects
i=3,4,5 and k' =6,7,8, giving nine replacement configurations
Wi — k'), and the accompanying diagram illustrates the origin of the
first four replacements (i = 4, 5; k' = ¢/, .

Diagonal elements of the CI matrix which are computed according to
the formula (7-8) represent configuration energies, and, therefore, energies
of excitation in the SCF description, measured relative to the ground-state
energy Eo. It will be observed that the configuration energies are not
obtained as differences of the orbital energies €, given in Table 7-1, but

Configuration Interaction and Excited States 175
Table 7-2
CI matrix for naphthalene
5-6" 5-7 46 47T 5-8’ 3-6' 4-8’ 3-7 3-8
4790 0 0 0533 0 0 0 0 —0-272
5188 —0904 O 0 0 0 0 0
5188 O 0 0 0 0 0
6-395 0 0 0 0 —0-218
: 5904 0-285 0 0 0
5-904 0 0 0
gt 6852  0-595 0
’ 6-852 0
4 [ 8229
'
[y ﬁ
5

include substantial contributions from electron-repulsion terms. Neverthe-
less, degeneracies that arise in the SCF description are precisely similar to
those predicted on the basis of orbital energy differences alone and are
comparable to those obtained [in Ae(cm~*)] by the Hiickel method in
Table 4-2.

Many off-diagonal elements of the matrix h are zero for the parent
hydrocarbon, due to geometrical symmetry. The matrix can, in these
circumstances, be readily factorized, and the non-zero off-diagonal
elements indicate which groups of single replacement functions combine
when CI methods are introduced, namely

@ (5-6), 4-7), (3-8)

@) (5-7), (4-6)

@iii) (5-8"), (3-6")

@iv) (4-8), 3-7)

The last three groups illustrate first-order configuration interaction in
Moffitt’s” terminology, since they refer to degenerate configurations,



176 Computing Methods in Quantum Organic Chemistry

and the first group demonstrates second-order ClI, since the configuration
energies are different. It is generally assumed that first-order effects exceed,
in magnitude, those of the second order.

Diagonalization of the matrix of Table 7-2 gives the results indicated
in Table 7-3, where E; are the state energies in electron volts measured
relative to the SCF ground state, and ®, the corresponding state wave-
functions. The matrix h can, for naphthalene, be easily factorized accord-
ing to the groupings (i) to (iv), and the eigenvalues E, obtained as the roots
of three quadratics and one cubic.

Table 7-3

CI solution for naphthalene

j 1 2 3 4 S 6 7 8 9
r E; 4284 4618 5619 6092 6188 6257 6508 7-446  8-287
1 5-6' 0 0958 0 0 0 0 0-269 0 —0098
2 5-7 0-707 0 0 —0707 0 0 0 0 0
3 4-6' 0-707 0 [ 0707 0 0 0 0 0
4 4-7 0 —0-280 o 0 o 0 0-949 0 —0141
5 5-8 0 0 0707 0 0-707 0 0 (1} 1}
6 3-6 0 0 —0707 0 0707 0 0 (1] 1]
7 4-8" 0 0 1] 0 0 0-707 [ 0-707 0
8 3-7 1] 0 0 0 0 —0707 0 0-707 0
9 3-8 0 0-055 0 [ 0 0 0-163 0 +0985

Column vectors C,; where ®; = XC,,¥,(i - k)

It will be observed that the lowest singlet state E;, ®, stems from inter-
action between the two degenerate SCF configurations ¥'o(5 — 7°) and
¥s(4 — 6') of energy 5188 €V in Table 7-2 and that its partner is E,, O,.
Since off-diagonal elements between this degenerate pair and all other
configurations are zero, it is possible in this simple situation, to determine
the CI solution from the determinant

E — 5-1884 —09041 | =0

—0-9041 E — 5-1884
giving E; and E,. The corresponding state wavefunctions are the sum
and difference combinations

0,4 = —=[Vs(6>7) £ Vo4 > 6]

1
V2
A similar treatment may be applied to the remaining degenerate con-
figurations appearing on the diagonal in Table 7-2 since, with LVLS = 3
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giving nine single replacement configurations, degenerate pairs are non-
interacting. With LVLS = 4 giving 16 functions, and with LVLS = §
giving the maximum number 25 of single replacement functions, degenerate
pairs always interact, and the solution is more complicated than that dis-
cussed above, though the CI matrix can still be factorized to some extent
because of symmetry.

It is now possible to explain the origin of the «, p, § and f’ spectroscopic
bands of naphthalene in the approximation (7-1) based upon the use of
the nine single replacement configurations represented in Table 7-3.
These bands are associated with the transition energies E;, E,, E, and E,,
in that order, to states described by the wavefunctions 6; (j = 1, 2, 4 and
7), which arise from interactions involving single replacements amongst
the four innermost levels. The validity of this assignment can be confirmed
by computing the associated transition intensities and polarizations for
comparison with experiment (Section 7-2). The « and # bands are associ-
ated with excitations to the states @, (7 = 1, 4) in which each configuration
contributes with equal weight, |C,,| = 1/¥/2. The p and f’ bands are
similarly associated with excitations to ®, and @, which are described
mainly by the single replacement configurations ¥';(5 — 6") and ¥',(4 — 7')
respectively, according to the amplitudes C,; appearing in Table 7-3; both
are influenced by second-order CI involving Wo(3 — 8"). Comparisons of
the state energies E; given in Table 7-3 and the configuration energies
appearing as the diagonal elements of the matrix in Table 7-2, illustrate
the characteristic ‘repulsions’ in computed energies when off-diagonal
terms representing Cls are taken into account. These properties parallel,
within the context of configuration and state energies, similar properties
of repulsions amongst energy levels in Hiickel and SCF theories as dis-
cussed in earlier chapters.

When LVLS = 5 the « and f bands are modified by second-order CI
involving the single replacement ¥s (1 —6"), (5 — 10"), (2 —8) and
(3—9), and the p and #’ bands are similarly modified by ¥'s (2 —9’),
(1—-10), 1 —>7)and (4 — 10).

B. Heteromolecules

It has often been assumed that the presence of heteroatoms which reduces
the geometrical symmetry of a parent conjugated hydrocarbon, and as a
result removes degeneracies in configuration energies, will correspondingly
reduce CI to small second-order effects. However, McWeeny and Peacock®
established that, for nitrogen derivatives of benzene, ClI is still appreciable,
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and CI methods are essential for a valid description of excited states. A
similar conclusion is reached from a consideration of N substitution in
naphthalene, as illustrated in the tables given below, which may be com-
pared with the tables already given for the parent hydrocarbon.

The results refer to N substitution in the # = 1 position of naphthalene
(see Table 7-5) where the modification

dw, = —1-66eV = 0708 [ = —237 V]

proposed by McWeeny and Peacock is applied. Table 7-4 gives the SCF
orbital energies for comparison with those quoted in Table 7-1.

Table 7-4
j 1 2 3 4 s
o ~9-62 —774 —682 ~540 —4-64
j 10 9 8 7 6
o 935 745 6:37 5-40 406

The CI matrix constructed from the same single replacements given in
Table 7-2, defined by taking LVLS = 3, is given in Table 7-5.
Table 7-5
CI matrix for quinolene
5-6 5-7 46 47 5-8’ 3-6" 4-8 3-7 3-8
4715 0-026 0-021 0-521  0-116 0-110 0066 —0062 —0-244

5400 —0-878 0006 0000 0023 —0-165 0010 0-149
4956 0008 0011 —0030 0015 —0-168 0163

9 1 6401 0079 0073 —0015 0-017 —0-192

8 10N 2 5:988 0-313 ~0-007 0-050 —0-018

5-890 0079 —0-039 0-006

6677  0-577  0-057

7 5 3 7-101  0-000
6 a 82737

Diagonalization of the CI matrix gives the results of Table 7-6 for
comparison with those of Table 7-3.

The results of Table 7-6 confirm that interaction amongst the single
replacement configurations still determines, in the heteromolecule, the
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Table 7-6

CI solution for quinolene

i 1 2 3 4 5 6 7 8 9

E; 4246 4549 5609 5984 6195 6393 6580 7512 8332
1 5-6 —0-129 0951 —0-008 0032 —0045 0006 0262 0001 —0-084
2 5-7 0608 0072 —0-069 0677 0086 —0-390 —0-014 —0-024 0-036
3 4-6" 0779 0112 0020 —0-532 —0083 0295 0033 -—0044 0036
4 4-7 0020 —0-261 —0-005 —0-008 —0-401 —0-161 0854 0012 —0122
5 5-8 —0-004 —0-054 —0-635 —0-128 0-695 0011 0305 0028 —0016
6 3-6’ 0030 —0044 075¢ 0063 0571 0131 0282 0015 —0007
7 4-8 0032 —0-037 —0-119 0-397 —0-102 0696 0071 0569 0032
8 3-7 0035 0041 0089 -—0281 0039 ~0481 —0072 0819 0012
9 3-8 —0:061 0041 —0002 —0-014 —0-035 —0-032 0-132 —0024 0987

Column vectors C;; where ©; = XC,,¥,(i — k)

theoretical description of spectroscopic states. The terms which are ital-
icised in Table 7-6, and correspond to non-zero coefficients C,; in Table
7-3, remain large, and, therefore, dominate the solution as described by
the excited-state wavefunctions ®,. Thus C,; = 0-608 and C3;, = 0-779

remain close to the equal weights 0-707 (=1/ v/2) in the corresponding
solution for the parent hydrocarbon, and the same is true of the corres-
ponding pair C,, = 0-677 and Cs, = —0-532. Reference to the CI matrix
for quinolene given in Table 7-5 shows that the corresponding SCF con-
figuration energies which lie 5-400 and 4-956 €V above the ground state
separate, under CI, to give E; = 4246 and E, = 5-984, where the largest
off-diagonal element /3 = —0-878 accounts for most of the interaction.
However, the two states ©®; and ©, no longer derive exclusively from
(5 —7) and ¥(4 — 6") but contain components from all other con-
figurations.

