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Abstract: Symmetry in biological and physical systems is a product of self-organization driven by 
evolutionary processes, or mechanical systems under constraints. Symmetry-based feature extrac-
tion or representation by neural networks may unravel the most informative contents in large im-
age databases. Despite significant achievements of artificial intelligence in recognition and classi-
fication of regular patterns, the problem of uncertainty remains a major challenge in ambiguous 
data. In this study, we present an artificial neural network that detects symmetry uncertainty states 
in human observers. To this end, we exploit a neural network metric in the output of a biologically 
inspired Self-Organizing Map, the Quantization Error (SOM-QE). Shape pairs with perfect geo-
metric mirror symmetry but a non-homogenous appearance, caused by local variations in hue, 
saturation, or lightness within and/or across the shapes in a given pair produce, as shown here, 
longer choice RT for ‘yes’ responses relative to symmetry. These data are consistently mirrored by 
the variations in the SOM-QE from unsupervised neural network analysis of the same stimulus 
images. The neural network metric is thus capable of detecting and scaling human symmetry un-
certainty in response to patterns. Such capacity is tightly linked to the metric’s proven selectivity to 
local contrast and color variations in large and highly complex image data. 

Keywords: symmetry; shape; local color; self-organized visual map; quantization error; SOM-QE; 
choice response time; human decision; uncertainty 
 

1. Introduction 
Symmetry in biological and physical systems is a product of self-organization [1] 

driven by evolutionary processes and/or mechanical systems under constraints. It con-
veys a basic feature to living objects, from molecules to animal bodies, or to physical 
forces acting in synergy to create symmetrical structures [1-6]. In pattern formation, per-
fect symmetry is a regularity within a pattern the two halves of which are mirror images 
of each other. In information theory and in particular human information processing 
[7-11], symmetry is considered an important carrier of information, detected universally 
by humans from an early age on [12,13]. Human symmetry detection [14, 15] in patterns 
or shapes involves visual and cognitive processes from lower to higher levels of func-
tional organization [16-24]. Vertical mirror symmetry is a particularly salient form of 
visual symmetry [23-25], processed at early stages in human vision and producing 
greater or lesser detection reliability [23] depending on local features of the stimulus 
display with greater or lesser stimulus certainty. Shape symmetry is a visual property 
that attracts attention [18] and determines perceived volume [19-22] and perceptual sa-
lience [26] of objects represented in the two-dimensional image plane. Aesthetic judg-
ment and choice preference [27,28] are influenced by symmetry, justifying biologically 
inspired models of symmetry perception in humans [29] under the light of the fact that 
symmetry is detected not only by primates but also by other species, such as insects, for 
example [30]. 
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Symmetry may be exploited in pattern detection and classification by neural net-
works, which may have to learn multiple copies of one and the same object representa-
tion displayed in different orientations. Encoding symmetry as a shape prior in the net-
work can, therefore, help avoid redundant computation where the network has to learn 
to detect a same pattern or shape in multiple orientations [31]. Symmetry-based feature 
extraction and/or representation [32] by neural networks using deep learning can, for 
example, help discover the most informative representations in large image databases 
with only a minor amount of preprocessing [33]. However, despite significant achieve-
ments of artificial intelligence in recognition and classification of well-reproducible pat-
terns, the problem of uncertainty still requires additional attention, especially in ambig-
uous data. An artificial neural network that detects uncertainty states where a human 
observer doubts about an image interpretation has been described previously for the case 
of MEG image data with significant ambiguity [34].  

Here in this study, we present an artificial neural network that detects uncertainty 
states in human observers about shape symmetry. To this end, we exploit a neural net-
work metric in the output of a biologically inspired Self-Organizing Map, the Quantiza-
tion Error (SOM-QE) [35-44], which is a measure of output variance and quantifies the 
difference between neural network states at different stages of unsupervised image 
learning. In our previous studies, we demonstrated functional properties of the SOM-QE 
such as a sensitivity to the spatial extent, intensity, and sign or color of local image con-
trasts in unsupervised image classification by the neural network. The metric reliably 
detects the finest, clinically or functionally relevant variations in local image contrast 
contents [36-44], often invisible to the human eye [38,39,42-44]. Here it will be shown that 
the SOM-QE as a neural network state metric reliably captures, or correlates with, vary-
ing levels of human uncertainty in the detection of symmetry of shape pairs with varying 
local color contents. While all shape pairs present perfect geometrically defined vertical 
mirror symmetry, visual uncertainty about symmetry is introduced by systematic varia-
tions in color (hue) and or saturation of the local shape elements. Previous work using 
human two-alternative forced choice decision had shown that such color variations sig-
nificantly influence perceived relative distance [45-48] in two-dimensional patterns. 
Here, psychophysically determined choice response times, previously shown to directly 
reflect stimulus uncertainty [49,50], are exploited as a measure of symmetry uncertainty 
in humans, where longer choice response times reflect a higher level of uncertainty. 

