
Analysis of Developers’ Network and Change Burst

Metrics as Predictors of Software Faults

Malanga Kennedy Ndengaa, Collins Shikalib

aDedan Kimathi University of Technology, Private Bag – 10143, Dedan Kimathi, Nyeri
Kenya.

bKibabii University, P.O. Box 1699 – 50200, Bungoma, Kenya.

Abstract

Introduction: Many software quality metrics that can be used as proxies of
measuring software quality by predicting software faults have previously been
proposed. However determining a superior predictor of software faults given
a set of metrics is difficult since prediction performances of the proposed
metrics have been evaluated in non–uniform experimental contexts. There
is need for software metrics that can guarantee consistent superior fault pre-
diction performances across different contexts. Such software metrics would
enable software developers and users to establish software quality.
Objectives: This research sought to determine a predictor for software
faults that requires least effort to detect software faults and has least cost
of misclassifying software components as faulty or not given developers’ net-
work metrics and change burst metrics.
Methods: Experimental data for this study was derived from Jmeter, Gedit,
POI and Gimp open source software projects. Logistic regression was used to
predict faultiness of a file while linear regression was used to predict number
of faults per file.
Results: Change burst metrics model exhibited the highest fault detection
probabilities with least cost of mis-classification of components as compared
to the developers’ network model.
Conclusion: The study found that change burst metrics could effectively
predict software faults.

Keywords:
software faults prediction, software metrics, software quality, developers’
network, change burst, prediction effort, misclassification cost

DOI: 10.33803/JASETD. 2021.1-1.1 April 27, 2021

Journal of Applied Sciences, Engineering and Technology for Development. Volume 5, Issue 1

Research Article ISSN 2309 - 0936

Received: November 2020; Revised: March 2021; Accepted: April 2021

1. Introduction

Measuring quality of a software product is not a simple task. The abstract
nature of software and the multiple dimensions of software quality make it
difficult to measure quality of a software product. Despite this difficulty, busi-
nesses and individuals need information on quality of software when making
decisions about adoption of software products. Similarly, software develop-
ers need to know whether their software products are of acceptable quality
before releasing them. Software quality metrics can be used as proxies of
quality to ease the complexity of assessment when measuring quality of soft-
ware products. Previous studies in Empirical Software Engineering have
proposed many software quality metrics as predictors of software bugs in
software faults prediction models. Unfortunately, results from most of these
studies have not been very useful in helping the community of researchers
to arrive at common observations about software quality metrics. The main
reason behind this situation has been that the studies have been carried out
in extremely varied experimental contexts.

2. Related work

A majority of existing results from software fault prediction studies are
derived from experiments whose contexts are not related. As a result, these
studies suffer from conclusion validity issues. Ndenga et al. (2015) acknowl-
edge that it is very difficult to confidently accept or reject a hypothesis from
a software fault prediction experiment. From literature review of software
fault prediction, it was noticed that common observations from already ex-
isting research results are not very clear to discern. However, conflicting
observations of the same phenomenon could easily be noticed. For example:
Nguyen et al.’s (2010) Social Network Analaysis (SNA) observations that con-
tradict observations of Zimmermann and Nagappan (2008); Neuhaus et al.
(2007) who believe that vulnerable components are not likely to be vulner-
able in future, therefore contradicting the belief that software components
that fail now are more likely to fail in future; Malhotra and Jain (2012)
and Fukushima et al. (2014) who believe that Random Forest is a superior
classifier of software faults while Shin et al. (2011) and Hall et al. (2012)
who believe the opposite. Actually, Meneely et al. (2008) question the high
success rates claimed by many fault prediction models – most of which can-
not demonstrate that they have been replicated successfully with consistent

2

Journal of Applied Sciences, Engineering and Technology for Development. Volume 5, Issue 1

results having been established – or that they are a replication of previous
studies achieving consistent results. This situation makes it impossible to
compare results from such experiments and draw valid common conclusions
about phenomena related to software faults prediction. The extreme varia-
tion in experimental context of the studies is exacerbated by uniqueness of
software products and the human factor in experiments. Nonetheless, carry-
ing out software fault prediction studies in controlled experimental contexts
can help improve conclusion validity of such experiments. Basili et al. (1999)
assert that replication of studies, varying of context variables in experiments,
and building models that arrive at common observations is the only sure way
of creating knowledge form Empirical Software Engineering studies.

