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Abstract
The Central Region of Kenya has undergone significant changes in land cover due to a broad range of drivers. These changes 
are more pronounced in forestland conversions. Past researches within the study area have identified drivers of land cover 
change without quantifying the influence of these drivers. Predictor variables include population density, precipitation, 
elevation, slope, forest fires, soil texture, proximity to roads, rives and towns. Land cover changes were analyzed using 
multi-temporal land cover maps between year 1990 and 2014. Boosted regression trees model was applied to determine the 
significant drivers and quantify their relative influence on key forestland transitions. The local and spatial influence of the 
drivers has further been analyzed by geographical weighted regression using coefficients determined at each sample point. 
Significant land cover changes continuously occurred over the study period. Forestland reduced from 38.90% in 1990 to 
38.14% in 2014. Grassland reduced from 32.59 to 22.57%, cropland increased from 28.05 to 38.83% and wetland changed 
from 0.07 to 0.04%. Other land which constitutes of bare land and built up increased from 0.38 to 0.42%. The results show 
population density had the highest contribution to forestland changes throughout the study period, with a minimum contribu-
tion of 20.02% to a maximum of 26.04%. Other significant variables over the study period are precipitation, slope, elevation 
and the proximity variables. The results indicate that the relative influence of the drivers to forestland conversion varies with 
time, location and type of transition.
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Introduction

Land use land cover conversion and human-driven altera-
tions of the surface of the earth (Foley 2005) have affected 
spatial and temporal patterns and processes of global eco-
system (Turner et al. 2007). One of the critical land use 
land cover conversions is in the forestland. Forestland con-
version is mostly in form of deforestation and degradation, 
and it is heavily attributed to human-driven activities and 
climate change. Deforestation and degradation have consid-
erable influence on carbon and greenhouse gas (GHG) fluxes 
within an ecosystem (Sohl et al. 2012). GHG emissions are 
a global concern due to the negative impacts on global cli-
mate systems, and any given land use change scenario may 
emit or sequester carbon (Baccini et al. 2012; Dunn et al. 
2013). Recognizing the negative impacts of GHG emissions 
on global climate system, the international community is 
currently negotiating initiatives to reduce emissions from 
deforestation and forest degradation in developing countries.
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Forest ecosystems are vital for biogeochemical processes, 
but also for the livelihood of forest-dependent communities 
(Igu 2017). Kenya’s total forest cover is currently estimated 
at 7.4% (Government of Kenya 2018), which is below 10% 
international threshold. It is estimated that forestry contrib-
utes about 3.6% of Kenya’s GDP and directly or indirectly 
support other key productive and service sectors. Forests 
further account for 75% of the country’s renewable surface 
water sources (Government of Kenya 2014). In the last two 
decades, significant socioeconomic changes have continued 
to occur in the country, exerting pressure on forestland. The 
result is decreasing forest cover mainly attributed to unsus-
tainable utilization and conversion of forestland to other land 
uses (Government of Kenya 2018).

Previous studies have demonstrated the extent of forest 
loss in Kenya and identified some underlying drivers (Gov-
ernment of Kenya 2010), but there remains a glaring dearth 
of research that quantifies the influence of these drivers on 
forestland conversion in Kenya. Combination of climatic, 
topographic, soil quality, demographic and accessibility fac-
tors determine the likelihood of land cover change (Morrison 
et al. 2018; Were et al. 2014). These factors have largely 
been analyzed by traditional global regression models in the 
previous studies (Campbell et al. 2005). A typical global 
regression model applied to spatial data assumes a station-
ary process, and the parameters obtained in calibration of 
such a model are constant over space. However, relationships 
between predictor and response variables are intrinsically 
different across space (Saefuddin et al. 2012). Assessment 
of determinants of forestland conversion is complicated 
by the nonlinear relationship between the factors and the 
response variables, and the interactions between predictor 
variables (Zhang et al. 2016; Kolb et al. 2013). The conven-
tional regression models have scientific merit because they 
are easy to understand and interpret and provide numerous 
options to estimate the parameters that relate the input data 
to the output data (Munroe and Müller 2007). However, 
problems with unknown and possibly nonlinear relationships 
between input and output variables are difficult to consider 
in these regression frameworks (Turner et al. 2007; Verburg 
et al. 2006).