2. Materials and Methods 
Visual uncertainty associated with the symmetry of shape pairs was varied experi-

mentally in a series of two-dimensional images showing shape pairs with perfect geo-
metrical (vertical mirror) symmetry but varying color (hue and/or saturation) of local 
shape elements. To quantify human decision uncertainty, the images with the shape pairs 
were presented in random order on a computer screen to observers who had to decide as 
quickly as possible whether two shapes in a given images were symmetrical or not (yes/no 
procedure). The psychophysically measured choice response time was computed as 
measure of uncertainty. To test whether a biologically inspired Self-Organizing Map 
(SOM) reliably detects the different levels of human uncertainty reflected by the psy-
chophysical response time variations, the same images where submitted to unsupervised 
neural network analysis to measure the Quantization Error in the SOM output (SOM-QE) 
after unsupervised learning. 

 
2.1. Images and symmetry display 

Images with colored mirror symmetric shape pairs, shown here for illustration in 
Figure 1, displayed on a medium grey (R=130, G=130, B=130) background covering a 
surface of 2560x1361 pixels were generated in Photoshop 12 for visual presentation on a 
computer screen (EIZO COLOR EDGE CG 275W, 2560x1440 pixel resolution) connected 
to a DELL computer equipped with a high performance graphics card (NVIDIA). Color 
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and luminance calibration of the RGB channels of the monitor was performed using the 
appropriate Color Navigator self-calibration software, which was delivered with the 
screen and runs under Windows. Visual symmetry uncertainty in the shape pairs was 
varied by giving the local shape elements variable color appearance in terms of hue, 
lightness and saturation. Color parameters were selectively manipulated in Adobe RGB 
color space, the corresponding physical variations are here below given in Table 1.  

 

 
Figure 1. The test images with colored mirror symmetric shape pairs, displayed on a medium grey 
background. Visual symmetry uncertainty in the shape pairs was varied by giving local shape 
elements variable color appearance in terms of hue, lightness, and saturation. 

Table 1. Local physical color parameters producing variations in pattern appearance. 

 
 
 
 
“Strong” 
 
 
 
 
 
 
“Pale”  

Color Hue Saturation Lightness R-G-B 
 
BLUE 

 
240 

 
100 

 
50 

 
0-0-255 

RED 0 100 50 255-0-0 
GREEN 120 100 50 0-255-0 

MAGENTA 300 100 50 255-0-255 

YELLOW 60 100 50  
 

 
BLUE 

 
180 

 
95 

 
50 

 
10-250-250 

RED 0 100 87 255-190-190 

GREEN 120 100 87 190-255-190 

MAGENTA 300 25 87 255-190-255 
YELLOW 600 65 67 255-255-190 
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2.2. Choice Response Time Test 
In the test phase measuring human decision times, the 20 images were displayed in 