Another weakness that has rendered results from existing fault prediction
models unreliable is that they have not been evaluated and validated effec-
tively. It is unfortunate that a majority of existing fault prediction studies
have evaluated their models only against precision and recall measures. Eval-
uating a prediction model only against these two measures is not adequate
since it does not capture important aspects of a software fault prediction
model for example resource utilization during fault prediction and cost of
misclassification of components. Software fault prediction models are ex-
pected to be economically viable. Therefore the economic viability of models
that have only been evaluated using precision, recall and AUC is unknown.
According to Jiang, Cukic, and Ma (2008a), precision and recall measures
have a weaknesses when used in isolation since they give a one sided story
that focuses only on faulty components. A model can actually perform ex-
cellently when evaluated with a particular performance measure but perform
worse when evaluated with a different kind of measure. This means that
software prediction models that have been reported as better performing
when evaluated against precision, recall or AUC could as well be worst per-
formers when evaluated against measures like effort of prediction or cost
of misclassification of components. Therefore, majority of existing software
fault prediction models whose evaluations were inadequately carried out are
actually not reliable.

In summary, existing software fault prediction models should be improved
so as to enable drawing up of valid common conclusions about phenomena
surrounding prediction of software faults. Mende and Koschke (2009) assert
that there is a research gap for searching for or improving independent vari-
ables for software fault prediction models. Since performance differences be-
tween classification algorithms are not necessarily very significant (Arisholm

3

Journal of Applied Sciences, Engineering and Technology for Development. Volume 5, Issue 1

et al., 2010; Lessmann et al., 2008), this study focused on searching for better
independent variables i.e., software metrics for predicting software faults.

Although many types of software metrics exist, this research focused on
developers’ network metrics and change burst metrics. These metrics have
been proven to correlate with software faults. At least each category of these
metrics has been claimed to be a superior predictor of software faults ac-
cording to previous studies. For example a study by Nagappan et al. (2010)
showed that change burst metrics registered recall of over 90% outperforming
other metrics like complexity, code churn and organizational metrics. Zim-
mermann and Nagappan’s (2008) study found out that SNA measures were
better predictors of critical binaries than complexity metrics. However ac-
cording to Nguyen et al. (2010), recall values registered by SNA measures are
similar or worse than the recall values registered by complexity metrics when
these measures are used as software fault predictors. Ndenga et al. (2019)
carried out experiments on Jmeter, gedit, POI and GIMP projects and found
out that change burst metrics models registered superior performances for al-
most all numerical performance measures as compared to change, code churn,
organizational and source code metrics. Similarly, Ndenga et al. (2019) found
out that change burst metrics models showed the highest fault detection prob-
abilities ranging between 50% and 68% as compared to change, code churn,
organizational and source code metrics which exhibited lower probabilities
when 20% of code files were examined. Finally, they found out that change
burst metrics models had the least cost of misclassification of components in
comparison to change, code churn, organizational, and source code metrics
for three out of four projects (Ndenga et al., 2019). Studies done by Ndenga
et al. (2019) and Nagappan et al. (2010) are all concluding that change burst
metrics are superior software fault predictors. Unfortunately, none of the
studies has analyzed the performance of change burst metrics to that of
developers’ network metrics on fault detection probability and the cost of
misclassification of components within a common experimental context. De-
velopers’ network metrics have previously been shown to also perform well
in predicting software faults e.g., by Meneely et al. (2008).

2.1. Objectives
This study sought to achieve the following objectives given developers’

network metrics and change burst metrics;

i. To determine a software metric that requires least effort to detect faulty
software files.

4

Journal of Applied Sciences, Engineering and Technology for Development. Volume 5, Issue 1

ii. To determine a software metric that has a minimum cost of misclassifying
software files when used to discriminate faulty software files from fault
free files.

2.2. Research Questions

Given developers’ network software metrics and change burst software
metrics at file level granularity, this study sought to answer the following
research questions;

RQ 1. Which family of software metrics requires least effort when detecting
faulty software files?

RQ 2. Which family of software metrics has least cost of misclassification of
software files?

3. Methods

This research is an extension of a study carried out by Ndenga et al.
(2019). It extended this study by comparing performance of developers’
network metrics to change burst metrics as predictors of software faults.
Data sources and experimental research method used to derive change burst
metrics data were as described by Ndenga et al. (2019).