The weights of components C,; appearing in state wavefunctions O,
can generally be related to two main factors, the magnitudes of off-
diagonal terms in the CI matrix which couple configurations, and the
separation of configuration energies. For example, the (4 — 8), 3 — 7)
combination (E; = 6-257 eV in Table 7-3) mixes more effectively with the
neighbouring (5 — 7°), (4 — 6’) combination [E, = 6:092 ¢V] than with
the more remote combination [E; = 4-284 eV] as indicated by the magni-
tudes of the relevant coefficients C,g (r = 2,3), C,; (r =17, 8) and C,,
(r = 7, 8) in Table 7-6. Indeed E, and E; suffer mutual repulsions due to
this interaction so that E4 is lowered, and E, raised, compared with the
corresponding values in naphthalene. By tracing details of new interactions
introduced by perturbations, it is usually possible to understand why some
states are raised and others lowered through mutual repulsions, and why
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some displacements are large and others small. The coefficients italicised
in Table 7-6 assist in tracing correspondences with coefficients of the
solutions ®, for naphthalene given in Table 7-3, though the situation is
not always as clear as that presented here, but can become ambiguous
when mixing is heavy.

7.2 TRANSITION INTENSITIES

Some preliminary notions about the nature of the CI problem were re-
vealed in the calculations by the Hiickel method of oscillator strengths
for m-electron transitions in naphthalene in Chapter 4. For example,
degenerate configurations were identified, and associated intensities and
polarizations were described. The resolved forms which are now quoted
in Table 7-3 take sum and difference combinations, and the influence of
CI on state energies can now be extended to describe corresponding effects
on transition moments.

The computation of oscillator strengths in the CI method can be treated
as an extension of the method described earlier for single excited configura-
tions. Since an excited state is described as a linear combination of single
replacement configurations, component transition moments, calculated
between the ground state ¥, and configurations ¥,(; — k’) can be summed
according to the weights C,; of the linear combinations

0, =3CY,(—~k) (7-12)
to give component moments
Q: = [(Yox(CC,¥.(i — k) dr (7-13)

which, by equation (4-22) transforms to
07 = V23Cym i 1) (7-14)
with a similar expression for QY. Oscillator strengths f; for transitions

from the ground state ¥, to excited singlet states ©, are then calculated
from the formula (4-16)

8m2me

5= (T o0t

0F = (09° + (Y
and where ; are transition energies, expressed in cm~?, as computed by the
CI method.

where (4-17)
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The numerical results obtained for naphthalene and quinolene which
derive from the CI solutions given in Tables 7-3 and 7-6, are presented
in Tables 7-7 and 7-8 respectively.

Table 7-7

Singlet excited states in naphthalene (nine configurations)
J E, o7 o7 fi Band
1 4284 0 0 0 o
2 4-618 0 0-553 0-247 P
3 5-619 0 0 0
4 6:093 1-412 0 2-127
5 6-188 0 0 0
6 6:257 0 0 0
7 6-508 0 0-781 0-695 B
8 7-446 0 0 0
9 8-287 0 —0-804 0-938

These results are largely self-explanatory, though they should be con-
sidered in relation to the forms of state wavefunctions ®, described in
Table 7-3. For example, component intensities of the configurations
¥, (5—7) and ¥,(4 — 6’) cancel in combination in the « band, and
consolidate in the § band, as suggested earlier by the Hiickel method
(Chapter 4, Section 4). In fact the influence of CI effects upon intensities
can be investigated in terms of the weights of contributing configurations,
in much the same way as corresponding repulsions amongst configuration
energies.

Table 7-8

Singlet excited states in quinolene (nine configurations)
J E; (%] Y fi Band
1 4-246 —0-222 —0-047 0-038 o
2 4-549 —0-049 0-534 0-229 P
3 5-609 —0-077 0-013 0-006
4 5-984 1-128 0011 1-334 B
5 6-195 0-226 —0-088 0-064
6 6393 —0-774 —0-060 0-675
7 6-580 —0-029 0-822 0779 B
8 7-512 0044 0-040 0-005
9 8-332 0-012 —0-758 0-839
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The results obtained for quinolene confirm the need for CI methods of
calculation even in non-degenerate situations. For example, cancellation
of component intensities prevails in the « band, since the resultant intensity
is small; and consolidation simultaneously persists in the 8 band, though
with an interesting accompanying modification. The oscillator strength
of the state @, of energy Eg = 6393 eV in quinolene which is zero in
naphthalene, takes the large value fs; = 0:675. The polarization of this
new band is virtually along the x axis, as indicated by the magnitudes of
the components QZ, Q¥ and essentially parallel to the § band. Further-
more, comparison of the state wavefunctions given in Table 7-6 indicates
that in the CI description of quinolene the excited-state wavefunctions @,
and ©g share the same main combinations of configurations. This property
implies that the oscillator strength f; is derived or ‘borrowed’ from the g
band, and f,, the oscillator strength of this band, falls accordingly.

Thus the amplitudes C,; of the state wavefunctions ®; provide a com-
plete and coherent account of the magnitudes of interactions amongst
configurations, of the energy separations between excited states, and of
polarizations and intensities of the transitions from the ground state.

7.3 APPLICATIONS OF SCF-CI METHODS

Pariser’® has discussed theoretical properties and presented numerical
results of CI methods applied to polyacenes and other conjugated mole-
cules based upon the use of Hiickel MOs. The theoretical formulation of
the CI problem is similar to that described earlier in this chapter, though
the matrix elements of h are rather more complicated than those based
upon the use of SCF orbitals. SCF-CI methods are, in fact, becoming
increasingly applied through the use of digital computers, but it is pre-
mature at this point in time, and undesirable in the present context, to
make an assessment of the method. Instead, a few typical applications
will be introduced in terms of the input data required for computing
solutions by the programs presented at the end of the chapter, and some
brief comments will be attached in notes that follow. Many of the problems
that have been discussed in previous chapters, and most applications to
conjugated molecules which are described, for example, in Streitwieser’s
book, can be reconsidered in terms of SCF-CI theory.

The SCF-CI computer programs are easy to use, through the simple
form of input data, which is based upon the use of the hexagonal grid
(Figure 4-21) of Chapter 4, and automatic selection of configurations by
the parameter setting LVLS. Practical experience in the study of solutions
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obtained from the computer can provide a basis for understanding features
and properties that characterize the #-electron MO CI method, as indicated
in previous sections. It is useful, therefore, to begin to experiment with
the computer programs by generating solutions for benzene, naphthalene,
anthracene, phenanthrene!® and other ‘prototype’ AHs and related nitro-
gen heterocyclics; these examples will provide a useful foundation for
further studies.

Data Set
The following data set computes SCF-CI solutions for

(a) naphthalene, quinolene, and isoquinolene
(b) aniline
(c) cyclooctadecanonaene C;gH;g

X1 card
X2
Yl grid coordinates
Y2
(a) 0031 NMOLS, NSPEC
(NMOLS = number of parent
hydrocarbons)
010005 N, M
01020304050610111213 NATM ‘naphthalene’ grid
0005 LVLS
0003 NDER
0 LAB parent hydrocarbon
1 LAB quinolene; modify F
01 NITEM number of modified elements
0101 — 01-659 LILFQLJ) dw, =078 =—237)
0 LAB
1 LAB isoquinolene
01 NITEM _
0202 — 1-659 LLFQLJ) dw,=078

0 LAB
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(b) 007004 N, M
01020304050607 NATM ‘benzyl’ grid
0003 LVLS
0002 NDER
1 LAB modify F
01 NITEM number of modified elements
0707 — 15-000 LILFLJ)) déw;=—15eV
2 LAB modify G
01 NITEM number of modified elements
0707 + 14-090 LI, GA,J) ym=1409eV
3 LAB modify Z
01 NITEM number of modified elements
0720 J, ZQ)) Z,=2
0 LAB no further modifications
1 second aniline calculation
02 with the same parameters
0707 — 15-000 except:
0701 — 01-896 B =08
2
01
0707 4 14-090
3
01
072-0
0
(c) 018009 N, M
070809101112131415161718192021222324 ‘CygH; 4" grid
0004 LVLS
0001 NDER
0 LAB parent hydrocarbon.

Notes on the calculations

(a) The setting LVLS = 5 calculates excited states by permitting inter-
action amongst all 25 (=MINK) single replacement configurations. This
produces a large output which may be useful for analytical purposes, but
could be restricted, by program modification, to select for printing only
states of physical significance.

Note that in each of the 3 (=NDER) calculations, for naphthalene,
quinolene, and isoquinolene, the set of modification cards is terminated
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by LAB = 0. The modification dwy in core parameter, given by
dwy = 0-78 = 1-659 €V corresponds to the value proposed by McWeeny
and Peacock.®

(b) Two calculations are performed for aniline with the sets of para-
meters

) Odwy=—~15eV

Yy = 1409 eV
Zy=2
(ii) OJwy= —15eV
By—c = 0-88 = —1-896 eV
yun = 14:09 eV
Zy=2

Since the core integral o for a conjugated carbon atom is about
—11 eV the value of wy is equivalent to about —26 eV, roughly in agree-
ment with the values proposed by Dewar and Paolini,® and by Bloor
et al® The electron-repulsion integral yyy = 1409 eV corresponds to
that suggested by Dewar.