random order in two successively repeated test sessions per human observer. Tests were 
run a workstation consisting of a computer screen (EIZO COLOR EDGE CG 275W, 
2560x1440 pixel resolution) connected to a DELL computer equipped with a high per-
formance graphics card (NVIDIA). Fifteen healthy young individuals from a population 
of undergraduates and young professionals participated in the test phase. All partici-
pants had normal or corrected-to-normal visual acuity. In addition, the Ishihara plates 
[51] were used prior to individual testing to ensure that all of them also had normal color 
vision. The choice response tests were run in October and November 2019, and in con-
formity with the Helsinki Declaration for scientific experiments on human individuals.  
All the individuals provided informed consent to participate. Their identity is not re-
vealed. The test procedure adheres to rules and regulations set by the ethics board of the 
corresponding author's host institution (CNRS) for response data collection from healthy 
human individuals in non-invasive psychophysical tasks, for which examination of the 
experimental protocol by a specific ethics committee is not mandatory. Each individual 
participant was comfortably seated in front of the computer at a distance of about 80 cm 
from the screen in a semi-dark room under mesopic viewing conditions, and adapted to 
surround light conditions for about five minutes. Participants were informed that images 
with two abstract patterns, one on the left and one on the right, would be shown on the 
screen in two separate sequences. The task instruction given to each of them was to: 
“decide as quickly as possible and as soon as an image comes up on the screen whether 
or not the two patterns in the given image appear to be symmetrical or not”. A keyboard 
response had to be delivered by pressing ‘1’ for ‘yes’ or ‘2’ for ‘no’. Individuals had to 
maintain their index and middle fingers of their dominant hand ready on the numbers to 
be able to press a given key without any motor response delay. Each individual response 
choice was recorded and stored in a labeled data column of an excel file. The choice re-
sponse time corresponds to the time between an image onset and the moment a response 
key is pressed. The response times associated with a ‘yes’ or ‘no’ decision were stored in a 
second labeled data column of the same excel file. As soon as a response was given, the 
current image disappeared from the screen, and 900 milliseconds later the next image 
was delivered. Image presentation and response data encoding were controlled by a 
program written in Python for Windows [52,53].  

 
2.3. Neural Network (SOM) Analysis 

The conceptual background and method of neural network analysis follows the 
same principle and protocol already described in our latest previous work on biological 
cell imaging data analysis by SOM [37,44]. It is described here again in full detail, for the 
benefit of the reader. The Self-Organizing Map is a an artificial neural network architec-
ture that may be described formally as a nonlinear, ordered, smooth mapping of 
high-dimensional input data onto the elements of a regular, low-dimensional array [54]. 
It is assumed that the set of input variables is definable as a real vector x, of n-dimension. 
A parametric real vector mi of n-dimension is associated with each element in the SOM. 
Vector mi is a model and the SOM is therefore an array of models. Assuming a general 
distance measure between x and mi denoted by d(x,mi), the map of an input vector x on 
the SOM array is defined as the array element mc that matches best (smallest d(x,mi)) with 
x. During the learning process, the input vector x is compared with all the mi in order to 
identify mc. The Euclidean distances ||x-mi|| define mc. Models topographically close in 
the map up to a certain geometric distance, indicated by hci, will activate each other to 
learn something from their common input x. This results in a local relaxation or 
smoothing effect on the models in this neighborhood, which in continuous learning leads 
to global ordering. SOM learning is represented by the equation 

 
𝑚(𝑡 + 1) = 𝑚 (𝑡) + 𝛼(𝑡)ℎ (𝑡)⌈𝑥(𝑡) − 𝑚 (𝑡)⌉   (1) 
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where 𝑡 = 1,2,3. ..is an integer, the discrete-time coordinate, hci(t) is the neighborhood 
function, a smoothing kernel defined over the map points which converges towards zero 
with time, 𝛼(𝑡)is the learning rate, which also converges towards zero with time and af-
fects the amount of learning in each model. At the end of the winner-take-all learning 
process in the SOM, each image input vector x becomes associated to its best matching 
model on the map mc. The difference between x and mc, ||x-mc||, is a measure of how 
close the final SOM value is to the original input value and is reflected by the quantization 
error, QE. The average QE of of all x (X)  in an image is given by: 
 
𝑄𝐸 = 1 𝑁⁄ ∑ 𝑋 −𝑚       (2) 
 
