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Abstract

Monitoring of crop status coupled with knowledge of growth stages of each crop is
a requirement for sustainable agriculture management. Monitoring the crop
condition manually in the field is labour, cost and time intensive. Remote sensing
therefore provides fast, cost effective and timely tools necessary for the effective
monitoring of the crops. The acquisition of cloud free optical images in tropical
regions remains a big challenge since the cropping season is characterized by high
cloud cover. Radar images which are independent of weather conditions were
therefore preferred in this study due to their consistent acquisitions. The objective
of this study was to analyse the performance of Sentinel-1 (S-1) C-band radar
images in monitoring the maize growth by investigating the transferability of the
maize phenological characteristics from one season to the other. This was
accomplished by comparing the S-1 backscatter values for the 2015 and 2016
cropping seasons. The acquired S-1 images were divided into three, according to
the acquisition modes: ascending IW1; descending IW1; descending IW3. 18 ADC
Olngatongo Company maize fields were selected, with the principal maize growth
and development stages being defined by the BBCH scale. From the results, the
maize phenological development stages could be identified from the images. The
backscatter values for fields having coincident planting dates for both 2015 and
2016 had higher similarities compared to fields whose planting dates were far apart.
The ascending IW1 had the best results. The results were however inconclusive
since fewer images were available for 2015 for comparison with 2016. Thus, a
comparison across the entire cropping season could not be conclusively undertaken.
From the study, it was concluded that the phenological characteristics extracted for
one cropping season can establish a baseline for the monitoring of the subsequent
cropping seasons, which can be an indicator of expected yields.
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1. INTRODUCTION

Agriculture remains the backbone of Kenya’s economy, with maize being identified
as the country’s staple food (Kipkorir et al., 2007). Trans Nzoia county has been
identified as the country’s food basket, with majority of the farmers relying on rainfall
as the source of water for the crops (Kirimi, 2012). However, over the years, this has
become unreliable mainly due to the changes in weather patterns (Jones, 2013). The
net effect of these weather conditions on the crop growth require to be periodically
monitored to avoid great yield losses. One crop monitoring approach has been
carrying out of physical field visits spread across the crop growth period (Kihara et al.,
2012). These visits have however proven to be ineffective due to the cost factor,
coupled with the lack of a monitoring and evaluation process to confirm that the field
visits were indeed carried out. An alternative monitoring approach has been through
satellite images.
Satellite images supply data continuously with frequent revisit periods, are
operationally sustainable, timely and have a wide geographical coverage (Attema et
al., 2009) and thus have been applied in the mapping and monitoring of various crops.
Satellites with optical and radar sensors have been used for this purpose since the
reflectance from the crops’ surface can be related to the different crops’ structure and
their phenological stage (Dusseux et al., 2014; Lussem et al., 2016; Navarro et al.,
2016; Sabour et al., 2008). In tropical areas like Kenya however, optical sensors are
affected by cloud cover and haze, which are predominant during the cropping season
(Castillejo-González et al., 2009; Devadas et al., 2012). Therefore studies have
advocated the use of radar sensors as they are independent of weather conditions
(Woodhouse, 2006; Mróz & Mleczko, 2008; Sabour et al., 2008; Baghdadi et al.,
2009).
Even though radar images are independent of weather conditions, the images cost
factor has been a major hinderance in their application especially in third world
countries (Vinciková et al., 2010). However, with the advent of the freely available
high-resolution Sentinel-1 (S-1) radar images, there has been a paradigm shift in the
monitoring of agriculture fields using radar images (Torres et al., 2012). S-1 with a
revisit time of 6 days in 1A and 1B constellation, and images with up to 5 meters
spatial resolution has been successfully used for crop mapping for food security
(Attema et al., 2009; Veloso et al., 2017). With the increased number of acquisitions
during the growing season (six-day temporal resolution), proper sampling of the
crops’ growth cycles even where the sowing dates may be different dates throughout
the region is possible (Torres et al., 2012).
The monitoring of the maize crops during the cropping season was done with the
Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie (BBCH) scale
(Meier et al., 2010). The BBCH scale outlines the main growth/phenological stages of
the maize development from germination to senescence, describing in detail the
visible physical changes that occur in the maize plant, for example, the number of
unfolded leaves or the number of detectable nodes. A unique code is assigned to every
one of these phenological stages.
The objective of this study was therefore to apply the S-1 C-band radar images in
monitoring the maize growth for the 2015 and 2016 cropping seasons. The
transferability of the maize phenological characteristics from one season to the other
was also analyzed by comparing the S-1 backscatter values for the 2015 and 2016
cropping seasons. S-1 images were acquired and analyzed for the two seasons. Maize
fields were selected from a large-scale maize growing company were identified in
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Endebess area, Trans Nzoia county. The company (ADC Olngatongo) maize crop
management data was compared to the analyzed S-1 data. The acquired S-1 images
were divided into three, according to the acquisition modes: ascending IW1;
descending IW1; descending IW3. 18 ADC Olngatongo Company maize fields were
selected from the different planting blocks, with the principal maize growth and
development stages being defined by the BBCH scale. In the end the transferability of
the backscatter characteristics from on cropping season to the next will be analyzed.