3.1. Determining developers’ network and change burst metrics

The following section presents a discussion on how developers network
metrics were computed. This study re-used the data-set for change burst
metrics derived in experiments carried out by Ndenga et al. (2019).

3.1.1. Developers’ network metrics

The social structure amongst software developers can be established by
carrying out a social network analysis on the artifacts of the software. Poor
social interaction amongst developers can exacerbate the likelihood of creat-
ing software modules that have low degrees of compatibility – thus yielding
software faults. This research studied social networks centered around com-
mits made on a file. In these networks, commiters (developers) formed ver-
tices or nodes of the network whereby two commiters were connected only if
they made at least a commit to a common file. The edge of the graph was the
geodesic (shortest) path between developers (nodes) who made changes on a
common file thus creating simple undirected graphs. Meneely et al. (2008)

5

Journal of Applied Sciences, Engineering and Technology for Development. Volume 5, Issue 1

argue that developers network metrics try to quantify how well–known a de-
veloper is in the context of a project. Like in Meneely et al.’s (2008) and
Lopez-Fernandez et al.’s (2004) studies, this research studied the Social Net-
work of commiters basing on centrality and connectivity metrics as predic-
tors of software faults. Pythons NetworkX 1 package (NetworkX-Developers,
2020) was used to derive developers’ network metrics from commit histories
of the software projects.

Centrality network metrics measure the indirect connectedness of nodes
in a network (Meneely et al., 2008). The two metrics that are used to measure
centrality are closeness-centrality and betweenness-centrality as explained be-
low.

Closeness-centrality of a node (C(u)) is the reciprocal of the sum of the
shortest path distances from u to all other n− 1 nodes (Freeman, 1978).
Freeman (1978) adds that closeness is normalized by the sum of minimum
possible distances n− 1 since sum of distances is dependent on sum of nodes.
Freeman (1978) formally defines closeness-centrality (C(u)) of a node as:

C(u) =
n− 1∑n−1

v=1 d(v, u)
, (1)

where d(v, u) is the shortest–path distance between v and u, while n is the
number of nodes in the graph. Closeness-centrality can be interpreted as a
measurement of the influence of a vertex in a graph whereby vertices – in this
case developers – with higher values of this measure can easily spread infor-
mation into their network (Lopez-Fernandez et al., 2004). Freeman (1978)
adds that higher values of closeness indicate higher centrality. The study de-
termined values of sum, average and maximum of closeness–centrality met-
rics for each file calculated from closeness–centrality values of developers who
collaboratively modified the files.

Betweenness–centrality (cB) of a node v is the sum of the fraction of all
pairs of shortest paths that pass through v (Brandes, 2008). It is defined as;

cB(v) =
∑
s,t∈V

σ(s, t|v)

σ(s, t)
, (2)

where V is the set of nodes , σ(s, t) is the number of shortest (s, t) paths, and
σ(s, t|v) is the number of those paths passing through some node v other than

1https://networkx.github.io/

6

 Journal of Applied Sciences, Engineering and Technology for Development. Volume 5, Issue 1

s, t, given that s = t, σ(s, t) = 1, and v ∈ s, t, σ(s, t|v) = 0 (Brandes, 2008).
This study determined values of sum, average and maximum of closeness
and betweenness centrality metrics for each file calculated from values of
developers who collaboratively modified the files.

Algorithm 1 shows the procedure used by this study to determine sum of
betweenness centrality.

4. Analysis

Classification models were built to analyze the capability of developers’
network metrics and change burst software metrics to predict software faults
at the granularity of a file. Files were labeled as buggy or not-buggy so as
to create a class attribute. Logistic regression algorithm was used to predict
bug status of each file, while linear regression algorithm was used to predict
number of bugs per file. Witten et al. (2011) found out that Logistic regres-
sion is a powerful classification algorithm that produces better performance
as compared to other classiers like zeroR and näıves Bayes when applied on
same dataset. According to Hall et al. (2012), fault predictive models that
tend to perform well use simple algorithms like regression. Prediction perfor-
mance of the models built with software metrics as predictors was evaluated
against effort of prediction and cost of mis-classification of components.