The first calculation for aniline assumes fy-c = § and the second intro-
duces the modification By = 0-88, and is assumed to represent a reduced
overlap between the nitrogen ¢(2p.) atomic orbital, and that of the
adjacent carbon atom, due to non-planarity.

(c) Excited states are calculated from the 16 configurations defined by
taking LVLS = 4. SCF levels ¢; occur in degenerate pairs in the cyclic
polyenes Cy, , sHy, + 5 €xcept for the lowest, j = 1, and highestj = 4n + 2,

24 8

D |

21 11

20 12

(A) (B
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as represented diagrammatically in (b) for the case n = 4. Invalid results
will be obtained by taking odd-integral values for LVLS except when all
levels are to be taken into account (in this case LVLS = 9), since the
subroutine SCOFA must then select one configuration from the outermost
degenerate pairs defined by the value of LVLS. The situation is illustrated
by the enclosed region in (a) for the case LVLS = 5, which leads to an
arbitrary selection of one, and only one of the outermost degenerate pairs
which could, in principle, be included. A valid solution can be obtained
only if all configurations associated with a degenerate situation are
included in the expansion form (7-1).

74 COMPUTER PROGRAMS (p. 197)

The MAIN program that calls the set of subroutines solving the SCF-CI
equations for conjugated molecules falls into two distinct parts. The first
part terminates at the FORTRAN statement

82 GO TO 176

and obtains solutions of the SCF equations; the second part, represented
by the rest of the program solves the CI problem. The two parts are
largely independent; the first transmits to the second eigensolutions of
the SCF equations, and atom coordinates that are used in calculating both
dipole and transition moments.

The program as it stands requires in all about 18,000 words of 24 bit
core store; this includes the storage of data and intermediate results in
various arrays of dimensions 30 by 30, though economies could be made
at various points as indicated below. Backing store has not been used,
though the program is conveniently designed and can be easily adapted for
this purpose; in fact, an essentially similar program was originally devel-
oped for an IBM 1620 computer with disc facilities and éffectively, about
1200 available words of core store, with the dimensions of the main
arrays restricted to 15 by 15. In these circumstances innermost loops were
retained in core, and certain time-saving processes included in the present
program were disregarded.

The SCF first part
Individual subprograms of the first part can be identified as follows
SCOFZ — input of control parameters.
SCOFB — constructs the core matrix, the electron-repulsion matrix
and the vector of effective charges for a prescribed parent
hydrocarbon.
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SCOFD — initiates these same matrices for processing for each new
derivative.

SCOFH — modifies selected array elements for the prescribed molecule.

SCOFI1 — JACOBI diagonalization routine.

SCOFI2 — orders eigenvalues and vectors.

SCOFI3 — constructs new F or h’ matrix.

SCOFI4 — preliminary transformation of F.

SCOFJI — general purpose print routine.

SCOFK — computes SCF = electron energy E, bond-order matrix P,
dipole moment and components.

SCOFA - though entered in the first part of the program, belongs to
the CI calculation, and is described below.

SCOFZ

This routine reads, as input parameters
NMOLS — the number of different parent hydrocarbons.
NSPEC — zero for SCF only; otherwise set equal to unity.

The following parameters are preset in the program

BETA = —2:37; the framework resonance integral, in eV

HAFGAM = y/2 where y = 11-35 eV is the carbon electron-repulsion
integral

EPS = 1 x 10~16; terminating criterion for the matrix diagonali-

zation routine.

SCOFB

This routine generates the core framework matrix, the matrix of electron-
repulsion integrals, and the effective nuclear charges for a parent AH
based upon the hexagonal-grid structure of Figure 4-21. It is then possible
to change elements of any arrays, in the modification routine SCOFH, to
describe a molecule under investigation.

SCOFB greatly simplifies the input specification by generating the bulk
of input data internally. The procedure is essentially similar to that
described in Chapter 4. Hexagonal-grid coordinates are read and held
permanently in the arrays IX, IY in the main program. The vector NATM
which enumerates a set of grid atoms defining the parent hydrocarbon is
read in SCOFB, preceded by a specification N of the number of atoms and
M, the number of orbitals occupied in the ground state. Grid coordinates
of the selected set are converted to molecular coordinates XCRD, YCRD,
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and D, the distance between all pairs of atoms is computed. Matrix ele-
ments G(I, J) are then computed as follows

(@ if D> 2-81 G, J) = 144/D

(i) if 2-81 > D > 2-75 G J) =479

@ii) if 275 > D > 1-42 G ) =571

(iv) if1-442>D GL =119
and, when I = J, G(I, J) = 11-35. The bounds used in (i) to (iv) ensure
that the values of y,, expressed in electron volts, as proposed by Parr and
Pariser for hexagonally disposed atoms r and s within the same or neigh-
bouring rings are introduced correctly.

Values of y,, for the parent hydrocarbon are preserved in the lower
semimatrix of FG; the upper half excluding the diagonal preserves the
corresponding core integrals. All elements of the upper half are put equal
to zero except those for which G(I, J) > 7 eV which identifies nearest
neighbours, in which case the value —2-37 eV is assigned.

The molecular coordinates XCRD, YCRD are identified with the
arrays X and Y in the main program.

SCOFD
The core matrix F, and electron-repulsion integrals matrix G of a parent
hydrocarbon are extracted from FG to initiate calculations for a new
‘derivative’. Zero-diagonal elements of the core matrix are assigned to
the vector FDIAG, and all elements of the vector Z(I) of effective nuclear
charges are initially assigned the value unity.
SCOFH Matrix elements of the arrays F, G (=GAM) and Z may be
modified to ‘convert’ a real or hypothetical parent hydrocarbon to the
molecule under investigation.

Modifications may be specified by reading data on cards according to
the following prescription. i

Format Parameters Value Result
11 LAB 0 Exit from routine.
1 Modify F.
2 . GAM.
3 A
12 NITEM Number of items to be modified

, for each value of LAB.
212, F7-3 L] X For LAB =1, 2; sets (I, J)th
element to the value X.

12, F3'1 1, Z(J) For LAB = 3; inputs Z(J).
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Each set of modifications must be termined by LAB = 0 to ensure exit
from the subroutine. If the solution for the parent hydrocarbon itself is
required, the input LAB = 0 should be applied as a separate entry. The
modifications appear on the printed output under headings F (or G, or Z)
MODIFICATIONS.

SCOF]J is a generalized print routine.

SCOFI1 is the standard JACOBI matrix diagonalization routine described
earlier. The lower semimatrix of A (or F) including ADIAG (or FDIAG)
only, is diagonalized. (See Chapter 2.)

SCOFI2 arranges eigenvalues in ascending order and eigenvectors cor-
respondingly. .

SCOFI3 constructs a new matrix h’ from the previous diagonalization
according to the formulae

hy = 0 + 3(Pryer — » + E(P" = Z)yn
t#r

hrs = ﬂrs - %Prsyrs

where the diagonal elements #,, are stored in FDIAG and 4,, in the lower
triangular part of F. The core framework (w,, §,,) matrix for the molecule
under investigation is preserved in the upper part of F.

SCOFI4 is a procedure, apparently first suggested by Bloor et al.,° for
speeding up the SCF iteration process. The JACOBI diagonalization
process is normally initiated by setting U, the matrix of column vectors,
equal to the unit matrix. Since approximations W to the matrix of eigen-
vectors are available at each iteration step, the transformation

Wih'W — D’
brings D’ into approximately diagonal form, and the process
LT DT

of two-dimensional rotations T, required to complete diagonalization to
the prescribed accuracy is appreciably reduced.

The subroutine computes the matrix product h'W, where F at this stage
represents h’, and T represents W, to temporary storage in the array
(FS), and subsequently restores the product T+(FS) to F; the lower part
of F only, is involved in these transformations. Note that on reentry to
the diagonalization routine SCOFI1, the parameter NIT is not zero and,
therefore, the program segment setting U = I, the unit matrix, is bypassed,
and A is identified with D’.
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SCOFK. This subroutine calculates and prints the energy E of the =
electrons in the SCF approximation, the density matrix P, and the dipole
moment with its components, following completion of the iterative solu-
tion of the SCF equations.

The total -electron energy E is computed, in effect, from Pople’s
formula

E= %zzPrs F, + HeYeo)
The computed value is printed alongside the heading

BINDING ENERGY E = ... value...
and this is followed by
DIPOLE MOMENT =...value...XMU =...value... YMU =
...value...

where the values associated with XMU and YMU are the components u*
and u¥ measured parallel to the coordinates of the grid framework of
Figure 4-21. Next the density matrix P is printed in semimatrix form,
under the heading

DENSITY MATRIX
Py,
P12 P22
P13 P23 P 33
etc.

The SCF energy levels ¢, (j = 1,2, ... N) and MOs

Y=, (r=12,...N)
are then printed, as follows, by the subroutine SCOFJ, under the heading
SCF LEVELS AND ORBITALS

€1

Ci1 Ca1 C31 Cy4y
. etc.

€2

Ciz Cag (33 Cag
.. etc.

and so on, where the energy levels, and associated orbitals, are printed in
ascending order with ¢, the lowest, most bound level.
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The CI second part
The subprograms can be identified as follows:

SCOFA — selects single replacement configurations

SCOFI5 — computes components m ;, and m,}, of the transition moment
between the ground state W, and each single replacement
configuration ¥'(i — k')

SCOFL — constructs CI matrices for singlet and triplet excitations

SCOFI1 — standard JACOBI diagonalization of CI matrices

SCOFI2 — arranges eigenvalues in ascending order, and eigenvectors
accordingly

SCOFM — prints CI solution; computes and prints transition moments
and oscillator strengths

SCOFP — prints energies of configurations in the SCF approximation

SCOFA. This subroutine is essentially similar to the first part of TRMOM

introduced in Chapter 4. The value of LVLS specifies the number of

highest occupied orbitals i and lowest unoccupied orbitals k’ of the SCF

ground state ¥, from which single replacement configurations ¥'(i — &)

are to be selected; these are MINK = (LVLS)? in number.