2. METHODS

2.1 STUDY AREA

The study area (Figure 1) is located in Endebess, Kenya with center coordinates:
latitude 1.067°, longitude 34.867° and an average elevation of 1900 meters above sea
level (Dixit et al., 2011). It is classified under the Lower Highland 3 (LH3)
agricultural ecological zone with an average annual rainfall of between 970-1300 mm
and a mean annual temperature of 18.6°C (Government of Kenya, 2012; Jaetzold &
Schmidt, 1982; Ransom et al., 1997). The soil consists of humic and eutric Nitisols
that are deep, well drained, fertile soils that are slightly acid to neutral (pH 5.5-7.0)
(Gachene & Kimaru, 2004). Due to these conducive climate and soil conditions, the
area is characterized by both large scale and small scale agricultural farming activities
(Moore et al., 2014). The maize crop is grown either for silage, as seed maize, for
commercial or subsistence purposes. The area has two maize cropping seasons,
March – September, and October – May (FAO, 2010). The main maize cropping
season, however, is March-September during the long rains. The maize fields that
were considered for this study had a minimum size of 10 Ha and a maximum size of
40 Ha. The fields were under the management of a well-established company, the
Agricultural Development Corporation (ADC) Olngatongo. This was to ensure
consistency in the field management procedures.

Figure 1. The Endebess study fields in Trans Nzoia County, Kenya.
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2.2 SENTINEL-1 IMAGES

The S-1 was launched in 2014 by the European Union and European Space Agency
(EU-ESA) within the Copernicus programme that had identified marine core services,
land monitoring, and emergency services as some of the priority areas (Malenovský et
al., 2012). It is a radar imaging mission at C-band consisting of a two satellites
constellation launched in 2014 (S-1A) and 2016 (S-1B) (Attema et al., 2009). It is a
near polar sun-synchronous satellite with an altitude of 693 km, a 6-day repeat with
an incidence angle of 31°- 46°. It images in four exclusive imaging modes with
different resolutions (down to 5 meters) and coverage (up to 400 km). This mission
provides dual polarization capability in a single pass (ascending or descending)
(Attema et al., 2009).

2.3 FIELD DATA

The image backscatter values are dependent on the phenological stage of the crops
and therefore information about the maize crop fields was collected (McNairn et al.,
2009). The attribute data that was collected included information about the fields and
the crops in them. This included: the official name and sizes of the fields as appearing
in the company records; the maize cultivar planted in the field, the planting,
emergence, flowering, bulking, physiological maturity and harvesting dates; the
BBCH-code related to a particular crop stage; the plant population density; the
planting direction; the farm management activities undertaken (fertilizer application,
top dressing, weeding); the date of the field visit and any notable remarks.
Similar field management practices were carried out in all the fields since they were
under the same maize company. Eighteen maize fields were then randomly selected as
the study fields such that the different planting blocks were covered.

2.4 DATA PROCESSING

The S-1 interferometric wide swath (IWS), single look complex (SLC) products were
acquired as individual burst images comprising of three single sub-swath datasets,
namely IW1, IW2, and IW3, for each polarization acquired. In order to preserve the
sensors’ original resolution, the S-1 images datasets were processed starting from the
SLC format and slant range geometry (Breit et al., 2010; Mittermayer et al., 2010).
The steps included: split; de-burst; multi-looking; calibration; terrain correction;
speckle filtering; linear to dB conversion. The SNAP 3.0 toolbox was used. Splitting
the datasets ensured that each sub-swath was processed individually. Each sub-swath
image consists of a series of bursts, where each burst has been processed as a separate
SLC image with black-fill demarcation in between. The images for all bursts in all
sub-swaths of an IW SLC product were resampled to a common pixel spacing grid in
range and azimuth to ensure burst synchronization for IW products while preserving
the phase. Since every burst within any single sub-swath was processed as a single
image, the de-bursting step resolves the various bursts within any single sub-swath
into one image (Torres et al., 2012).
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Geometric and radiometric calibration (Figure 2) of the backscatter values were
necessary for inter-comparison of radar images acquired with different sensors, or
even of images obtained by the same sensor if acquired in different modes or
processed with different processors (Baghdadi et al., 2009). The calibration process
took care of both radiometric and absolute calibration. Radiometric calibration
minimized the incompatibility in images taken under different observation conditions
like the incidence angles or the ascending/descending mode by the different radar
sensors (Naught & Naught, 2014), absolute calibration allowed taking into account all
contributions in the radiometric values that were not due to the target characteristics.
This permits to minimize the differences in the image radiometry and to make any
images obtained from different incidence angles, ascending-descending geometries
and/or opposite look directions easily comparable and even compatible to acquisitions
made by other radar sensors. This was done by the computation of Beta Naught and
Sigma Naught (infoterra, 2008).

Figure 2. The methodological work flow carried out in the research.
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The radar brightness (Beta Naught β0) representing the radar reflectivity per unit area
in slant range was obtained by multiplying the calibration factor with the power of the
digital numbers (integer pixel values) using (1). This was then converted into decibel
(dB) values using (2).