where N is the number of input vectors x in the image. The final weights of the SOM are 
defined by a three dimensional output vector space representing each R, G, and B chan-
nel. The magnitude as well as the direction of change in any of these from one image to 
another is reliably reflected by changes in the QE. The SOM training process consisted of 1 
000 iterations. The SOM was a two-dimensional rectangular map of 4 by 4 nodes, hence 
capable of creating 16 models of observation from the data. The spatial locations, or co-
ordinates, of each of the 16 models or domains, placed at different locations on the map, 
exhibit characteristics that make each one different from all the others. When a new input 
signal is presented to the map, the models compete and the winner will be the model the 
features of which most closely resemble those of the input signal. The input signal will 
thus be classified or grouped in one of models. Each model or domain acts like a separate 
decoder for the same input, i.e. independently interprets the information carried by a new 
input. The input is represented as a mathematical vector of the same format as that of the 
models in the map. Therefore, it is the presence or absence of an active response at a spe-
cific map location and not so much the exact input-output signal transformation or mag-
nitude of the response that provides the interpretation of the input. To obtain the initial 
values for the map size, a trial-and-error process was implemented. Map sizes larger than 
4 by 4 produced observations where some models ended up empty, which meant that 
these models did not attract any input by the end of the training. As a consequence, 16 
models were sufficient to represent all the fine structures in the image data. Neighbor-
hood distance and  learning rate were constant at 1.2 and 0.2 respectively. These values 
were obtained through the trial-and-error method after testing the quality of the first 
guess, which is directly determined by the value of the resulting quantization error ; the 
lower this value, the better the first guess. It is worthwhile pointing out that the models 
were initialized by randomly picking vectors from the training image, called here the 
"original image". This allows the SOM to work on the original data without any prior as-
sumptions  about a level of organization within the data. This, however, requires to start 
with a wider neighborhood function and a bigger learning-rate factor than in procedures 
where initial values for model vectors are pre-selected [55 ]. The approach is economical 
in terms of computation times, which constitutes one of its major advantages for rapid 
change/no change detection on the basis of large datasets. The 20 images here were fed 
into a single SOM. The training image for the SOM prior to further input can be any of 
these. After unsupervised winner-takes-all SOM learning, the SOM-QE output was written 
into a data file. Further steps generate output plots of SOM-QE, where each output value 
is associated with the corresponding input image. The output data are then plotted in in-
creasing/decreasing orders of SOM-QE magnitude as a function of the corresponding 
image variations (automatic image classification). The computation time of SOM analysis 
of each of the 20 images was about two seconds per image. The code used for imple-
menting the SOM-QE is available online at: 
https://www.researchgate.net/publication/330500541_Self-organizing_map-based_quantization_e
rror_from_images 
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3. Results 
With 20 images per individual session, two successive sessions per participant, and  

15 participants, a total of 600 choice response time data were recorded. A shape pair 
corresponding to a single factor level relative to shape appearance and color was pre-
sented twice in a session with 20 images to allow for left and right hand side presentation 
of a given appearance factor level in the shape pairs. The labels of the individual factor 
level associated with each shape pair are given in Figure 1. With two repeated sessions 
per participants, we have four individual response time data for each single factor level. 
All data analyses relative to choice response times were run on the 15 average response 
times for each factor level from the 15 participants. These data are made available here in 
Table S1 of the Supplementary Materials Section.  

Since all shape pairs in all the images were mirror-symmetric, ‘no’ responses oc-
curred only very rarely in the experiment (17 of the 600 recorded choice responses sig-
naled ‘no’, which corresponds to less than three percent of the total number of observa-
tions), as would be expected. In these rare cases, only the choice response times corre-
sponding to a ‘yes’ among the four responses recorded for a given factor level were used 
for computing the average. In terms of operational factor levels in the Cartesian experi-
mental design plan, we have four levels (1,2,3,4) of a factor termed ‘Appearance’ (A4) as-
sociated with the colors BLUE and RED, and two levels (1,2) of ‘Appearance’ (A2) associ-
ated with the multiple color case termed MULTICOL here. The three color conditions, 
blue, red, and multicolor, describe three operational levels of a second factor termed 
‘Color’ (C3) herein. In a first step, two separate two-way analyses of variance (ANOVA) 
were run to test for significant effects of the factors ‘Appearance’ and ‘Color’. The first 
ANOVA compares between four levels of ‘Appearance’ (1,2,3,4) in two levels (BLUE,RED) 
of the ‘Color’ factor. The second ANOVA compares between two levels of ‘Appearance’ in 
three levels (BLUE, RED, MULTICOL) of the ‘Color’ factor. 

3.1. Two-way ANOVA on choice response times 

3.1.1. A4 x C2 x 15 
This analysis corresponds to a Cartesian analysis plan A4 x C2 x 15, with four levels 

(1,2,3,4) of the ‘Appearance’ factor and two levels (BLUE,RED) of the ‘Color’ factor on the 
15 individual average response times (RT), yielding a total number (N-1) of 119 degrees 
of freedom (DF). The results from this analysis are shown here below in the top part of 
Table 2. 

 
Table 2. Results from the two-way analyses of variance with factor specific degrees of 
freedom (DF), the corresponding F statistics, and their associated probability limits (p).  