4.1. Validity and reliability of research instruments

In order to mitigate potential threats resulting from construct validity
– which is about the relationship between theory and observation (Romano
and Pinzger, 2011),– this research studied four software projects data spread
across a period of five years. It was believed that a recent five year pe-
riod represents the history of the latest versions of the software projects. In
this study, internal validity – which refers to the ability of a data collection
instrument to measure what it is intended to measure (Saunders, 2011) –
was preserved by using deterministic tools to collect data that guaranteed
delivery of reliable results. For computing developers’ network metrics and
change burst metrics, the same internally developed tool was used. This
research was guided by known statistical prediction modeling performance
evaluation measures in drawing conclusions about the ability of each kind
of software metric to discriminate faulty software files from fault free files.

7

 Journal of Applied Sciences, Engineering and Technology for Development. Volume 5, Issue 1

Algorithm 1: Sum of Betweenness per file

Input: Dm // Data matrix for file id with corresponding unique
commiter ids.

Input: Sdate // start date
Input: Edate // end date
Dset ⊆ Dm ← dataset within limits of Sdate and Edate;
Output: FcB [size of Dset] //Array of Sum of Betweenness centrality

per file id.
Cn ← Commit connections amongst developers;
G← (V,E) //Undirected graph generated from Cn ;
V ← Nodes in graph G;
foreach file id f in Dset do

FcB [file id] ← ∅ // initialization of Betweenness centrality for
each file;
S ← ∅ // sum of Betweenness initialization;
while i¡ size of Dset do

repeat
foreach committer id c in V do

BcB [file id][committer id] ← ∅ // initialization of
Betweenness of each committer per file;
while j¡ size of V do

repeat
BcB [i][j]← developer Betweenness //Determined
by NetworkX’s Betweeness–Centrality algorithm.
S ← S +BcB [i][j];
j ← j + 1;

until j > V ;

end

end
FcB [i] ← S
i← i+ 1;

until i > Dset;

end

end
return FcB ;

8

Journal of Applied Sciences, Engineering and Technology for Development. Volume 5, Issue 1

These measures were effort and cost of misclassification performance. There-
fore, conclusion validity – which concerns issues that affect the ability of
drawing a correct conclusion from analyzed data (Scanniello et al., 2013) –
was preserved. To some extent, the external validity of this study was threat-
ened by the fact that the research studied only four OSS projects. According
to Scanniello et al. (2013), external validity focuses on the approximate truth
from conclusions that involve generalizations from different experimental con-
texts (Scanniello et al., 2013). To mitigate threats associated with external
validity, the study considered heterogeneous projects in the sense that the
projects were developed for different purposes, they were of different sizes,
and they were developed by different developers.

5. Results and discussion

The following subsections present a discussion of results realized in this
study.

5.1. To determine a software metric that requires least effort in detecting
software faults

Using linear regression, the research predicted the number of bugs for
each file for the software projects when change burst metrics and developers’
network metrics were used as predictors. Cumulative lift graphs were plotted
from the prediction results. Cumulative lift graphs are plots used to predict
a model’s effort of prediction. A cumulative graph shows the percentage
of software faults that can be detected when n% of software components is
reviewed (D’Ambros et al., 2012). Figures 1, 2, 3, and 4 show the percentage
of faults that developers’ networks metrics and change burst metrics models
would predict when a particular percentage of source code files are inspected
for a given software project. Change burst metrics models showed highest
fault detection probabilities when 20% of source code files were inspected
for the four software projects as compared to developers’ network metrics
models. For example as shown in figure 1, when 20% of Jmeter’s source code
files were examined with developers’ networks model, approximately a 30%
probability of detecting faulty files was realized. For the same project, change
burst metric model, showed approximately a 68% probability of detecting
faults.

Figure 2 shows that developers’ networks metrics performed dismally –
similar to a random classifier by predicting 20% of faulty files when 20% of

9

Journal of Applied Sciences, Engineering and Technology for Development. Volume 5, Issue 1

0 20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

files examined (%)

fa
u

lt
s
 d

e
te

c
ti
o

n
 p

ro
b

a
b

il
it
y
 (

%
)

Cumulative lift graph for metrics on Jmeter (GS>=2, BS>=1)

Change Bursts
Developers' Network

Figure 1: Graph showing effort of inspecting n% of Jmeter (GS > 2, BS > 1) files.
Examining 20% of Jmeter’s source code files with developers’ network and change burst
metric models showed a 30% and a 68% probability of detecting faults respectively.