SCOFI5 computes the components m .z, and m}, for each of the MINK

transitions selected by SCOFA. This step must be made before entry to

the CI calculation, which destroys the matrix C of SCF MOs from which

the components are calculated.

SCOFL. The routine computes matrix elements between single replace-

ment configurations selected by SCOFA, for both singlet and triplet forms

according to the formulae (7-8) and (7-10). The CI matrix for singlet

states is constructed in the lower triangular part of the array AS, and that

for triplets in AT; AS is formally identified with F in the argument list of

the calling statement.

SCOFP. Diagonal elements (equation 7-8) of the CI matrices represent the

energies of configurations ¥'(i — &) in the SCF approximation, measured

relative to the ground-state configuration. These are printed in SCOFP

for both singlet and triplet configurations under the two headings

SCF SINGLET (or TRIPLET) CONFIGURATIONS

Values of the diagonal elements are printed below corresponding pairs of
labels i — &’ defining the configurations, thus

e ik ... etc.
...value ...etc.
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SCOFII. Diagonalizes the matrix AS through identification with F,
operating on the lower semimatrix only. (See above and Chapter 2.)

SCOFM. The state energies E; obtained as eigenvalues in SCOFII, and
ordered in SCOFI2, are printed, with corresponding state wavefunctions

0, =3C,¥i—~k) (1-12)
obtained as eigenvectors, under the two headings
SINGLET (or. TRIPLET) STATES

Each state energy E, is printed in the form
ENERGY = value

and is followed by the corresponding state wavefunction ©,, where the
values of the coefficients C,; are tabulated under the corresponding labels
i, k" identifying the configurations, thus

L i—=K L et

...value ...etc.

Transition moments are computed in terms of the linear combinations
given in (7-14), where the components m,?,, m,?, are computed earlier in
SCOFTS5, and the weights C,; have now been derived. Oscillator strengths
are then computed according to the formula (4-16). The results are
tabulated under the heading

OSCILLATOR STRENGTHS

where the columns X-COMPONENT and Y-COMPONENT refer
(equation 7-14) to Q* and QY respectively.

Computed results for singlet states are printed in SCOFM the first time
round. Then the CI matrix AT for triplet states is transferred to the lower
semimatrix of AS which in turn is identified with F in the argument list
of the calling statement. Thus the results for triplet states are printed in
SCOFM the second time round. The integer variable 12 is used to control
these two loops.

It should be emphasized that orthogonality of the spin functions
ensures that the oscillator strengths for all excitations from the ground
state to the tabulated triplet states are zero, and that the corresponding
transitions are, therefore, forbidden. The values tabulated in this section
of the program output refer only to the orbital component. It is, however,
not wholly irrational to print these results since in certain physical situa-
tions the transitions can, in fact, be observed. For example, in the oxygen
enhancement experiments of Evans'?-1® induced singlet-triplet transitions
arise from spin-orbit perturbations, due to the inhomogeneous field of
the paramagnetic oxygen molecule. The strongest absorptions occur
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when the transitions are orbitally allowed and only spin-forbidden. The
calculated results are, therefore, not entirely without physical significance,
but may be disregarded at the reader’s discretion.

The MAIN Program

A prescribed series of m-electron calculations is controlled by the MAIN
program. The control variable KMOLS labels and counts the set of
NMOLS parent hydrocarbons selected from the grid framework of
Figure 4-21 where the value NMOLS is read in SCOFZ. A prescribed
number of ‘derivatives’ is to be associated with each value of KMOLS,
that is, with each parent hydrocarbon. This number is read into NDER
which controls the loop beginning

DO 83 I = 1, NDER

that encloses the SCF-CI calculation.

Solutions for parent hydrocarbons must be included in the number of
derivatives NDER, and associated with the parameter value LAB = 0
in SCOFH.

The SCF iteration process, controlled by the count NIT, is terminated
after 10 iterations. It would be preferable to apply a genuine theoretical
test for termination. Such a test would involve several matrix operations,
to be applied at each iteration stage and would, therefore, consume valu-
able computing time and storage. In practice the final few iterations are
always executed rapidly, following partial diagonalization in SCOFI4,
and an increase to 13 or 15 iterations instead of 10, would consume less
time than computing a theoretical criterion. Ten iterations is found
acceptable in most cases, but is recognizably a weak criterion based only
on practical experience.

An extrapolation procedure introduced in an earlier program reduced
the computing time by, roughly, a factor of two. It has not been included
here because it consumes storage space, and may be less effective when
Bloor’s procedure (SCOFI4) is introduced.

The calculation of state energies and wavefunctions in the CI second
part is controlled by a switch 12 that is set in SCOFL and incremented in
SCOFM. Singlet and triplet states are computed when 12 takes the values
0 and 1 respectively, and 12 = 2 exits to the end of the loop in the MAIN
program.

A. Results

A specimen set of results follows for aniline, based on the data specification
(b) given in the previous section, with the restriction that NDER = 0001.



CORE INTEGRALS

0.000

=2.370 0.000

0,000 -2.370 0.000
0.000 0,000 0.000

11,350

7.190 11.350

5.770

0.000
-2,370 0,000

0.000 ~2,370 0,000
0.000 0,000 -2.370
0.000 0,000 0,000
-2,370 0,000 0.000
-2,370 6,000 0.000
ELECTRON-RERULSION INTEGRALS
11,350

7.190 11,350

5,770 7.190 11.350
4,970 5.770 7.190
5,770 4,970 5.770
7.190 5.770 4.976.
7.190 5,770 3.888

F MODIFICATIONS

3,429

o

7.190 11.350
3.888 5.770 11.350

0000

1.02716
0.66373
-0.04007
0.12621

0.186358

~0.476303

=0.000000

0.501981

0.000000

-0.566251

7 7-15,000
6 MODIFICATIONS
7.7 14,090
7 MODIFICATIONS
7 2.0
BINDING ENERGY E= -0.18159138E+03
DIPOLE MOMENT= 11,2573  XMU= -0,
DENSITY MATRIX
0,96754
0.63105  1.06331
0.00627  0.67146  0.983987
-0.31470  -0.04007  0.66373
0,00627 -0.32831  0.01108
0.63105  0,04209  -0.32831
0.32155  =0.18906  ~0.02324
SCF LEVELS AND DRBITALS
-0,9377F+n1
0,535827  0.330287  0.226717
-0,7510E+01
0.080371 =0.202973 =0.399686
-0.5419E+01
0.000000 =0.505276 ~0.494667
~0.4564E+01
-0,436119 -0.355074  0.197706
0,5783E+01
0.000000 -0.494667  0.505276
0.5997E+01
~0.581409  0.257253  0.297140
0,8975F+01
-0.427130  0.420023 -0.401833

C.1,SO0LUTION

0.407161

SCF SINGLET CONFISURATION ENRERGIFS

4-5
5.1959

4 -6
5.8535

3~-5
6.,3615

3 -6
5.9203

427
7.9017

0.000

YMUs -1,2573

0.98987

0.67146 1.06331

-0.02324 ~0.18906 1.89895
0.226717  0.330287  0.59764%
~0.3996R6 =-0.702928 0.604001
0.494667  0.505276 ~0.u000UD
0.197706 -0.355078  0.476947

-0.505276

0.297140

~0.,401833

2 -5
7.8509

0.494667 ~-0.000000

0,.252253

0.400023

$ -7
8.4749

2 -6
8.1369

0.193585

0.114233

2 -7
10,9449

SINGLET STATES

ENFRGY = 0.451950E+01

4 -5 4 -6 3-5
0.8161 0.0000 0.0000
ENERGY = 0.%54854E+01

4 -5 4 -6 3 -5
0.000¢ 0.8690 =-0,4814
ENERGY = 0.654037F+01

4 -5 4 -6 3 -5
-0,5774¢ 0,0000 0.0000
ENERGY = 0.660137F+01

4 -5 4 -6 3 -5
0.0000 0.4722 0.3746
ENERGY = 0.76340354+41

4 -5 4 -6 3~5
0.0000 =0.1212 -0.0546
ENERGY = 0,7B87757E+01

4 -5 4 -6 3~-5
0.0258 0.6000  0,0000
ENERGY = 0,835547E+01
4-5 4-6 3-5
0.0000 0.0130 <-0,0892
ENFRGY =  0,850453E+01

4 -5 4 -6 3~5
7.0168 0.0000 0.0000
ENERGY = 0.110590E+02

4 ~5 4 -6 3~5
0.0000 =0.0842 0.0141

OSCILLATOR STRENRTHS

ENERGY
0.451950E+01
0.554854E+01
0.,654037E+01
0.660137E+01
0.763403E+01
0.787757E+01
0.835547E+01
0.R50453E+01

0.110590E+02

X=-COMPONENT

0,195
0,000
-0.898
2.000
-0.000
-0,317
-0.9200
-0.066

0,000

I-6 4-7
0.5674  0.0000

3-6 4=-7
0.0000  0.0829

3-6 4-17

0.8097  ©8.0000
3 -6 4 -7

0.0000 0.0872

3 -6 4 -7

0.0000 0.7939

-6 4-7
0.1479 0.0000

3 -6 4 -7
0.0000 -0.5855

3-6 4-7
0.0249  0.0000
3-6  4-7
0.0000 0.1114

Y~-COMPONENT
~0.000
0.370
0.000
0.996
~0.121
0.000
~-0.021
6.000
6.026

SCF TRIPLET CONFIGURATION ENERGIFS

4-6
3.7824

4 -5
3.9730

3 -5
3.3826

3-6 4-7
4.7427  6.9448

2 -5
-0.1098

2-5
0.0000

2 =5
-0.1059

2=-5
0.0000

2-5
0.0000

2-5
0.9648

v.0000

2 -5
0.2144

0.0000

§ -7

-0.0044

3 -7
¢.0000

3 -7

6.0125

3 -7
0.0000

3 -7
g.0000

3 -7

-0,2161

3 -7
v.0000

3-7

0.9763

3 -7
0.0000

2~ 6
0.0000

2 -6
0.0252

2-6

0,0000

2 =6
0.0613

2 -6
0,5929

2 -6
0.0000

2 ~6
0.7925

2 -6

g.0000 .

