

DEDAN KIMATHI UNIVERSITY OF TECHNOLOGY
 UNIVERSITY EXAMINATIONS 2015/2016

SECOND YEAR SEMESTER II EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY

SPH 2172: PHYSICS
DATE: 22 ${ }^{\text {ND }}$ DECEMBER 2015
TIME: 1.30 PM - $\mathbf{3 . 3 0} \mathbf{P M}$

Some useful constants

(1) Charge of an electron $\mathrm{e}=1.602 \times 10^{-19} \mathrm{C}$
(2) Speed of light $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(3) Permittivity of free space $=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$

INSTRUCTIONS

Answer questions one and any other two questions.

QUESTION ONE (30 MARKS)
(a) State
(i) Lenz's law.
(ii) Kirchhoff's loop law.
(b) Show that if three resistors are connected in parallel with resistance R_{1}, R_{2} and R_{3} then the total resistance R_{T} is given by $\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$
(c) Determine the standard value of the carbon corded resistor

Blue- violet- black- silver.
(d) An alternating current is represented as $i=120 \sin (\omega t)$.Calculate itsir.m.s .
(e) An R-L a.c circuit is connected in series to $60 \mathrm{~Hz} 240 \mathrm{Vr} . \mathrm{m} . \mathrm{s}$ supply. If the resistance is 120Ω and the inductance is 300 mH , determine the circuit impendence.
(f) A motor coil has 20Ω and 45Ω resistance when its temperature is $40^{\circ} \mathrm{C}$ and $90^{\circ} \mathrm{Crespectively}$. R_{0} of the coil given that its temperature coefficient of resistance $\alpha=0.0044 /{ }^{\circ} \mathrm{C}$.
(g) State two typesof capacitors.
(h) A certain station transmits its signals at 200 km . Determine its frequency.
(i) State and explain two ways how power loss can be reduced in a.c transmission.
(j) Three charges are held fixed at the vertices of an equilateral triangle as shown below. Calculate their mutual electric potential energy (U).Take $q=1.5 \times 10^{-5} \mathrm{C}$ and $\mathrm{L}=70 \mathrm{~cm}$. (4 marks)
$+4 \mathrm{q}$

QUESTION TWO (20 marks)

(a) For a purely inductive circuits show that the inductive reactance is given by $X_{L}=\omega L$ ($\mathbf{5}$ marks)
(b) A capacitor of $20 \mu \mathrm{~F}$ and resistor of 100Ω are connected in series across a $50 \mathrm{~Hz} 230 V_{\text {r.m.s }}$ supply. Calculate
(i) the impendence of the circuit.
(ii) the root mean square current.
(c) Two signals $V_{1}=70 \sin (\omega t)$ and $V_{2}=90 \cos (\omega t)$ are fed into one circuit .Determine the representation of the superposed signal.
(d) A particle having a charge $q=5 \times 10^{-7} C$ moves from point P to point Q along a straight line, covering a distance of 6 m . The electric field is uniform along this line, in the direction from P to Q with magnitude $\mathrm{E}=$ 600 N/C. calculate
(i) the force on the charge.
(ii) the work done on it by the field.

QUESTION THREE (20 marks)

(a)Define the following terms.
(i) electric current.
(1 mark)
(ii) the potential
(b)A certain circular conductortransmits a charge of 1200C in 5 minutes. Given that the material making the conductor is 1.5 mm in diameter, calculate
(i) The current in the wire .
(3 marks)
(ii) its current density .
(c)A straight wire 12 meters long carries a current of 2 A and is placed in a uniform magnetic field of 30T.Determine the force on the conductor if its inclined at 40° to the direction of the field. (3marks)
(d) Calculate the current in the circuit and the p.d across each resistor.
(9 marks)

QUESTION FOUR (20 marks)

(a) Define the following terms.
(i) power.
(1 mark)
(ii) electric field. (1mark)
(b) A R-L d.c circuit consists a 100 mH inductor, a 20Ω resistor and a 24 V d.c. The switch is closed at $t=0$ seconds. Determine
(i) the time constant of the circuit.
(2marks)
(ii) the current in the circuit at $t=2.5$ seconds. (3marks)
(c) Two capacitor $4 \mu \mathrm{~F}$ and $8 \mu \mathrm{~F}$ are connected in parallel and the parallel connection is connected in series to $6 \mu \mathrm{~F}$ capacitor .If the system is connected to 50 V d.c , determine
(i) the total capacitance of the circuit.
(ii) the total charge stored by the circuit.
(iii)the energy storedin the circuit.
(d)A parallel plate capacitor has two plates each of area of $25 \mathrm{~cm}^{2}$.It has a dielectric of 0.15 mm thick and dielectric constant of 4.5.if the capacitor is connected across 12 V d.c,calculate
(i) Capacitance of the capacitor.
(ii) the flux density .

QUESTION FIVE (20 MARKS)

(a) State and explain three factors that determine the resistance of a resistor.
(b) State three factors that determine the induced e.m.f in self inductance.
(c) Derive an expression of the electric potential energy U as a charge is moved from point r_{a} tor ${ }_{b}$.
(d) Determine the color coding of $34 \mathrm{M} \Omega$ resistors having a tolerance a tolerance of $\pm 2 \%$.(3marks)
(e) An a.c is represented as $\mathrm{V}=150 \sin (55 \pi \mathrm{t}+3.5)$. Determine
(i) the root mean square potential $\left(V_{r . m . s}\right)$. ($\mathbf{2}$ mark)
(ii) the frequency and the period of the a.c.($\mathbf{3}$ marks)
(iii) the value of the voltage at $\mathrm{t}=1.5$ seconds.
(2 marks)

