

DEDAN KIMATHI UNIVERSITY OF TECHNOLOGY

University Examinations 2015/2016

FIRST YEAR SEMESTER II EXAMINATION FOR THE DEGREE OF BACHELOR OF

SCIENCE IN

CIVIL ENGINEERING, MACHATRONICS ENGINEERING,

ELECTRICAL AND ELECTRONIC ENGINEERING, MECHANICAL ENGINEERING, GEOSPATIAL INFORMATION SCIENCE & GEOMATIC ENGINEERING & GEOSPATIAL INFORMATION SYSTEMS.

SPH 2171/: PHYSICS II/SPH 2174 PHYSICS FOR ENGINEERS II

DATE: 13TH APRIL 2016

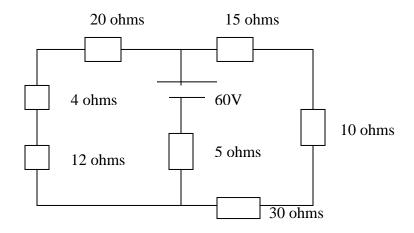
TIME: 11AM-1PM

Some useful constants

- (a) Charge of an electron $e = 1.6 \times 10^{-19} C$
- (b) speed of light $C = 3 \times 10^8 m/s$
- ^(c) $\varepsilon_0 = 8.854 \text{x} 10^{-12} \text{ C}^2 / \text{Nm}^2$
- ^(d) Mass of proton = 1.0073 a.m.u
- (e) Mass of Neutron = 1.0087 a.m.u
- (f) 1 a.m.u = 931 M eV
- ^(g) h=6.626x10⁻³⁴ Js
- ^(h) 1 a.m.u=1.66x10⁻²⁷ Kg
- ⁽ⁱ⁾ ${}_{1}^{1}H = 1.0078a.m.u$
- ^(j) ${}^{7}_{3}Li = 7.0016 a.m.u$

^(k)
$$\frac{h}{mc} = 0.0242 \,\dot{A}$$

Instructions


Answers question one and any other two questions.

Question one (30 marks)

(a) Define the following term	S
-------------------------------	---

i.	Drift velocity.	(1 mark)		
ii.	The potential(V).	(1 mark)		
iii.	Atom .	(1 mark)		
(b) A parallel plate capacitor with a dielectric whose thickness is 0.15mm has a p.d of 60V applied across the				
arrangement.	Calculate the electric field intensity between the plates	.(3 marks).		
(c) Outline how you can verify Ohm's law ,giving all the circuit diagrams required.(3 marks)				
(d) The resistance of a conductor at °C is 140 Ω . If the temperature coefficient of resistance of the				
conductor at	0°C is 0.004264/°C, determine its resistance at 70°C.	(3marks)		
(e) State three factors that determine the force on a current carrying conductor in a magnetic				
field.		(3 marks)		
(f) Show that $N = N_0 e^{-\lambda t}$ where the symbols have their usual meaning. (4 marks) (g) Tritium is an unstable isotope of hydrogen ${}_{3H}^{3H}$ if its 3.011a.m.u. Determine its binding				
energy.	-	(3 marks)		
(h) Write an equ	ation showing how a proton changes to a neutron.	(2marks)		
(i) State three u	ses of radio activity.	(3marks)		
(j) List three sime Question two	ilarities between magnetic field lines and electric field lines (20 marks)	(3marks)		
(a) State				

(i) Kirchoff's current law.	(1mark)
(ii) Lenz`s law.	(1 mark)
(iii)Farady's laws of electromagnetic induction.	(1 mark)
(b) (i) Show that the electric current through a cylindrical conductor is given by $I =$	nqvA where all the
symbols have their usual meaning.	(5 marks)
(ii) A given electric bulb is labeled 100W 0.9A.Calculate the number of charges	passing its cross-
section in 1.5 hours.	(3 marks)
(c) State three factors that affect resistance	(3 marks)
(d) Determine the current through each of the resistors	(6 marks)

Question three (20 marks)

(a) Show that for parallel plate capacitor with dielectric as free space is given as

 $C = \frac{\varepsilon_0 A}{d}$ where A is area of plate and d the plates separation distance. (5 marks)

- (b) Three charges $-3.2x10^{-6}C$, $-4x10^{-6}C$ and $+5x10^{-6}C$ are placed at the points (0,7),(10,0) and (-6,0) respectively. Calculate the electric field at the point (0,0), all units are in metres.(5 marks)
- (c) State two uses of capacitors. (2 marks)
- (d) Three capacitors 3μF,6μF and 18μF are connected across a 20Vd.c in series .Calculate the total charge stored by the system.
 (4 marks)
- (e) Two capacitors C₁ and C₂ when connected in series results in a total capacitance of 2µF and while connected in parallel results in a total of capacitance of 9µF. Find the possible values of the two capacitors.
 (4 marks)

Question four (20 marks)

- (a) State two types of radioactivity. (2 marks)
 (b) The half-life of a certain element is 4.5x10⁸ years. Calculate its decay constant.(3 marks)
- (c) Write an equation for a general particle when it undergoes a beta decay. (3 marks)
- (d) Differentiate between nuclear fission and nuclear fusion. (2marks)
- (e) Sketch and explain a graph of Binding energy per nucleon against mass number. (4 marks)
- (f) Calculate the binding energy released in the following reaction
 - ${}^{1}_{1}H + {}^{7}_{3}Li \rightarrow {}^{4}_{2}He + {}^{4}_{2}He \qquad (4 \text{ marks})$
 - 3

(g) State two dangers of radioactive radiations.	(2 marks)		
Question five (20 marks)			
(a) State four properties of X-rays.	(4 marks)		
(b) Determine the energy in electron volts of a photon having a wavelength of $9x10^{-10}m$. (3 marks)			
(c) An electron falls through a p.d of $10^7 V$.Calculate			
(i) The energy given up by the electron.	(3 marks)		
(ii) The frequency of the electromagnetic radiation produced.	(3 marks)		
(d) Differentiate between X-rays and Gamma rays.	(2marks)		
(e) An X-ray of $1.5x10^{-10}m$ is incident on a target. Calculate			
(i) the wavelength of the scattered photon at $\theta = 90^{\circ}$.	(2 marks)		
(ii) the energy of the scattered electron.	(3 marks)		