2 -6
-0.1266

OSCILLATOR STRENGTH

0.030
0.133
0.924
1.146
0.020
0.139
0.001
0.007
0.001

2 -5
7.0757

3 -7
7.3947

? -6
7.0854

2 -7

0.0000

2-7
0,0753

2~-7
0.0000

2-7
0.0259

2 -7
-0.0232

2 -7
0.0000

2 -7
0.1699

2 -7
0.0000

2 -7
4.,9820

2 -7
10.1734



TRIPLET STATES

ENERGY = 0.319992E+01

4 -5 4 -6 3 -5
0.0000 0.7708 <~0.5900
ENFRGY = 0.381790E+01

4 -5 4 -6 3 -5
0.9505 0.0000 0.0000
ENERGY = 0,405798E+01

4 -5 4 -6 3 -5
0.0000 0.6000 0.7955
ENERGY = 0,480519F+01

4 -5 4 -6 3 -5
0.2748  0.0000 0,0000
ENERGY = 0.588920F+01

4 -5 4 -6 3 -5
0.0000 ©.6931 0,0157
ENERGY = 0.631079E+01
4«5 4-6 3-5
0.0815 0.0000 0.0000
ENERGY = 0.812830F+01

4 ~5 4 -6 3 -
0.0000 0.1015 =~0,0153
ENERGY = 0,825220E+01

4 -5 4-6 3 -5
D.1201 0.6000 0.%000
ENERGY = 0.105910E+02

4 -5 4 -6 3 -5
¢.n000 =0.1643 0.1366

OSCILLATOR STRENGTHS

ENERGY
0.319992E+01
0,381790E+01
0.405798E+01
0,480519E+01
0.588929E+01
0.631079E+01
0.812830E+01
0,8252720E+01
0.105910E+02

END
8END;

TIME =
A

0903

X-COMPONENT

31

0.000

‘84852

0.000
=0.,460
-0.000
-0.071
-0,008
-0.060

0,000

3-6 4-7
0.0000 0.0495
36 4-7
-0.2697  6.0000
I-6 4-7
0.0000 -0.0718
36 4-7
0.9598  0.0000
3-6 4-7
0.0000 0.7480
3-6 4-7
-0,0777  0.0000
I-6 4-7
0.0000 =0.6353
36 4-7
-0.008% 0.0000
3~6 4-7
0.0000  0.1840
Y-COMPONENT
0.227
,=0.000
1.039
0.000
0.093
0.000
0.047
0.000
0.047

2~5
0.0000

2-5
~0.1527

2-5
g.0000

2 -5
8.0232

2~-5
0.0000

2=-5
0.7428

2-5
0.0000

2«5
0.6514

2 -5
0.0000

3 -7
6.0000

3 -7
~0.0227

3 -7
g.g000

3 -7
=0.0529

3 -7
u.0000

3 =7
=-0.6600

*3 -7
0.6000

§-7
0.7491

3 -7
6.0000
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B.

2 -6
~0.1262

2 -7
4.1987

2 =6 2-7
0.0000 0.0000

9

2-7
-0.0117

2 =6
~0.0514

7
7

2 -7
0.0000

2 -6
0.0un0

9

2 -7
~0.0875

2 -6
0.6510

2 =6

c.0000 0.0000

2-~6 2.7

0.7414

2=-6
0.0000

2=-7 1

Listings

o

o

~

]

~

0.1902 18

2 -7
0.0000 82

8t

1000

2 -6

~-0.0626 U.9574

OSCILLATOR STRENGTH

0.029
0.486
0.767
0,178
0,009
0.006
0.003
0.009
0.004

8

10

2 -7 84

w

=3

MAINO 2

DEIMENSTON F(30,30),FDIAG(30),T(30,30),G(30,30),2(30),AT(30,30)

DIMENSION IX(64),1Y(64)

DIMENSION LL(64),LH(64),FG(30,30),X(96),Y(96)
DIMENSION XMIK(64),YMIK(64)
READ(7,98)(1X(1),1=1,54)
READ(7,98)(1Y(1),1=1,54)

FORMAT(4012)

KMOLS=0

CALL SCOFZ(NMOLS,NSPEC,EPS,HAFGAM,BETA)
KMOLS=KMOLS+1

IF (KMOLS-NMOLS)77,77,78

CONTINUE

CALL SCOFB(N,M,FR,G,Z,X,Y,1X,1Y)

CALL SCOFACMINK,LL,LH,N)

READ(7,99)NDER

FORMAT(14)

DO 83 1=1,NDER

CALL SCOFD(N,F,FG,FDIAG,6,2)

MIND=6

CALL SCOFJ(N,MIND,FG,FDIAG,T,6,2)

CALL ‘SCOFH(N,F,FDIAG,6,2)

NET=0

CALL SCOFIL(N,F,FDIAG,T,NIT,EPS)

CALL SCOFI2(N,F,FDIAG,T)

CALL SCOFI3(N,M,F,FDIAG,T,G,7,HAFGAM)
CALL SCOFI4(N,F,FDIAG,T)

NIT=NIT+1

IF (NIT=10)17,17,18

CALL SCOFK(NsM,F)TsGsZpXsY)

CALL SCOFIS(MINK,LL,LH,N,XMIK, YMIK,T,X,Y)
MIND=3

CALL SCOFJ(N,MIND,F,FDIAG,T,G,2)

IF (NSPEC)81,82,81

60 TO 76

CALL SCOFL (N,MINK,F,FDIAG,T
WRITE(2,1000)
FORMAT(/12HC. I.SOLUTION)
NIT =0

CALL SCOFP(MINK,LL,LH,FDIAG,12)

CALL SCOFI1(MINK,F,FDIAG,T,NIT,EPS}

CALL SCOFI2(MINK,F,FDIAG,T)

CALL SCOFM(MINK,F,AT,FDIAG,T,12,XMIK, YMIK,LL,LH)
IF (12-2)84,83,83

CONTINUE

60 T0 76

STOP

END

2G AT, I2,LL,LH)

SUBROUTINE SCOFZINMOLS,NSPEC,EPS,HAFGAM,HETA)
EPS=1.0E-15

HAFGAM=5,675

BETA==2,37

READ(7,100)NMOLS,NSPEC

FORMAT(13,11)

RETURN

END

197
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Computing Methods in Quantum Organic Chemistry

SUBROUTINE SCOFB(N,M,FG,G,ZsXCRD,YCRD, IX,IY)

DIMENSION FG(30,30),G(30,30),Z(30)
DIMENSION IX(64),1Y(64).NATM(96)
DIMENSION XCGRD(96),YCRN(96)
DIMENSION X(9%96),Y(96)
EL=1,40

XT=0.8660254*EL

YT=0,5=EL

N0 4 I1=1,54

XCI)=IX(1)«XT
YCI)=1YC1)#YT
READ(7,99)N,M

READ(7,98) (NATM(J),J=1,N)
DO 9 I=1,N

DO 9 J=1,N

FG(I, =0,

PO 10 I=1,N

ID=NATM(])

XD = X(ID)

YD = Y(ID)

YCRDC(I)=YD

XCRD (1) =XD

B0 10 JsI.N
1F(1-4)12,13,12
G(1,1)=11,35

GO To 10

JD=NATM( )

XC=X(JD)

YC=Y(JD)
D=SQRT((XC-XD)##24(YC~YD)#%2)
1F(D-2.81)14,14,51
6(1,J)=14.4/D

GO TO 19
TF(D-2.75)15,15,52

6(1,4)=4,97

G0 TO 10
1F(D=~1.42)16,16,17
6(1,J)=5,77

GO TO 10
G(I,J)=7,19
CONTINUE

DO 19 I=1,N

DO 19 J=I,N
FGLI,J¥=G(1,J)
G(Jy1)=6C1,0)
TUPP=N=-1

DO 20 I=1,IUPP
JLOW=]+1

DO 20 J=JLOW,N
IF(G(I,N=7.0)20,20,21
FG(J,11=-2.37
CONTINUE

DO 113 J=1,N
Z2(J)=1.0
FORMAT(4012)
FORMAT(213)
RETURN

END
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99

1z

1%

12

10

w

1

17
10

11
12

SUBROUTINE SCOFA(MINK,LL,LH,N)
DIMENSION LL(64),LH(64)
READ(7,99)LVLS
IF(LVLS.EQ.0)GO TO 13
FORMAT(14) :
M=(N+1)/2

I=1.