This study applies boosted regression trees model (BRT) 
which combines regression trees and boosting to generate 
non-parametric statistical models that can capture non-
linear relationships and interactions between variables 
(Tonkin et al. 2015). The models offer considerable gains 
over conventional regression techniques due to their capa-
bility of fitting interactions among predictor variables and 
fitting complex nonlinear relationships (Elith et al. 2008; 
Leathwick et al. 2006; Zhang et al. 2016). Geographically 
weighted regression (GWR) applied in this study allows the 
measured relationships to vary over space and addresses the 
effect of spatial non-stationarity of data (Saefuddin et al. 

2012). The model accounts for heterogeneity through cal-
culation of coefficients at each measurement location point 
(Kirui et al. 2017). This study demonstrates the use of the 
models to quantify the contribution of each variable and 
determine spatial heterogeneity in the influence of the driv-
ers across the study area which is critical in guiding inter-
vention measures.

The datasets used to evaluate the drivers of land cover 
change in Nyeri County were clipped from the datasets pre-
pared for a previous analysis for the entire Central Region 
of Kenya. The results of change analysis for the whole of 
Central Region of Kenya indicated conversion from forest-
land to cropland was the key transition followed by forest 
conversion to grassland across all the years. However, analy-
sis of Nyeri County (one county out of the eight in Central 
Region) indicates a different pattern of change as indicated 
in the results of analysis of Nyeri County.

Materials and methods

Study area

Nyeri County is one of the eight counties in Central Region 
of Kenya, covering 2361 sq. km, as shown in Fig. 1. It is 
located 150.8 km north of Nairobi in the central highlands. 
The current population is 759,164 people, with approximate 
population density of 321.54. The study area is characterized 
by great topographic variability with altitude ranging from 
1200 to 5000 m. The slope ranges between 0 and 68%. The 
annual mean temperature ranges from 12° to 27°. Rainfall 
ranges from 500 to 2400 mm. It is the only county that con-
stitutes parts of the two major forests in the country, Mount 
Kenya and the Aberdare ranges. Agriculture forms the main 
source of livelihood. The county has undergone significant 
loss of forest cover from 38.9% in 1990 to 20.00% in 2018. 
The area is characterized with land fragmentation, and sur-
rounding population exploits the forests through logging, 
charcoal burning, agriculture and encroachment of settle-
ments (Government of Kenya 2010). 

Data

Various datasets have been used as shown in Table 1. Land 
cover change maps were generated from the country’s classi-
fied land cover maps for years 1990, 1995, 2000, 2005, 2010 
and 2014 acquired from Department of Resource Surveys 
and Remote Sensing (DRSRS). The land cover maps are 
created from LandsatTM images with a resolution of 30 m. 
The overall accuracy ranges from 74.88% in 1990 to 85.27% 
in 2014.

Biophysical and socioeconomic variables considered 
included slope, elevation, precipitation, soil texture, 
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distance to major roads, distance to major rivers, distance 
to towns, population density and forest fires. The SRTM 
30 m Digital Elevation Model was used to generate the 
slope and elevation. Population density was derived from 
the Kenya National Bureau of Statistics (KNBS) census 
data for 1989, 1999 and 2009. The unit of measurement is 
sublocation. Projected population data were provided by 
KNBS for years when census was not carried out. Road 
data were acquired from Kenya Urban Roads Authority 