10

 Journal of Applied Sciences, Engineering and Technology for Development. Volume 5, Issue 1

0 20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

files examined (%)

fa
u

lt
s
 d

e
te

c
ti
o

n
 p

ro
b

a
b

il
it
y
 (

%
)

Cumulative lift graph for metrics on Gimp (GS>=2, BS>=1)

Change Bursts
Developers' Network

Figure 2: Graph showing effort of inspecting n% of Gimp (GS > 2, BS > 1) files.
Examining 20% of Gimp’s source code files with developers’ network and change burst
metric models yielded a 20% and a 58% probability of detecting faults respectively.

11

 Journal of Applied Sciences, Engineering and Technology for Development. Volume 5, Issue 1

0 20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

files examined (%)

fa
u

lt
s
 d

e
te

c
ti
o

n
 p

ro
b

a
b

il
it
y
 (

%
)

Cumulative lift graph for metrics on Gedit (GS>=3,BS>=2)

Change Bursts
Developers' Network

Figure 3: Graph showing effort of inspecting n% of Gedit (GS > 3, BS > 2) files.
Examining 20% of Gedit’s source code files with developers’ network and change burst
metrics models yielded a 41% and a 62% probability of detecting faults respectively.

12

 Journal of Applied Sciences, Engineering and Technology for Development. Volume 5, Issue 1

0 20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

files examined (%)

fa
u

lt
s
 d

e
te

c
ti
o

n
 p

ro
b

a
b

il
it
y
 (

%
)

Cumulative lift graph for metrics on POI (GS>=2, BS>=1)

Change Bursts
Developers' Network

Figure 4: Graph showing effort of inspecting n% of POI (GS > 2, BS > 1) files. Examining
20% of POI’s source code files with developers’ network and change burst metric models
yielded 35% and 55% probabilities of detecting faults respectively.

13

 Journal of Applied Sciences, Engineering and Technology for Development. Volume 5, Issue 1

Gimp’s source code files were inspected while change burst metrics were able
to detect 58% of faulty files when 20% of source code files were inspected for
the same project.

According to the graphs in Figures 1, 2, 3, and 4, over 70% of software
faults could be detected with models built using change burst metrics upon
inspection of only 40% of files. This finding reveals that change burst met-
rics models require least effort to detect many faulty software files therefore
addressing the first research question (RQ 1).

5.2. To determine a software metric that has minimum cost of misclassifica-
tion of components when predicting software faults

During classification process, some faulty components could erroneously
be classified as fault free or vice versa. Such a misclassification is costly. Mis-
classifying a fault-free component as faulty may call for unnecessary quality
checks that result into higher development costs. Similarly, classifying a
faulty component as fault-free may result in software system failure. Drum-
mond and Holte (2006) proposed the use of cost curves as a reliable means of
establishing the cost associated with using a particular classifier. A cost curve
describes the performance of a classifier based on the cost of misclassifica-
tion of components where the x–axis represents the probability cost function,
while the y–axis represents the normalized expected cost of misclassification
(Drummond and Holte, 2006; Jiang et al., 2008b). A prediction of number
bugs was determined using each family of software metrics. Using R’s ROCR
package (Sing et al., 2007) and the predictions data, cost curves were plotted
for each model showing the cost of misclassification of components associ-
ated with the model. According to Jiang et al. (2008b), the purpose of cost
curve analysis is to enable developers to select software prediction models
which minimizes overall misclassification cost, i.e., minimize the area under
the lower envelope boundary.

Scrutiny of graphs in figures 5, 6, 7, and 8 reveals that cost curves for
change burst metrics models are closer to the probability cost function axis.
This finding validates that as compared to developers’ networks models,
change burst models have the least normalized cost of misclassification of
source code files. The finding addressed the second research question (RQ
2).

14

 Journal of Applied Sciences, Engineering and Technology for Development. Volume 5, Issue 1

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Probability cost function

N
o

rm
a

li
z
e

d
 e

x
p

e
c
te

d
 c

o
s
t

Metrics Cost Curves for Jmeter (GS>=2, BS>=1)

Change Bursts
Developers' Network

Figure 5: Cost curves for Jmeter project at GS > 2 and BS > 1. The cost curve for
change bursts metrics’ model is closest to the probability cost function axis, hence it has
minimum normalized cost of misclassification of source code files.