Do 14 J=1,LVLS
MD=M+1

MT=zM
1F(J-1)17,17,11
LH{I)=MD

ELCT)=MT

GO TO 10

KUPP=J=1

DO 12 K=1,KUPP
I=l+1

LH{I) =M+
LLCI)=MT

I=1+1

LH(1)=MD
LLCT)=M-KUPP
MT=MT=-1

MD=MD+1

I=1+1
LLCI)=M=KUPP
LH{D) =M+

CONT INUE
MINK=LVLS*LVLS
CONTINUE

RETURN

END

SUBROUTINE SCOFD(N,F,FG ,FDIAG,GAM,2)
DIMENSION F(30,30),FG (30,30),FDIAG(30),GAM(30,30),2(30)

N0 10 J=1,N

DO 10 I=J,N
IF(I-3)16,17,16
FlI,J)=F6  (1,J)
FOJ, D)=F (], J)

GO TO 10
FDIAG(J)=0
F(J,Jd)=0

CONTINUE

DO 11 I=1,N

00 11 J=I,N
GAM(T,N=FG (1,J)
GAM(J, 1)=GAM(L,J)
N0 12 JU=1,d
Z(Jr=1.0

RETURN

END
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SUBROUTINE SCOFJ(N,MIND,A,ADIAG,Y,Gs2)
DIMENSION A(30,30),ADIAG(30),U(30,30),6(30,30),2(30!
G0 TO (9,10,11,12,13,14),MIND

DO 19 J=2,N

HUPzJ-1

WRITE(2,100) (A(I,J),1=1,TUP)
WRITE(2,100) (ADIAG(J),J=1,N)

G0 T0 9

WRITE (2,106)

FORMAT  (/24H SCF LEVELS AND ORSITALS)
PO 17 J=1,N

WRITE(2,112)ADIAG(J)

FORMAT (1HO,1X,E11.4/)

WRITE(2,111) (U(1,J),1=1,N)
FORMAT(7(F11,6))

G0 T0 9

WRITE(2,101) ((UC1,0),121,N),J=1,N)
WRITE(2,100) CADIAGCI), I=1,N)

60 TO 9

HRITE(2,103) ((ACI,J),121,J),J=1,N)
WRITE(2,103) ((G(I,J),1=1,J),J=1,N)
WRITE(2,105) (Z(J),J=1,N)

G0 T0 9

WRITE(2,120)

FORMAT (141,154 CORE INTEGRALS)
WRITE(2,103)ADIAG(L)

DO 71 J=2,N

JLOW=J-1
WRITE(2,103)(ACJ.1),1=1,JL0W),ADIAGCY)
CONTINVE’

WRITE(2,121)

FORMAT(/29H ELECTRON RFPULSION INTEGRALS)
DO 72 1=1,N

WRITE (2,103)(A(J,1),J21.1)
CONTINUE

FORMAT(5E16,8)
FORMAT(7F11,8)
FORMAT(11F7.3)

FORMAT(13)

FORMAT(15F5,2)

RETURN

END

200
100
10t
102
103
104

66
136

67
131

68
132
69
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SUBROUTINE SCOFH(N,F,FDIAG,GAM,2)
DIMENSION F(30,30),FDIAG(3),GAM(30,30),2130)
WRITE(2,200)

FORMAT(/)

FORMAYT(]2)

FORMAT(11)

FORMAT(212,F7.3)
FORMAT(I2,F3.1)
FORMAT(12,1X.F4.1)
READ(7,101) LAR

IF(LAB) 9,8,9

1F (LAB-?)66-67,68

WRITE (2,130

FORMAT(16H F MODIFICATIONS)
GO TO 69

WRITE (2,131)

FORMAT (16H G MODIFICATIONS)
GO TO 69

WRITE (2,132)

FORMAT (16H Z MDDIFICATIONS)
READ(7,100) NITEM

-DO 20 K=1,NITEM

10

11

12t

12
20

43

42
41"

40

GO TO (10,11,12),LAB
READ(7,102)F,J,F(1,J)
WRITE (2,102)1,J,F(1,J)
1F(1-07120,20,120
CONTINUE

F(J,1I=F (T, d)

60 T0 20
READ(7,102)1,J,GAM(T:J)
WRITE (2,102)1,J,GAMCI,J)
IF(1-J)121,20,121
CONTINUE

GAM(J, 1)=GAM(T,J)

G0 TO 20

READ (7,103)J,2(J)
WRITE(2,104)J,2(J)
CONTINUE

50 YO 7

DO 13 J=1,N
FDIAGCJ)=F(J,J)

RETURN

END

SUBROUTINE SCOFI2(N,A,ADIAG,U)

DIMENSION A(30,30),ADIAG(30),U(30,30),UTEST(30)

DO 40 K=1,N
ATEST=ADIAG(K)
JTEST=K

PO 41 J=K,N
FFCADIAG(J)~ATEST)42,41,41
ATEST=ADIAG(J)
JTEST=J

CONT INUE
ADIAG(JTEST)=ADIAG(K)
ADIAG(K)=ATEST

D0 40 I=1,N
UTEST(T)=UCT, JTEST)
UCT, JTESTY2UCT,K)
UCT,K)=UTESTC(D)
RETURN

END
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SUBROUTINE SCOFI3(N,M,F,FDIAG,T»G,Z,HAFGAM)

DIMENSION F(30,30),FDIAG(30),T(308,30),G(30,30),2¢30),DIGR(30)

DO 11 I=1,N
DO 11 J=i,1

RSUM=Q

DO 12 K=1,M .
RSUM=RSUM«T(1,K)aT(J,K)

IF (J=-1) 9,10,10 .
FOL,JY=FLJ, 1) =RSUMG(I,J)

GO TO 11 -

DIGR(I)=RSUM N

CONTINUE

SUM=0

D0 20 J=1,N

SUM=SUM+DIGR(Y)

D0 21 J=1,N
DIGR(JY=M#DIGR(JI/SUM

DO 22 I=1,N

RSUM=0,

DO 23 J=zi,N

1F(1=J)24,23,24
RSUM=RSUM+(2,0%DIGR(J)=Z2(J))*G(1, )
CONTINUE
FDIAG(1)=F(1,1)~HAFGAM+DIGRCI)*G(I,1)+RSUM
RETURN

END

SUBROUTINE SCOFI4(N,F,FDIAG,T)
DIMENSION F(30,30),FDIAG(30),T(30,30),FS(30,30)
DO 8 I=1,N

DO 8 J=1,N

SuM=0 .

DO 7 K=1,N

IF(K=-1) 5.,4,6
SUM=SUM+FDIAG(K) #T(K,J)
GO To 7 .
SUM=SUM+F (1,K)#T(K,J)
G0 TO 7
SUM=SUM+F (K, 1) #T (K, J)
CONTINUE

FS(I,J)=50u

DO 10 I=1,N

DO 10 J=1,1

SUM=0

N0 11 K=1,N
SUM=SUM+T (K, 1) #FS(K,J)
IF(I-J) 12,13,12
F(I,J)=5UM

GOTO 10

FDIAG(J)=SUM

CONTINUE

RETURN

END
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SUBROUTINE SCOFK(N,MsF,T,G,2Z,X,Y)
DIMENSION X(96),Y(96)

DEMENSION F(30,30),FRIAG(30),T(30,30),G¢(30,30),2(308),R¢30,30)

DO 9 J=1,N

DO 9 I=1,N

SuM=0,

DO 10 K=1,M
10 SUMsSSUMeT(I,K)#T(J,K)
R(I,J)=SUM
SUM=0
DO 20 J=1,N
20 SUMsSUM+R(J, J)

DO 21 J=1,N
21 R(J,J)=M=*R(J,J)/SUM
€=0.
DO 8 I=z1,N
SIGK=0.
DO 11 K=1,N
SIGK=SIGK+2.0#(R(K,K)=Z(K))I*G(I,K)
DO 8 J=1,1
BRAK=2.U¢F(J,I)-R(IEJ)'G(I,J)
1F(1=-4)6,7,6
TERMSIGK+BRAK+2.0%Z(1)*G(1,1)
GO To 8 .
TERM=2,0+8RAK
EzE+R(I,)=TERM
WRITE(2,100) E

o

1

5N

~

» o

DO 1 J=1,N
DO 1 I=1,4

1 R(I,J)=24R(1, )
SX=0
sY=0
DO 18°1=1,N

PR(I,1)=-2(1)
SX=SX+Pe#X(I)

18 SY=SY+PaY(])
EMU=4,775S9RT(SX*SX+5Y=SY)
$X=4,77#5X
SY=4.77=SY
WRITE(2,109) EMU,SX,SY

109 FORMAT(/15H DIPOLE MOMENT=,F8.4,2X,5H XMU=,FB8.4,2X,5H YMU=,F8.4)

WRITE (2,102) .
102 FORMAT(/15H DENSITY MATRIX)
D0 77 J=1,N
77 WRITE(2,101)(R(1,J),1=1,J)
1060 FORMAT(/18H BINDING ENERGY E=,E16.8)
101 FORMAT(10(F9.5,2X)}
RETURN
END

SUBROUTINE SCOFIS(MINK,LL,LH,N,XMIK, YMIK,C,X)Y)
DIMENSION C(30,30),LL(64),LH(64),XMIK(64),YMIK(64)

DIMENSION X(96),Y(96)
DU 18 T=1,MINK
Jl=LL()
JK=LH(T)
SX=0
§Y=0
DO 27 L=1,N
€1=C(L,JI)»CIL, JK)
SX=SX+C1aX (L)
27 SY=SY+C1aY(L)
XMIK(1)=SX
YMIK(I)=SY
RETURN
END

1

@
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SUBROUTINE SCOFM(MINK,AS,AT,H,C,12,XMIK,YMIK,LL,LH)