(KURA). Data for towns and rivers were acquired from 
International Livestock Research Institute (ILRI). Distance 
from major roads, distance from towns and distance from 
rivers surfaces were created using the roads, towns and 
rivers layers, respectively, using ArcGIS software. Pre-
cipitation data were acquired from both WorldClim and 
Africa RFE sites with a resolution of 1 km. Kenya Forest 
Services (KFS) provided the shapefiles for MODIS for-
est fires data. Kenya Agricultural and Livestock Research 

Fig. 1  Study area

Table 1  Datasets Data Source Format

Land cover images Department of resource surveys and remote sensing (DRSRS) Raster
Elevation SRTM 30 m digital elevation model Raster
Slope SRTM 30 m digital elevation model Raster
Precipitation WorldClim Raster

Africa RFE
Population Kenya National Bureau of Statistics (KNBS) census data Shapefile
Roads Kenya Urban Roads Authority (KURA). Shapefile
Towns International Livestock Research Institute (ILRI). Shapefile
Rivers International Livestock Research Institute (ILRI). Shapefile
Soil Kenya Agricultural and Livestock Research Organization (KALRO) Shapefile
Forest fires MODIS forest data from Kenya Forest Services (KFS) Shapefile
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Organization (KALRO) provided shapefiles for soil data. 
All datasets were resampled to 30-m resolution consistent 
with the resolution of land cover maps.

Methods

The overall overview of the methodology is as shown in 
the methodology flowchart diagram in Fig. 2. About 15,000 
cluster points were randomly sampled and used to extract 
values for both response and predictor variables. The 
response variable was extracted from land cover change 
maps. Points where forestland conversion occurred were 
assigned a value of one (1) while points where no conver-
sion occurred were assigned a value of zero (0). Continuous 
surfaces for each of the predictor variables were created in 
ArcGIS and values extracted for all the sample points.

Boosted regression trees (BRT) modeled the relation-
ship between the predictor variables and the response vari-
able based on the extracted values from random sample 
points. BRT combines regression trees and boosting to 
generate non-parametric statistical models that can cap-
ture nonlinear relationships and interactions between 
variables. It accommodates complex linear and nonlinear 
responses to multiple categorical and continuous predic-
tors while being relatively insensitive to collinearity prob-
lems (Zhang et al. 2016). Predictor variables are subjected 
to a recursive binary split that fits a simple model to each 
resulting section, until a stopping criterion is reached, such 
as minimization of prediction error (Hastie et al. 2009). 
The importance of a predictor variable is quantified based 
on the relative influence of the variable and the partial 
dependence plots (Gu et  al. 2019). BRT estimates the 

relative influence/contribution of each predictor variable 
on the response variable based on the number of times a 
variable is selected for splitting, weighted by the squared 
improvement to the model as a result of each split, and 
averaged over all trees (Friedman and Meulman 2003; 
Thorn et al. 2016).

Î2
j
 relative influence of input variable, M total number of 

trees, I2
j
 squared improvement in the model, Tm individual 

tree.
Relative influence is scaled such that the sum adds to 100, 

with the higher value indicating stronger influence on the 
response (Müller et al. 2013). Significance of a variable is 
either low or high and can be determined in two ways. The 
first approach is the random chance given by 100%/n, where 
n is the number of input variables. Variables with value 
below random chance are categorized as of low importance 
(Thorn et al. 2016). In the second approach, variables whose 
influence exceeds the median of each model are classified as 
highly important and those below the median are classified 
as of low importance (Gu et al. 2019).

Partial dependence plots (PDPs) summarize the overall 
relationship between input variables and the probability of 
forestland conversion to other land cover classes, by plotting 
the modeled relationship between one predictor variable and 
the response variable when all other predictor variables are 
held constant at their mean values (Thorn et al. 2016). The 
model was fitted with Bernoulli distribution to deal with 
presence or absence of forest conversion. Several combina-
tions of model parameters were tested, learning rate (lr) of 
0.025, 0.05 and 0.1, tree complexity (tc) of 3, 4, 5, 6 and bag 
fraction of 0.5 and 0.75. These parameters were calibrated 
using tenfold cross-validation. The model with the highest 
cross-validated receiver operating characteristic area under 
the curve (ROC AUC) score was selected as the most opti-
mal settings (Hastie et al. 2009). The model was parameter-
ized with lr of 0.005, tc of 6 and bag fraction of 0.75 which 
produced the least deviance and the highest AUC using ten-
fold cross-validation. BRT analysis was performed using R 
packages “gbm” and dismo developed by Ridgeways and 
Elith (Elith et al. 2008).