 
 
1st 2-way 
ANOVA 
 
 
 
2nd 2-way 
ANOVA  

Factor DF F p 
 
APPEARANCE 

 
3 

 
68.42 

 
<.001 

COLOR 1 .012 <.914 NS 
INTERACTION 3 5.37 <.01 

    

 
APPEARANCE 

 
1 

 
8.20 

 
<.01 

COLOR 2 123.56 <.001 

INTERACTION 2 .564 <.57 NS 
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The results of this analysis signal a statistically significant effect of the ‘Appearance’ factor 
on the average RT and a statistically significant interaction between the ‘Appearance’ and 
the ‘Color’ factor for the cases BLUE and RED. A statistically significant effect ‘Color’ 
independent of ‘Appearance’ is not observed, leading to conclude that either of these two 
colors produced similar effects on RT relative to shape symmetry when their appearance 
is modified. This holds with the exception for statistical comparison between BLUE3 and 
BLUE4, which is the only one that is not significant here, as revealed by the post-hoc 
comparison (Holm-Sidak) between these two factor levels (t(1,1) = .32, p<.75 NS). The 
effects can be appreciated further by looking at the effect sizes for the different conditions, 
which are visualized further here in the Figures 2 and 3. 

 

Figure 2. Statistically significant differences in average RT (top) for the comparison 
between BLUE and RED shape pairs with appearance levels 1 and 2. The corresponding 
SOM-QE values (bottom) from the neural network analysis are plotted in the graph 
below. 
3.1.2. A2 x C3 x 15 

This analysis corresponds to a Cartesian analysis plan A2 x C3 x 15, with two levels 
(1,2) of the ‘Appearance’ factor and three levels (BLUE,RED,MULTICOL) of the ‘Color’ 
factor on the 15 individual average response times (RT), yielding a total number (N-1) of 
89 degrees of freedom. The results from this analysis are shown here above in the bottom 
part of Table 2. They signal a statistically significant effect of the ‘Appearance’ factor on the 
average RT and a statistically significant effect of the ‘Color’ factor. A statistically signif-
icant interaction is not observed here. Statistical post-hoc comparisons (Holm-Sidak) reveal 
statistically significant differences between the factor levels MULTICOL and RED (t(1,1) 
= 14.44, p<.001) and between the factor levels MULTICOL and BLUE (t(1,1) = 12.60, 
p<.001), but not, as could be expected from the previous ANOVA, between the factor 
levels RED and BLUE (t(1,1) = 1.84, p<.09 NS). The ‘Color’ effect here is reflected by the 
observation that shape pairs with multiple color elements yield significantly longer 
symmetry related RT compared with shape pairs composed of any of the two single col-
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ors here. This effect can be appreciated further by looking at the effect sizes for the dif-
ferent comparisons, which are visualized further below here in Figure 4. 

3.2. RT effect sizes 

The effect sizes, in terms of differences between means, that correspond to significant 
statistical differences signaled by two-way ANOVA were plotted graphically, and are 
shown in the top graph in Figure 2 here above, and in the top graphs in Figures 3 and 4 
here below along with the corresponding shape pairs that produced the results. The 
graphs show clearly that shape pairs with non-homogenous appearance, i.e. local 
variations in hue, saturation, or lightness within and/or across shapes in a given pair, 
produce longer choice RT for ‘yes’ responses relative to shape symmetry.  

 

Figure 3. Statistically significant differences in average RT (top) for the comparison 
between BLUE and RED shape pairs with appearance levels 1, 3 and 4. The 
corresponding SOM-QE values (bottom) from the neural network analysis are plotted in 
the graph below. The difference in average RT between BLUE3 and BLUE4 is the only 
one here that is not statistically significant (see paragraph 3.1.1.). 

3.3. SOM-QE effect sizes 

The SOM-QE metrics from the unsupervised neural network analysis of the test images 
were also plotted graphically and are displayed in the bottom graphs of Figures 2, 3, and 
4. The graphs show clearly that the magnitudes of the SOM-QE from the neural network 
analysis consistently mirror the observed magnitudes of average choice RT for ‘yes’ 
responses relative to shape symmetry produced by shape pairs with varying appearance 
in terms of local variations in hue, saturation, or lightness within and/or across shapes in 
a given pair. 
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Figure 4. Differences in average RT (top) for the comparison between BLUE and RED 
shape pairs with appearance level 1 and the multicolored MULTICOL shape pairs with 
appearance levels 1 and 2. The differences between BLUE and RED shape pairs of any 
appearance level are not statistically significant (see paragraph 3.1.1.). The differences 
between image conditions BLUE1 or RED1 and MULTICOL1 and between BLUE2 or 
RED2 and MULTICOL2 are highly significant, as is the difference between MULTICOL1 
and MULTICOL2 (see paragraph 3.1.2.). The corresponding SOM-QE values (bottom) 
from the neural network analysis are plotted in the graph below.  