SUBROUT ENE 'SCOFL (N, MINK,AS, HsC, G, AT, 12,LL,LH) DIMENSTON XMIK(64),YMIK(64),0SC(64),LL(64),LH(64)
DIMENSTON AS(30,30),H(30),C(30,30),6(30,30),2(30),LL(64),LH(64), DIMENSION AS(30,30),H(30),C(30,30),AT(30,30)
1AT(30,30),VECT(30) DIMENSION TRX(64),TRY(64)
200 FORMAT(BF10.5) IF(I2-1)13,14,14
12=1 13 WRITE (2,104)
PO 8 MI=1,4INK 104 FORMAT(/15H SINGLET STATES)
80 8 MJ=1,MI GO TO 15
I=LL(MJ) 14 WRITE (2,105)
K=LH(MJ) 105 FORMAT(/15H TRIPLET STATES)
JELLIMT) 15 CONTINUE
L=LH(MD) DO 9 J=1,MINK
GM1=0, WRITE(2,1001)HCJ)
GM2=0, 1001 FORMAT(/9HENERGY = ,E13.6)
DO 44 IR =1,N -7 INZ=0
C1=C(IR, 1) #C(IR,J) INK=0
C2=C(IR, 1) *C(IR,K) K=1
DO 44 IT=1,N NMINK=MINK
GM13GML+C12C(IT,K)*C(IT,L)#G(IR, IT) 1012 IF(MINK.LE.9) GO TO 1010
44 GM2zGM2+C2#C(IT, I#CCIT,L)»GCIR, IT) INK=INK+9
1Z=12+1 MINK=MINK~9
IF(MI=MJ)26,27,26 G0 TO 1011
27 AT(MJ,MJ)=H(K)-H(I)-GHL 1010 INK=INK+HINK
VECT(MJ)ZAT(MJ, MJ)+2. 0%GM2 INZ=1 i
GO T0 8 1011 WRITE(2,1002) CCLLIMI,LHIM) I, M=K, INK)
26 AT(MI,MJ)==GM1 1002 FORMAT(/9¢1X,12,2H -,12,2X))
AS(MI,MJ)==GM1+2,08GH2 WRITE(2,1009)(CCT,J), 1=K, INK)
8 CONTINUE 1009 FORMAT(9(F7,4,2X))
DO 11 J=1,MINK KzK+9
11 HED =VECT(J) IFCINZ.E0.0) GO TO 1012
12=0 MINK=NMINK
RETURN 9 CONTINUE
END DO 11 J=1,MINK
SX=0
sY=0
NO 10 I=1,MINK
€1=C(1,J)

SX=SX+C1aXMIK(I)
10 SY=SY+CiaYMIK(I)

TRX(J)=SX
TRY(J)=SY
11 0SC(J)=0.0000217%(SX#SX+SY#SY)#H(J)28067.5
. WRITE(2,1003)
gfsgggIézELffgiffE;?g;&f;&ga?*‘2’ 1003 FORMAT(/2040SCILLATOR STRENGTHS)
s WRITE(2,1004)
16 [F(I2=016,17,17 1004 FORMAT(/5X, 6HENERGY,5X, 11HX=COMPONENT, 5X, 11HY~COMPONENT, 5X,
100 FORMAT(//34HSCF SINGLET CONFIGURATION ENERGIES) B g A0k SRRENGTH)
7 331;2(%?101) WRITE(2,1006) H(J),TRX(J)»TRY(JI,0SC(J)
101 FORMAT(//34HSCF TRIPLET CONFIGURATION ENERGIES) 1005 EONTINSLEL36,3(F11.3,4X0)
18 CONTINUE
CONTI 12212¢1
o IF(12-1)6,6,7
K=1- 6 DO 18 I=2,MINK
NMINK=MINK §3P§§‘3§1,Jupp
1012 IF(MINK.LE.9) GO TO 1010 17 ASCUI, D =AT(I, )
INK=INK+9 IAT( '
MINK=H#1NK=9 18 HCI)=AT(1,1)
LU 75 1011 H(1)=AT(1,1)
1010 INK=INK+MINK 7 e
INZ=1

1011 WRITE(2,1002) CC(LL(M),LH{M)), MK, [NK)
1002 FORMAT(/9(1X,12,2H =.17,2X))
WRITE(2,1009) (H(I), 1=K, INK)
1009 FORMAT(9(F7.4,2X)}
K=K+9
1FC(INZ.EQ.0) GO TO 1012
MINK=NMINK
RETURN
END
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AH Alternant hydrocarbon, charge
densities in 45, 127, 129, 152

definition of 44

energy levels of 14

excited states of 174-177

in SCF theory 152

pairing properties 43, 45, 152, 159,

170

reactivity indices in 129-132
Ammonia, dipole moment of 81
Aniline 156, 157

charge densities in 63

dipole moment of 81

program input data for 62, 108
Anthracene 162

bond orders and bond lengths in 164

program input data for 38
Atom-atom polarizability 46, 57, 106,

158

computer program for 55

definition of 41

program output for 56
Atom-bond polarizability 46

definition of 41
AO Atomic orbitals 9, 91-92

linear combination of 9, 149
Azulene 38, 57

charge densities in 79

dipole moment of 77, 79

MOs of 87, 97
program input data for 30, 108
Benzyl 117
as parent hydrocarbon 63
program input data for 62
Benzyl ions 39, 62
B, see Resonance integral
p-bands, in UV spectra 85-90, 177, 181
Bond-atom polarizability 46
definition of 41
Bond-bond polarizability 46
definition of 41
Bond length, and bond order 164-165
Bond localization, energy of 75
in relation to g variation 72-73
in transition states 75
Bond order 28, 29, 106, 170
and bond length 164165
and chemical reactivity 120
computer program for 28
definition of 20
variation with o 41, 4648, 52-53,
57, 99-101
variation with 8 41
variation with o and y 159
Bond polarity 81
and dipole moment 81
Borazine 161, 162, 165-168
conjugate solutions for 167

207
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Borazine, (contd.)—
in relation to benzene 165, 166-167
SCF energy levels in 168
variation of SCF solution with w 168
Boron, in borazine 165
SCF parameters for 166
Butadiene, characteristic polynomial
for 14
energy level diagram of 17

Carbon, coulomb integral for 21, 60
resonance integral for C-C bonds
21, 60, 155
SCF integrals for 152, 155, 185
Characteristic polynomial, see Poly-
nomial
Charge density 20, 28, 64, 95, 99, 106,
170
and dipole moment 78-79
and reactivity 120, 123, 128, 133
computer program for 28
definition of 20
in AH 45, 152
variation with o 41, 46-48, 52-53,
57, 99-101
variation with g 41, 74
variation with @ and y 158-161
Charge transfer excitations 65, 115,116
Computer calculations, purposes of 2,
6, 42, 43, 61, 121, 143, 160
Computer programs 22-33, 54-56,
102-114, 168, 186-193
execution times 3
for matrix diagonalization 25-27
input data for, see Input data speci-
fications
program output results 33-37, 56,
110-111, 194-196
storage requirements 186
Configuration, definitionof 11,171-172
determinantal representation of 172
energy of 12, 174, 179, 191
excited 11, 82-83, 89, 180, 191
ground 11, 168
CI Configuration interaction method
3, 6, 85, 170-206

computer programs for 6, 191-193,

197-205

hamiltonian matrix in 172, 174-175,
178-179

interpretation of 84-90, 170, 174-
182

program output for 170, 194-196

Conjugate solutions; in MO theory 3,
5,70, 116

of the Hiickel method 49-54

of the SCF method 148, 159
Core, hamiltonian operator 148

integrals 154-157, 166, 185
Coulomb integral 10, 21, 92, 94, 130

and electronegativity 61, 92, 98, 161

for heteroatoms 22, 60

in Hiickel theory 10, 60

in SCF theory 152

variation of 40-53, 65-71, 73, 90,

98-102, 129

d,—p electron systems 4, 90-102
Degeneracy 83, 85, 101, 162, 170,
175
and molecular symmetry 87, 177,”
choice of MO description of 96
configuration 89, 176, 180, 185
in AH 84-90
in matrix diagonalization 88, 96
in PN rings 92, 95
resolution of 88, 96
Determinant, secular 10
minors of 45, 46, 47
Determinantal wavefunctions 12, 149,
172
Dipole moment 60, 77, 102, 107, 170,
190
components of, 78
computer programs for 77, 105
in Hiickel theory 77
in SCF theory 79
of lone pairs 77, 80
of covalent bond 80
= electron contribution to 77, 80
o electron contribution to 77, 80
vector addition of 81

Subject Index

Eigenvalue 10, 12-13, 27, 172
and energy level 10, 13, 32
and excited state energy 176
Eigenvector 10, 12-13, 27, 88
and MO 10, 13
and state wavefunction 176, 192
Electron density distribution 20
and dipole moment 77, 80-82
in covalent bond 80-82
of lone pairs 77, 80
Electron repulsion integral 150, 151,
154-157, 173, 185-188
Electronegativity, in Hiickel theory 32,
61, 92
in SCF theory 161, 167-168
Electronic excitation 82, 109, 115
and UV spectra 85
energy of 82, 86, 105, 107, 174
frequency of 82, 86
in CI theory 85, 90, 170-185
in Hiickel theory 85, 90
intensity of 86
Energy bands in MO theory 66-73,
98-102, 130
bounds of 66
Energy levels 29, 94, 170, 190
and eigenvalues 10, 13
bonding and anti-bonding 32, 45,
49, 84
diagrams of 14-17, 50, 84, 92, 99-
101, 131
SCF orbital 174, 178, 190
variation with « and 8, 65-77, 98-102
Energy of = electrons, total, in Hiickel
theory 12, 21, 29
in SCF theory 12, 190
Ethylene 137
characteristic polynomial for 14
energy level diagram of 16
Exchange integral 154
Excited configuration 11, 82, 83
energy of 12, 174, 179, 191
Excited state 185
energy of 173, 176-177, 180, 192
wavefunctions for 173, 176-177
179, 192
Exclusion principle 12, 71