Relationships between predictor and response variables 
are intrinsically different across space. GWR applied in this 
study allows the measured relationships to vary over space 
and addresses the effect of spatial non-stationarity of data 
(Saefuddin et al. 2012). The model accounts for heterogene-
ity through calculation of coefficients at each measurement 
location point (Kirui et al. 2017). The significant variables 
obtained from BRT were used in spatial prediction to deter-
mine non-stationarity of each predictor variable using GWR 

Î2
j
=

1

M

M
∑

m=1

I2
j

(

Tm
)

Fig. 2  Methodology
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and regression kriging. Regression kriging combines regres-
sion and spatial interpolation thus improving its performance 
above other interpolation methods (Gia Pham et al. 2019).

where �0i and �1i are local model parameters specific to loca-
tion at 

(

ui, vi
)

 coordinate.
GWR further determines a weighting function for esti-

mating local model parameters based on distance function. 
Observations closer in space are assumed to have greater 
effect on local parameters.

where b is bandwidth.
A bandwidth of 2342.596 and minimum value of Akaike 

Information Criterion (AIC) of 1900.756 with adjusted 

logit
(

pi
)

= log

(

pi

1 − pi

)

= �0
(

ui, vi
)

+ �1
(

ui, vi
)

x1

wj

(

ui, vi
)

= exp
[

−1∕2
(

dij∕b
)2
]

R-squared 0.40 were the best achieved used to fit the model. 
The coefficients at each measurement location point deter-
mined from GWR were used in regression kriging to inter-
polate surfaces depicting the spatial variation of relative 
influence of each predictor variable (Kirui et al. 2017).

Results

Land cover change analysis

Land cover analysis for the study period showed varying 
land cover types as shown in Fig. 3. The land cover types 
include forestland, grassland, cropland, wetland and other 
land (bare and built up). The percentage change for the 
individual land cover classes varies with temporal change 
as shown in Table 2. In the period 1990–1995, there was 
5.6% loss of forestland, 16.39% gain in grassland and 12% 
loss in cropland. In the period between year 1995–2000 and 

Fig. 3  Land cover types 1990–2014
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2005–2010, the forestland is gained by 0.83% and 7.44%, 
respectively. Between the year 2000–2005 and 2010–2014, 
the results indicate equal forestland loss of 4.07%. Forest-
land experienced gain or loss or persistence in the locations 
shown in Fig. 4.

The results reveal forestland conversions to cropland 
and grassland are the key transitions in Nyeri County over 
the study period. The trends of percentage conversion of 
forestland to cropland and forestland to grassland between 
1990 and 2014 are shown in Fig. 5. Conversion of forest-
land to cropland and forestland to grassland was highest in 
the period between 1995 and 2000 with a total percentage 
conversion of 7.13% and 13.88%, respectively.

Table 2  % Land cover change 
for Nyeri County for the period 
1990–2014

Land cover type 1990–1995 1995–2000 2000–2005 2005–2010 2010–2014
% change % change % change % change % change

% Land cover change between 1990 and 2014
 Forestland − 5.60 0.83 − 4.07 7.44 − 4.07
 Grassland 16.39 3.85 − 12.67 − 34.56 26.90
 Cropland − 12.00 − 7.61 29.99 31.85 − 12.15
 Wetland 100.33 − 54.39 − 69.26 115.25 − 47.18
 Other land 0.15 41.62 − 33.48 16.80 29.39