3.4. Linear regression analyses 

The results from the previous analyses show that the average choice RT for ‘yes’ 
responses relative to shape symmetry, produced by shape pairs with varying appearance 
in terms of local variations in hue, saturation, or lightness within and/or across shapes in 
a given pair, produce significant variations consistent with variations in decisional 
uncertainty about the mirror symmetry of the shapes in a pair. The higher the variability 
in hue, saturation or lightness of single shape elements, the longer the RT for ‘yes” hence 
the higher the stimulus uncertainty for ‘symmetry’. Indeed, the longest choice RT for ‘yes’ 
responses relative to shape symmetry is produced by the shape pairs MULTICOL1 and 
MULTICOL2. To bring the tight link between variations in RT reflecting different levels 
of human uncertainty and the variations in the SOM-QE metric from the neural network 
analyses, we performed a linear regression analysis on the RT data for shape pairs with 
varying levels of appearance in BLUE, RED and MULTICOL shapes, and a linear 
regression analysis on the SOM-QE data for exactly the same shape pairs. The results 
from these analyses are plotted here below in Figure 5. The linear regressions coefficents 
(R2) are provided in the graph for each analysis. It is shown that RT for ‘yes’ responses 
relative to shape symmetry and the SOM-QE as a function of the same shape variations 
follow highly similar and signficant linear trends. 
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Figure 5. The tight link between variations in RT reflecting different levels of human un-
certainty and the variations in the SOM-QE metric from the neural network analyses is 
brought to the fore here under the light of linear regression analysis on the RT data for 
shape pairs with varying levels of appearance in BLUE, RED and MULTICOL shapes, and 
linear regression analysis on the SOM-QE data for exactly the same shape pairs. 

4. Discussion 

It is shown here that mirror symmetric shape pairs with a non-homogenous appearance, 
caused by local variations in hue, saturation, or lightness within and/or across shapes in a 
given pair, produce longer choice RT for ‘yes’ responses relative to the shape symmetry. 
The variations in average choice RT for ‘yes’ responses are consistent with variations in 
human symmetry uncertainty [49,50]. The higher the variability in hue, saturation or 
lightness of single shape elements, the longer the RT for ‘yes”, i.e. the higher the stimulus 
uncertainty for ‘symmetry’. As shown here, the variations in RT are consistently 
mirrored by the variations in the SOM-QE from the unsupervised neural network 
analysis of the same stimulus images. This provides further data showing that artificial 
neural networks are capable of detecting human uncertainty in perceptual judgment 
tasks [34]. The capability to the SOM-QE to capture such uncertainty in human choice 
responses to the symmetry of shapes with local variations in color parameters is tightly 
linked to the proven selectivity of this neural network metric to local contrast and color 
variations in large variety of complex image data [36-44]. Here, the metric is revealed as a 
measure of both variance in the image input data, and uncertainty in specific human 
decisions in response to such data. The neural network metric captures the effects of local 
color contrast [56] on symmetry saliency in cases where pure shape geometry signals 
perfect mirror symmetry. This unambiguously shows that visual parameters beyond 
stimulus geometry [57-60] influence what has previously been termed the “symmetry of 
things in a thing”. Such local, non-geometrically determined effects on perceived shape 
symmetry have potentially important implications for image-guided human precision 
tasks [61,62], now more and more often assisted by neural network-driven image analysis 
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[32,33]. From a general functional viewpoint, the fact that local variations in hue, 
saturation, or lightness in geometrically perfect mirror symmetric shapes significantly 
increase human symmetry uncertainty by delaying conscious choice response times 
[49,57] is consistent with current theory invoking interactions between low-level visual 
and higher level cognitive mechanisms of integration [57,63]. In humans, the explicit and 
fully conscious detection of symmetry in choice response tasks involves integration of 
information beyond local information through brain networks with neurons displaying 
larger receptive field areas and a massive amount of lateral connectivity [64,65]. 
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