β0=ks ● ‖DN‖2 (1)

β0db=10●log10(β0) (2)

σ 0= β0 ● sin θloc (3)

Where:

β0= Beta Naught or radar brightness representing the radar reflectivity per unit area in
slant range.

β0db = Beta Naught in decibels

DN = Digital numbers or image pixel values

σ 0= Sigma Naught

θloc = Local incidence angle

ks = Calibration factor

The local incidence angle (angle between the radar beam and the normal to the
illuminated surface) was necessary for the Sigma Naught σ 0 (radar reflectivity per
unit area in ground range) calculations. The backscatter from the crop type surfaces
was influenced by the relative orientation of the illuminated cell and the sensor and
also the distance in range between them (Eineder et al., 2008). Equation (3) was
applied.
The speckle effect is a spatially random multiplicative noise due to the coherent
superposition of multiple backscatter sources within a SAR resolution element caused
by interference of backscattering objects below the geometric resolution within one
resolution pixel of the sensor (Lemp & Koch, 2009). Speckle reduction was carried
out iteratively with multi-looking using a Lee Sigma filter with a 7x7 window size.
In the terrain correction processing step, the TanDEM-X 12 meter digital elevation
model (DEM) was used (Pitz & Miller, 2010). The bilinear interpolation resampling
method was applied. The pixels were resampled to 10 meters and the map projection
was UTM/WGS 84. The backscatter values were then converted to decibels (dB). All
the images were then co-registered, with the S-1 image acquired on the 8/05/2015
being used as the reference image. The image backscatter reflectance values were
computed at the fields’ level using the zonal statistics tool in ArcGIS 10.3.1. A buffer
of 30 meters from each field boundary was used to eliminate the effect of mixed or
undesirable field edge pixels in the statistics (Abuzar, 2014).
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3. RESULTS AND DISCUSSION

Multiplot graphs of backscatter values against the day of the year were plotted for the
18 maize fields. The multiplots were divided according to the available image
acquisition modes: ascending IW1; descending IW1; descending IW3 (Figures 3, 4,
and 5). The fields H1-H11 had the same maize variety for both 2015 and 2016
(H6213) whereas fields L2-T27 had the maize variety H628 for 2015, and H614 for
2016. Two sets of vertical lines, one for 2015 and the other for 2016 were utilized to
indicate the start and end of the cropping period for the two years.

From (Figure 3) - ascending IW1, some phenological stages for both 2015 and 2016
backscatter values were comparable, despite the differences in the planting period or
the maize variety cultivated. For example, H9 and L10. For fields whose planting
dates were close for the two years, their backscatter values are comparable (H7, L2,
L10). There were also instances where the backscatter values for the two years were
still comparable, despite the planting dates being apart (H9, L17). The number of
images available played a role in comparing the two image sets. More images were
available in 2016 as compared to 2015 and therefore the time epochs within the
growing season lacked images for comparison (H7).

Figure 3: A multiplot of the Sentinel-1 (S-1) ascending IW1 mode backscatter values
for the 18 ADC Olngatongo maize fields analyzed for the 2015 and 2016 cropping
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seasons. The vertical lines indicate the planting and end of growth period for the
maize in the fields.
For the descending IW1 (Figure 4) and the descending IW3 (Figure 5), comparison of
the two years was limited by the few available images for 2015. Backscatter values
were comparable for epochs where both sets of images were available, though a
comparison across the entire cropping season could not be conclusively undertaken.

Figure 4: A multiplot of the Sentinel-1 (S-1) descending IW1 mode backscatter
values for the 18 ADC Olngatongo maize fields analyzed for the 2015 and 2016
cropping seasons. The vertical lines indicate the planting and end of growth period for
the maize in the fields.
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Figure 5: A multiplot of the Sentinel-1 (S-1) descending IW3 mode backscatter
values for the 18 ADC Olngatongo maize fields analyzed for the 2015 and 2016
cropping seasons. The vertical lines indicate the planting and end of growth period for
the maize in the fields.
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4. CONCLUSION

The capability of comparing the maize phenological characteristics from one year to
the next with S-1 data was investigated. The images were available in ascending IW1,
descending IW1, and descending IW3. From the results (Figures 3, 4, and 5), the VV
ascending IW1 mode produced the best results. Notably, this also had the highest
number of images for both 2015 and 2016. Thus, the limitation occasioned by the
unavailability of adequate S-1 images in 2015 to match the 2016 acquisitions rendered
the outcome inconclusive. Comparing the maize varieties cultivated for the two
seasons (H6213 for both years; and H628 for 2015 and H614 for 2016), the
backscatter values were found to be independent of the maize varieties planted. The
backscatter values were rather influenced by the planting dates for the two years. For
fields whose planting dates were not far apart, their backscatter values were
comparable, compared to fields whose planting dates were far apart. The maize
phenological stages could also be detected from the backscatter values for the two
years. This was the case for even fields with a difference in the 2015 and 2016
planting dates. As long as the maize crops were at similar phenological development
stages for the two years, then their backscatter values were comparable. The
backscatter characteristic curve from one year can therefore form a baseline to
monitor the condition of maize in the field for the subsequent years.
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