Fig. 4  Forestland changes for the period 1990–2014
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Analysis of significant drivers of forestland 
conversion

Nine variables were analyzed in the period between year 
1990 and 2014. The percentage contribution of each vari-
able to forestland conversion is shown in Tables 3 and 4. 
Population density, elevation, slope and precipitation are the 
four most significant drivers in the study period. Relative 
contribution of population density to forestland conversion 
decreased from 26.04 to 17.84% for conversion to crop-
land, and from 25.43 to 22.43% for conversion to grassland 
between 1990 and 2014. Soil texture is the least significant 
driver with relative influence ranging from 0.93 to 3.78% for 
conversion to cropland and 1.55% to 3.45% for conversion 

to grassland. The model indicated no variability with forest 
fires. The results show that distance to towns, distance to 
roads and distance to rivers contribute significantly to the 
key conversions with higher influence on forestland conver-
sion to cropland.

Partial dependency plots (PDPs)

Partial dependency plots summarize the overall relation-
ship between a predictor variable and the probability of 
forest conversion when other variables are kept constant. 
The y-axis represents the probability of forest conversion 
and the x-axis gives the data range of the predictor variable. 
Population density, elevation, precipitation, slope, distance 
to roads and distance to towns demonstrate a strong rela-
tionship with both conversions for the period 1995–2000 
as shown in Figs. 6 and 7. Distance to rivers additionally 
exhibits a strong relationship with forestland conversion to 
grassland. 1995–2000 is the period when forestland conver-
sions were highest over the study period as shown in Fig. 5.

The PDPs demonstrate strong relationship of population 
density on the probability of forestland converting to crop-
land. Probability of forest conversion to cropland increased 
for densities ranging 200–1000/km2 and decreased for den-
sities above 3000/km2. Probability of conversion increased 
with increased rainfall with high probability for values rang-
ing 1400 mm and above. Areas with low rainfall demonstrate 
little or no likelihood of conversion to cropland. Areas with 
values of elevation ranging between 1500 and 2500 m were 
more likely to have forestland converted to cropland. The 
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Fig. 5  Forest conversion for Nyeri County between year 1990 and 
2014

Table 3  Contribution of drivers 
to forestland conversion to 
grassland in Nyeri County

Period Elevation Distance 
to rivers

Distance 
to roads

Slope Soil Distance 
to towns

Population 
density

Precipitation

% Relative contribution of variables to conversion from Forestland to Grassland
 1990–1995 25.40 6.10 6.38 8.83 1.55 7.19 25.43 19.14
 1995–2000 26.48 9.02 6.00 13.75 2.34 6.02 24.09 12.30
 2000–2005 24.75 5.78 9.59 11.09 3.45 7.25 25.11 12.96
 2005–2010 20.26 7.73 8.47 14.04 2.98 9.10 23.75 13.67
 2010–2014 28.85 6.16 8.60 8.83 2.10 8.96 22.43 14.06

Table 4  Contribution of drivers to forestland conversion to cropland in Nyeri County

Period Elevation Distance to 
rivers

Distance to roads Slope Soil texture Distance to towns Population 
density

Precipitation

% Relative contribution of variables to conversion of forestland to cropland
 1990–1995 19.40 7.04 6.75 11.51 0.93 11.21 26.04 17.12
 1995–2000 18.09 8.73 10.38 14.35 1.43 10.03 22.77 14.23
 2000–2005 16.75 8.79 9.57 14.09 1.31 12.13 25.74 11.62
 2005–2010 17.89 7.07 6.85 19.74 3.78 11.66 20.02 12.99
 2010–2014 18.60 8.08 9.16 18.42 1.89 10.40 17.84 15.61
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probability decreases for areas with 3000 m above mean sea 
level and above. Probability of forest conversion to cropland 
decreased with increased distance to towns, distance to roads 
and distance to rivers.

