DEDAN KIMATHI UNIVERSITY OF TECHNOLOGY EXAMINATIONS 2015/2016

EXAMINATIONS FOR BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY

EXAMINATIONS FOR FIRST YEAR SECOND SEMESTER

SPH 2172 PHYSICS

SUPPLEMEMTARY/ SPECIAL

Date

Venue

Instructions:

- 1. Answer Question one and any other two questions
- 2. Use SI units and standard notation only
- 3. No free-hand diagrams allowed

Some useful constants

- a) Charge of an electron $e = 1.6 \times 10^{-19} \text{C}$
- b) Speed of light $c = 3.0 \times 10^8 \text{ m/s}$
- c) Permittivity of free space $\varepsilon_0 = 8.85 \text{x} 10^{-12} \text{ F/m}$

QUESTION ONE COMPULSORY

- Define the following terms a)
 - i) Power
 - ii) Inductance
 - iii) Current density
- v) Vector . (4 marks) State 3 characteristics of a conductor in an electric field. (3 marks) b) An inductor of 33mH is connected across a 120V root means square 60 Hz AC supply .Calculate c) i. The peak voltage (3 marks) ii. (3 marks) The inductive reactance (3 marks)
- d) Find the equivalent capacitance of 3 capacitor are connected in parallel

(30 marks)

e)	Determine the dimension of work.	(3 marks)	
f)	Two charges $9\mu C$ and $-18\mu C$ are placed $180cm$ apart. Find the field strength at their		
	mid-point.	(4 marks)	
g)	A person has a12V DC supply and needs to supply a p.d of 4V to a small radio. D	raw a circuit	
	and explain how the person can achieve the desired potential.	(4 marks)	
h)	State 3 factors that determine the capacitance of a capacitor	(3 marks)	
QUE	STION TWO OPTIONAL	(20 marks)	
a)	Give the expressions for power in a DC circuit	(3 marks)	
b)	Determine the resistance of the following colour coded resistors.		
i)	Gray –red-red-gold.	(2 marks)	
ii)	Green – blue – orange-silver.	(2 marks)	
c)	Three resistors 15 Ω , 33 Ω , and 56 Ω are connected in series to a 60VDC supply. Calculate:		
i.	The current in the circuit.	(4 marks)	
ii.	The potential difference across each resistor.	(3 marks)	
iii.	The power dissipated by the 33 Ω resistor	(3 marks)	
d) A	resistor has a resistance of 56 Ω at 20 degree Celsius. Determine its temperature if i	its resistance	
ch	anges to 64 Ω given that its temperature coefficient of resistance is 0.0025/°C.	(3 marks)	
QUI	ESTION THREE OPTIONAL	(20 marks)	
a) W	vrite down		
i.	Ampere's law.		
ii.	Biot-Savart law.	(4 marks)	
b)	An inductor of inductance of 300mH carries a current that decreases at a uniform rate of 80A/s .		
	Determine the self induced e.m.f.	(3 marks)	
c)	An R-L d.c circuit consists a 50mH inductor, a 15 Ω resistor and 120V DC battery. If the		
	switch is closed at $t = 0s$, determine		
i.	The time constant of the circuit.	(3 marks)	
ii.	The current at t=0.008 seconds.	(4 marks)	
e) St	ate and explain three factors that determine the amount force on a charge in a magn	etic field.	

(3 marks)

f) State and explain three factors that determine the magnitude of magnetic force on a conductor carrying current in a magnetic field. (3 marks)

QUESTION FOUR OPTIONAL

a)	State

Coulomb's law	(1 mark)
	Coulomb's law

- (ii) Three uses of capacitor
- b) A capacitor system is made of 2 plates each of area of 1.5cm². The dielectric is 5mm thick .The capacitor is connected across 300V DC supply and its dielectric constant is 4 .Determine

i.	The capacitance of the capacitor	(3 marks)
ii.	Electric flux density of the dielectric.	(3 marks)
iii.	The electric field strength in the dielectric	(3 marks)
iv.	The energy stored by the capacitor.	(3 marks)

c) Four points particles with charges $0.6\mu C$, $2.2\mu C$, $-3.6\mu C$, $+4.8\mu C$ are placed at the corners of an square of side 10cm. Determine the external work needed to bring a charge of $-0.5 \mu C$ from infinity to the centre of the square. Show that this work does not depend on which charge is at which corner.

QUESTION FIVE OPTIONAL

- Define the following terms a)
 - i. Period of oscillation
- ii. Angular frequency
- b) An AC signal which has a frequency f = 50Hz and peak value of 230 V is applied to a series R-C circuit, where R= 40 Ω and C = 0.033 μ F

Calculate

i.	The capacitive reactance.	(3 marks)
ii.	The circuit impedance.	(3 marks)
iii.	Root mean square current	(3 marks)
iv.	The phase angle	(3 marks)
c)	Explain two ways how power loss is reduced in AC transmission	(6 marks)

(20 marks)

(3 marks)

(2 marks)

(4marks)

(20 marks)