15

 Journal of Applied Sciences, Engineering and Technology for Development. Volume 5, Issue 1

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Probability cost function

N
o

rm
a

li
z
e

d
 e

x
p

e
c
te

d
 c

o
s
t

Metrics Cost Curves for Gimp (GS>=2,BS>=1)

Change Bursts
Developers' Network

Figure 6: Cost curves for Gimp project at GS > 2 and BS > 1. The cost curve for change
bursts metrics’ model is closest to the probability cost function axis, hence it has minimum
normalized cost of misclassification of source code files.

16

 Journal of Applied Sciences, Engineering and Technology for Development. Volume 5, Issue 1

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Probability cost function

N
o

rm
a

li
z
e

d
 e

x
p

e
c
te

d
 c

o
s
t

Metrics Cost Curves for Gedit (GS>=3, BS>=2)

Change Bursts
Developers' Network

Figure 7: Cost curves for Gedit project at GS > 3 and BS > 2. The cost curve for change
bursts metrics’ model is closest to the probability cost function axis, hence minimum
normalized cost of misclassification of source code files.

17

 Journal of Applied Sciences, Engineering and Technology for Development. Volume 5, Issue 1

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Probability cost function

N
o

rm
a

li
z
e

d
 e

x
p

e
c
te

d
 c

o
s
t

Metrics Cost Curves for POI (GS>=2, BS>=1)

Change Bursts
Developers' Network

Figure 8: Cost curves for POI project at GS > 3 and BS > 2. The cost curve for change
bursts metrics’ model is closest to the probability cost function axis, hence it has minimum
normalized cost of misclassification of source code files.

18

 Journal of Applied Sciences, Engineering and Technology for Development. Volume 5, Issue 1

6. Conclusion

As mentioned at the beginning, several software characteristics for ex-
ample software metrics have been found to be predictors of software faults
according to results from existing studies. The first objective of this study
was to determine a predictor for software faults between developers’ network
metrics and change burst metrics that requires least effort to detect software
faults at file–level. Fixing software bugs is a tedious and expensive process
that accounts for over 25% of the global software development cost (Britton
et al., 2013). Therefore, software faults prediction models should be able to
minimize the effort required to detect software faults. Easily detecting and
subsequently fixing software faults has a net effect of reducing overall bug
fixing cost. Taking longer to fix software faults generally escalates the cost
of fixing the faults (Baziuk, 1995; Boehm et al., 1976). Therefore, prediction
models that require least effort in detecting majority of software faults should
be adopted in Software Engineering industry. These concerns lead this study
to seek addressing the first research question.

The motivation of the first research question was to determine and com-
pare the effort required by developers’ network metrics and change burst
metrics in discriminating between faulty and fault free files within the same
experimental context. Different studies have claimed superiority of the two
metrics in prediction of software faults. For example Zimmermann and Na-
gappan’s (2008) study found out that Social Network Analysis measures
could identify twice as many critical binaries as identified by Complexity
metrics. But Nguyen et al. (2010) claimed that recall values observed when
Social Network Analysis measures are used, are either equivalent or worse
than recall values when complexity metrics are used. Nagappan et al. (2010)
found out that change burst metrics registered Recall of over 90% outper-
forming other metrics like complexity, code churn and organizational metrics.
However none of the studies tested the software fault prediction performance
of the two metrics in the same experimental context. It should be recalled
that most of the reviewed software fault prediction studies did not specify
the effort required by their models in predicting software faults. In the long
run, it has been difficult to determine the economic viability of such models
before adopting them. Findings from this study showed that change burst
metrics exhibited the highest fault detection probabilities as compared to
developers’ network metrics. Fault detection probabilities for change burst
metrics ranged from 55% to 68% while those of developers’ network metrics

19

 Journal of Applied Sciences, Engineering and Technology for Development. Volume 5, Issue 1

ranged from 20% to 41% when only 20% of source code files for the four
projects were examined. Therefore change burst metrics required least effort
to detect software faults as compared to developers’ network metrics.