Probability of forestland conversion to grassland was 
higher for population density below 1000 km2. There was 
less likelihood of conversion where distance to roads and 
distance to towns was between 5 and 20 km. Conversion 
to grassland is likely to occur 1–5 km from the rivers. The 

effect of slope and elevation appears consistent in both con-
versions. Probability of conversion to grassland was lower 
in areas with high rainfall, differing with the conversion to 
cropland where areas with high rainfall are more likely to 
experience forestland conversion to cropland.

Fig. 6  PDPs of the predicted probability of forestland conversion to cropland between the year 1995 and 2000
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Spatial influence of explanatory variables

The GWR analysis demonstrates variation of influence of 
each variable on forestland conversion depending on spatial 
location, i.e., spatial heterogeneity as shown in Figs. 8 and 9.

The maps show non-stationarity relationship of key 
drivers and the forest conversion to cropland. Regression 
coefficients results from GWR indicate both negative and 
positive correlation of the variables with the forest transition 
at different locations in the study area. The surfaces show 

the direction of influence which is important in informing 
policy. In the year 2000, the influence of population density 
on the forestland conversion to cropland ranged between 
low and high across the county. Comparison with year 2010 
demonstrates a similar pattern where population density 
influenced forestland conversion to cropland in the entire 
county with an exception of a small area towards the north 
eastern border of the county. Areas where the roads dem-
onstrated low influence in 2000 transited to higher influ-
ence in the year 2010. The direction of influence follows the 

Fig. 7  PDPs of the predicted probability of forestland conversion to grassland in the year 1995–2000
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availability of public access. The results further show the 
influence of rainfall on forest transition to cropland is more 
uniform in year 2010 and diverse in year 2000. The direction 

of higher influence due to rainfall changes from the upper 
region in the year 2000 to the lower region in the year 2010.

Fig. 8  Spatial influence of forestland conversion to cropland in the year 2000
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Discussion of results

Spatial statistical tools provide techniques to quantify the 
influence of explanatory variables on land use land cover 

change (Adhikari et al. 2017). The results show consist-
ency with previous studies that the relationship between 
the drivers and forestland conversion is dependent on the 
geographical scale, region of study and time (Government 

Fig. 9  Spatial influence of forestland conversion to cropland in the year 2010
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of Kenya 2010; Kindu et al. 2015). The contributions of the 
drivers are different in all the five epochs considered in this 
study. Forestland conversion to grassland emerged as the 
key conversion in Nyeri County, a departure from the results 
of the whole Central Region. There is a significant varia-
tion in results from the entire Central Region to a specific 
county, thus demonstrating effect of the scale of analysis on 
the influence of drivers on forestland conversion.

Population density has both positive and negative rela-
tionship with deforestation exhibiting high value of rela-
tive contribution in most epochs. This is partly attributed 
to population growth in Nyeri County from 607,292 people 
in year 1989 census to 693,558 people in year 2009 census. 
The most intense areas of forest loss to cropland occurred 
at population densities of 200–1000/km2 and at a radius of 
about 10 km from towns and roads as demonstrated by the 
PDPs. This is explained by the fact that most of the conver-
sion occurred on the higher areas of the county near the 
forests where crop farming is the main economic activ-
ity. The results compare well with findings by Thorn et al. 
(2016). On the contrary, the relationship between conver-
sion and grassland, and population density was stronger in 
areas where population density was below 500/km2. These 
are the semiarid areas of the county characterized by sparse 
population and are about 20 km and above away from the 
forestland. The surfaces show influence was high near the 
Aberd are ranges in 1990 compared to other areas. This is 
the period a lot of forestland was degazetted for tea farming 
in this region (Government of Kenya 2010). By 2010, the 
influence was moderate and uniform across the study area 
except on the upper region.