209

Field, average = electron 8, 147

Fluoranthrene, reactivity indices for
126-128, 140

FORTRAN programming language 3,
22

Free valence 28, 29, 106, 170
and reactivity 120, 123, 127
computer program for 28
definition of 21
relation to reactivity indices 123, 134
Frequency, and excitation energy 82
and oscillator strength 82-83, 85
Frontier electron theory 135
Frontier orbitals 121, 139, 140
as reactivity indices, 135-137

¥, see Electron repulsion integral
Graphite, energy band of 66
Grid, co-ordinates on hexagonal 102,
106, 182, 187
Ground state, and closed shell 11, 149
« electron 85, 173, 191
« electron energy of 21, 190

Hamiltonian operator, = electron 8,
147, 148, 170

core 148

in SCF-CI theory 148, 172

matrix elements of 152, 170, 172
Heteroatoms 64, 73, 177

and coulomb integrals 60, 133, 156

and dipole moment 77

and resonance integrals 60

effect on UV spectra of 171
Heteromolecules, dipole moments of 79

excited states in 177-179

reactions of 129

reactivity indices in 126, 132-134
Hiickel MO method 3, 8-22, 40-54,

59-102

alternant hydrocarbons in 14, 43, 45

approximations in 8, 10, 163

atomic orbitals in 9

conjugate solutions in 49-54

definition of 8-22

effective hamiltonian operator for 8

secular equations of 9
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Hybridization 123, 142
Hyperconjugation 31

and reactivity indices 136137

in transition state 75, 117, 136-139

Incidence matrix 22, 23, 30-33, 59, 62,
95, 103, 104
bordering of 32, 38, 63
Independent particle approximation 8
Input data specifications 30-33, 54,
107-109, 183186
describing hyperconjugation 31
in transition state 138-139
for aniline 62, 108, 183
for benzene, pyridine, pyrimidine,
pyrazine, s-triazine 30, 107
for cyclo octadecanonaene 183
for naphthalene 54, 107, 183
for quinolene 107, 183
for styrene, toluene 31
Isolated molecule model 120, 135, 139
reactivity indices of 126, 136
relation to localization method 129-
134
variation with « in 129-134
Iteration, matrix diagonalization by
17-19, 25-27
solution of SCF equations by 153

Jacobi, matrix diagonalization 17-19,
25-27

Linear combination, of AOs 9, 147,
149, 172
of configurations 171
Localization method 120, 124, 135, 141
reactivity indices of 124-126
relation to isolated molecule model
129-134
variation of « in 129-134
Localization of orbitals 4, 67-77, 98,
116
and reactivity indices 130-134
Lone pair electrons 77
and dipole moment 81
in ammonia 81
in pyridine 81

Matrix, diagonal 13
diagonalization of symmetric 3, 5,
17-19, 88, 96, 173, 176, 178,
187, 189, 191
eigenvalue of 12-13
eigenvector of 13
orthonormality of 13, 51, 88
incidence 22, 23, 30-33, 38, 62, 63,
95, 103, 104
Matrix elements 18, 19, 25-27
in CI theory 172, 174-175, 178-179
in Hiickel theory 12
in SCF theory 152-153
Matrix methods 13
computer programs using 25-27
Mesomeric substitution 4, 62-65, 156
Minor, of determinant 45-47
MO Molecular orbital 9-11, 19, 147,
170
definition of 9
localization of 4, 67-77, 98, 116
NBMO (non-bonding) 45, 67
virtual 82, 172
MO theory for = electrons 1-6
Hiickel 8-22, 40-54, 59-102 ‘
SCF-CI 147-169, 170-206 i

Naphthalene 103, 106, 107, 115, 116,
162, 164, 171, 174-177, 181
calculations for 54, 56, 107, 174-177
incidence matrix for 38, 54
SCF orbital energies in 174
UV spectrum 85-86
excited states in, 176, 181
in CI method 174-177
oscillator strengths 85-86, 181
transition energies 85-86, 176, 181
Naphthylamine, « and g 115, 116
NBMO Non-bonding MO 45, 67
Nitrobenzene 106
charge densities in 64
Nitrogen, in conjugation 30, 90, 128
o for 32, 156
Non-alternant hydrocarbons 79
Normalization, of AOs 10
of MOs 11, 20

Subject Index

o, SCF core integral 154-157
values of 156, 166-168, 183, 185
Orbitals, atomic, see AO
molecular, see MO
Orthogonality 150, 158, 192
and pairing properties 50-52, 158
in conjugate solutions 52-53
of eigenvectors 13, 88
of MOs 11, 13, 51, 78, 83, 88
Oscillator strength 106, 107, 180-181
computer program for 105, 195
definition of 83
Overlap approximation 10, 20, 78,
105, 173
Overlap integral 10, 150

p-band, in UV spectra 85-90, 106, 177,
181
Pairing theorem, for AH 43, 152, 157
generalization of 43, 49-54, 57, 159
Parent hydrocarbon 22, 24, 59, 183,
184, 187, 188
and incidence matrix 22
PPP (Pariser-Parr-Pople) approxima-
tion 3, 147, 150
Pauli exclusion principle 12, 71
Pentadienyl as RM 117
energy levels and MOs of 124
Perturbation method 3, 40, 136
properties of 3, 42, 159
Phenanthrene 104, 134, 144, 162
N derivatives of 38
program input data for 38
Phosphonitrilic halides, 90-102, 118
application of programs to 90, 95—
102
conjugation in 91, 98, 102
degeneracy in 95
delocalized MOs in 96-98, 102
island model for 91, 96, 98, 102
=-bond, pseudo 75, 117, 138
=-complex and reactivity 140-142
localized 121, 140-144
=-electrons, and MO theories 1-6
configurations of 11, 82-83, 171-172
energy levels for 10, 13
energy states for 174, 179, 190-191
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Hiickel MOs for 10, 13
probability distributions of 20
SCF MOs for 147, 149
n—0 separation 8, 147
Polarizability, coefficients of 41, 44,
159, 162
analytical properties of 45, 159
and reactivity indices 120
atom-atom 41, 54
bond-atom 41
bond-bond 41
formulae for 46, 47
self 129, 139
Polarization 74
and reactivity indices 123, 124, 136
and transition moment 86-89, 116,
171, 177, 180, 181
changes in levels and MOs with 67—
71
variation of « and 67-71
Polyacenes, energy levels in 66
Polyenes, cyclic and linear 66, 94,
116
bond alternation in 162-163, 165
energy levels in 66
program input data for 38
Polynomial, characteristic 9, 15
recurrence relations for 15
roots of 9, 14
Pyridine 30, 73, 156
computer calculations for 110-111
dipole moment of 80
effect of N in 73, 90
program input data for 30, 107

Quinolene 73, 140, 171, 182
computer calculations for 38, 107
177-179, 181
effect of N atom in 38, 73, 90
excited states in 179, 181
oscillator strengths in 181
reactivity indices in 128

Radical reactions 123, 134
and reactivity indices 134
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Reaction co-ordinate 122
Reactivity indices 4, 75, 120-144
and related models 120
computer calculations of 121, 128
relationships between 121, 129-134,
135
Replacement configurations 172-173
RM Residual molecule 124, 130, 131,
137, 143
definition of 67
energy levels in 67, 72
NBMO of 67, 71
Resonance integral g 10, 140, 152
and nearest neighbour interaction
10, 61, 91, 93, 150
and non-coplanarity 74, 185
in Hiickel theory 10, 65, 85
in SCF theory 152, 154-155, 187
involving heteroatoms 22
variation of 40-53, 72-75
Roothaan’s SCF MO method 3
equations of 147, 150

Secular determinant 10
characteristic polynomial of 10
minors of 45-47
Secular equations 9
properties of 44
Selection rules 83
Self-atom polarizability 129, 139
SCF self consistent field method 147-
169
AH in 157-159
computer programs for 186-190,
197-205
configuration energies in 174, 179,
191
conjugate solutions in 148, 159
equations of 148-152
hamiltonian operator in 148
integrals of 154-157, 187
non-linearity of 148, 153, 157,
158
orbital energies in 174, 178, 190
perturbation coefficients in 158-159,
162

PPP approximation in 147, 150
properties of 157-160
Roothaan’s equation in 147, 150
solution of 152-154, 186
total =-electron energy in 190
o-bond 124
o—x separation 8, 147
o-complex 141
in transition state 142
Singlet configuration 12, 173
Singlet state 170, 171, 192
computer programs for 191-192
Slater determinant 12, 149, 172
Spectrum, electronic UV 85-90, 177,
181
computer programs for 105-106,
114, 186-193, 197-205
in CI theory 170-183
in Hiickel theory 82-90
Spin functions «, § 11
Stilbene 74, 104, 117
rotation in 74
Styrene 117
program input data for 31
Superdelocalizability 137

Tetrahedral bonds 124
Toluene, hyperconjugation in 31
program input data for 31
Transition, electronic 82-90
computer programs for 84, 105
energy of 82, 86
forbidden 83, 192
intensity 82, 86, 116, 177, 180-182
moment 83, 102, 106, 107, 171,
192
polarization 86, 89, 116, 171, 177,
180, 181
selection rule, 83
Transition state 120, 141
and localization method 120
hyperconjugation in 75, 117, 136-
138

Triplet configuration 12, 173
Triplet state 170, 171, 192
computer program for 191-192

Subject Index
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UV ultraviolet spectrum, see Spectrum  Wave function, determinantal 12, 149

Variation method 1, 9, 172
Vectors, and AO basis 12
MO and eigen-, 10, 12-13, 27
state 176, 179

172
for excited state 172
for ground state 11, 149
product 11, 12
state 176, 179