To determine a predictor for software faults that has a minimum cost of
misclassification of software components between developers’ network met-
rics and change burst metrics was the second specific objective of this study.
Misclassifying a software component as faulty or not faulty has a cost associ-
ated with it. For example, classifying a fault free component as faulty would
result into unnecessary costly quality assurance activities on the component.
Similarly, classifying a faulty software component as not faulty may result
into costly software system failures. The risk associated with adopting a par-
ticular software fault prediction model should be known in advance by users.
Models with the least cost of misclassification of components are desirable.
In achieving this objective, the study addressed the second research question.
The motivation for this question was to determine and compare the cost of
misclassification of software files associated with change burst metrics and
developers’ network metrics when they are used to discriminate faulty files
from fault free files within the same experimental context. The study found
out that models built with change burst metrics had an overall least cost of
misclassification of software source code files in comparison to models built
with developers’ network metrics.

In conclusion, this study found out that change burst metrics are supe-
rior predictors of software faults as compared to developers’ network met-
rics. Considering this superiority, the study recommends that change burst
metrics should be considered by practitioners in Software Engineering when
predicting software faults.

Contributions: This research has made contributions to theory and
practice in Empirical Software Engineering. Through synthesis of litera-
ture review, the study has contributed to knowledge by facilitating a better
understanding of software fault prediction. The technique of generating soft-
ware metrics developed by this research is a methodological contribution
since it can be reused by other researchers to advance research in this field.
This study has also made a theoretical contribution by introducing new view
points by analyzing data from Gedit, Jmeter, POI and GIMP which are OSS
projects that are rarely studied. Finally, this study has contributed to prac-
tice through the technique of predicting software faults that it proposes. If
this technique is applied in software development industry, it could be used
to prioritize software files for inspection purposes.

20

 Journal of Applied Sciences, Engineering and Technology for Development. Volume 5, Issue 1

Future work: Future work will entail replicating this study in contexts
where many heterogeneous software projects will be studied with the hope
of finding results that can be generalized.

Funding/supporting sources: This study was supported by Dedan
Kimathi University of Technology and University of Paris 8.

References

Arisholm, E., Briand, L. C., Johannessen, E. B., 2010. A systematic and com-
prehensive investigation of methods to build and evaluate fault prediction
models. Journal of Systems and Software 83 (1), 2–17.

Basili, V. R., Shull, F., Lanubile, F., 1999. Building knowledge through fam-
ilies of experiments. IEEE Transactions on Software Engineering 25 (4),
456–473.

Baziuk, W., 1995. Bnr/nortel: path to improve product quality, reliability
and customer satisfaction. In: Software Reliability Engineering, 1995. Pro-
ceedings., Sixth International Symposium on. IEEE, pp. 256–262.

Boehm, B. W., Brown, J. R., Lipow, M., 1976. Quantitative evaluation of
software quality. In: Proceedings of the 2nd international conference on
Software engineering. IEEE Computer Society Press, pp. 592–605.

Brandes, U., 2008. On variants of shortest-path betweenness centrality and
their generic computation. Social Networks 30 (2), 136–145.

Britton, T., Jeng, L., Carver, G., Cheak, P., Katzenellenbogen, T., 2013.
Reversible debugging software. University of Cambridge-Judge Business
School, Tech. Rep.

D’Ambros, M., Lanza, M., Robbes, R., 2012. Evaluating defect prediction ap-
proaches: a benchmark and an extensive comparison. Empirical Software
Engineering 17 (4-5), 531–577.

Drummond, C., Holte, R. C., 2006. Cost curves: An improved method for
visualizing classifier performance. Machine learning 65 (1), 95–130.

21

 Journal of Applied Sciences, Engineering and Technology for Development. Volume 5, Issue 1

Freeman, L. C., 1978. Centrality in social networks conceptual clarification.
Social networks 1 (3), 215–239.

Fukushima, T., Kamei, Y., McIntosh, S., Yamashita, K., Ubayashi, N., 2014.
An empirical study of just-in-time defect prediction using cross-project
models. In: Proceedings of the 11th Working Conference on Mining Soft-
ware Repositories. ACM, pp. 172–181.

Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S., 2012. A systematic
literature review on fault prediction performance in software engineering.
IEEE Transactions on Software Engineering 38 (6), 1276–1304.

Jiang, Y., Cukic, B., Ma, Y., 2008a. Techniques for evaluating fault predic-
tion models. Empirical Software Engineering 13 (5), 561–595.

Jiang, Y., Cukic, B., Menzies, T., 2008b. Cost curve evaluation of fault
prediction models. In: Software Reliability Engineering, 2008. ISSRE 2008.
19th International Symposium on. IEEE, pp. 197–206.

Lessmann, S., Baesens, B., Mues, C., Pietsch, S., 2008. Benchmarking clas-
sification models for software defect prediction: A proposed framework
and novel findings. IEEE Transactions on Software Engineering 34 (4),
485–496.

Lopez-Fernandez, L., Robles, G., Gonzalez-Barahona, J. M., et al., 2004.
Applying social network analysis to the information in cvs repositories. In:
International workshop on mining software repositories. IET, pp. 101–105.

Malhotra, R., Jain, A., 2012. Fault prediction using statistical and machine
learning methods for improving software quality. Journal of Information
Processing Systems 8 (2), 241–262.

Mende, T., Koschke, R., 2009. Revisiting the evaluation of defect prediction
models. In: Proceedings of the 5th International Conference on Predictor
Models in Software Engineering. ACM, p. 7.

Meneely, A., Williams, L., Snipes, W., Osborne, J., 2008. Predicting failures
with developer networks and social network analysis. In: Proceedings of the
16th ACM SIGSOFT International Symposium on Foundations of software
engineering. ACM, pp. 13–23.

22

 Journal of Applied Sciences, Engineering and Technology for Development. Volume 5, Issue 1

Nagappan, N., Zeller, A., Zimmermann, T., Herzig, K., Murphy, B., 2010.
Change bursts as defect predictors. In: Software Reliability Engineering
(ISSRE), 2010 IEEE 21st International Symposium on. IEEE, pp. 309–318.

Ndenga, M. K., Ganchev, I., Mehat, J., Wabwoba, F., Akdag, H., 2019.
Performance and cost-effectiveness of change burst metrics in predicting
software faults. Knowledge and Information Systems 60 (1), 275–302.

Ndenga, M. K., Jean, M., Ganchev, I., Franklin, W., 2015. Assessing quality
of open source software based on community metrics. International Journal
of Software Engineering and Its Applications 9 (12), 337–348.

NetworkX-Developers, 2020. Overview networkx.
https://networkx.github.io/, accessed: 2020-05-04.

Neuhaus, S., Zimmermann, T., Holler, C., Zeller, A., 2007. Predicting vul-
nerable software components. In: Proceedings of the 14th ACM conference
on Computer and communications security. ACM, pp. 529–540.

Nguyen, T. H., Adams, B., Hassan, A. E., 2010. Studying the impact of de-
pendency network measures on software quality. In: Software Maintenance
(ICSM), 2010 IEEE International Conference on. IEEE, pp. 1–10.

Romano, D., Pinzger, M., 2011. Using source code metrics to predict change-
prone java interfaces. In: Software Maintenance (ICSM), 2011 27th IEEE
International Conference on. IEEE, pp. 303–312.

Saunders, M. N., 2011. Research methods for business students, 5/e. Pearson
Education India.

Scanniello, G., Gravino, C., Marcus, A., Menzies, T., 2013. Class level fault
prediction using software clustering. In: Automated Software Engineering
(ASE), 2013 IEEE/ACM 28th International Conference on. IEEE, pp. 640–
645.

Shin, Y., Meneely, A., Williams, L., Osborne, J. A., 2011. Evaluating com-
plexity, code churn, and developer activity metrics as indicators of software
vulnerabilities. IEEE Transactions on Software Engineering 37 (6), 772–
787.

23

 Journal of Applied Sciences, Engineering and Technology for Development. Volume 5, Issue 1

Sing, T., Sander, O., Beerenwinkel, N., Lengauer, T., 2007. Package rocr: vi-
sualizing the performance of scoring classifiers. See: http://rocr.bioinf.mpi-
sb.mpg.de.

Witten, I. H., Frank, E., Hall, M. A., 2011. Data Mining: Practical Machine
Learning Tools and Techniques. Elsevier.

Zimmermann, T., Nagappan, N., 2008. Predicting defects using network
analysis on dependency graphs. In: Software Engineering, 2008. ICSE’08.
ACM/IEEE 30th International Conference on. IEEE, pp. 531–540.

24

 Journal of Applied Sciences, Engineering and Technology for Development. Volume 5, Issue 1