Topography exhibits a direct relationship with forestland 
conversion with significant relative contributions of both 
elevation and slope in all the epochs. This is contrary to 
the general idea that topography is a constraint to defor-
estation. Lack of positive or definite relationship between 
elevation and slope with deforestation has not been uncom-
mon in previous studies (Peterson et al. 2009). The positive 
relationship of elevation and slope in this study is logical as 
the forests in the study area are located in areas with higher 
elevations and steep slopes. This contradicts the general idea 
that deforestation occurs in flatter areas due to easy acces-
sibility. However, there is a possibility that something else 
that overcomes the limitations posed by higher elevations 
and steeper slopes could be the cause of deforestation in 
these areas (Adhikari et al. 2017). One of the most likely 
cause is forest fires which the model results indicated no 
variability. This is attributed to the duration of 5 years which 
is long enough for regrowth of affected areas. Analysis with 
shorter duration is recommended to accurately assess the 
effect of forest fires.

Proximity variables (distance to roads, distance to 
towns and distance to rivers) exhibit relationship with 

deforestation that is expected as shown in the PDPs. Prob-
ability of deforestation decreases with increased distance 
to roads, towns and rivers. Distance to major roads pro-
vides easier access to the forestland. There is an increase 
in the magnitude of influence to both conversions from 
1990 to 2014 which is explained by continued improve-
ment in public roads in the region. Direction of influ-
ence changed from low to high on the lower region of the 
county. Recently (Government of Kenya 2018) identified 
development of major public infrastructures as one of the 
major factors currently attributing to deforestation and rec-
ommended adherence to National Plan Policies. Distance 
to towns had greater influence on conversion to cropland 
than conversion to grassland. This is explained by the fact 
that towns constitute human settlements and the popula-
tion here largely depends on agriculture for livelihood. The 
slight decline in influence of proximity to towns between 
the year 1990 and 2014 is attributed to measures under-
taken against illegal logging, charcoal burning and cultiva-
tion of land in the forests (Government of Kenya 2010). 
Influence is moderate and uniform across the study area.

Nyeri County comprises of regions with moderate-to-
high rainfall and dry areas with relatively low rainfall. 
The conversion to cropland occurs in areas of moderate 
and high rainfall as depicted in the PDPs. These are the 
regions where large-scale and small-scale agriculture are 
practiced. These regions are further characterized by frag-
mentation of land into very small units due to popula-
tion growth. In the semiarid areas, the main agricultural 
activity is livestock farming. The PDPs correctly indicate 
conversion to grassland is more likely in areas of low-
to-moderate rainfall where livestock farming is practiced. 
The relative influence of precipitation decreases with time. 
The influence had great variation across the space 1990 
but uniformly varied in 2010. Soil texture has low influ-
ence on both conversions compared with the rest of the 
variables. The regions with loamy and very clay types of 
soil texture exhibit more likelihood of conversion to crop-
land than grassland.

Policy makers establish protected areas to conserve for-
ests. The effectiveness of protected areas in conserving bio-
diversity has been questioned in previous studies (Andam 
et al. 2008; Chape et al. 2005). A study by Morrison et al. 
(2018) indicates fencing protected areas reduce but does 
not completely eliminate interference of forests by human 
activities. Aberdare ranges and Mount Kenya are gazetted 
protected areas in the country, managed and conserved under 
Forest Management and Conservation Act 2016 (initially 
Forest Act 2005). However, the findings from this study 
indicate continued forest loss with population density con-
tributing the highest to forest changes. Several policies and 
institutional frameworks were enacted in the year 2005 to 
ensure management and conservation of the forests. This 
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could partly explain the significant decline in forestland 
conversion to cropland between year 2005 and 2010 and 
lower rates of conversion from year 2005. On the contrary, 
deforestation continues to occur as evidenced by land cover 
change analysis and supported by a recent report on Forest 
Resources Management (Government of Kenya 2018). This 
then implies a need for review of existing policies, enforce-
ment and implementation processes.

GWR and BRT models used provided substantial infor-
mation that explains the relationship between the drivers and 
deforestation in Nyeri County. The capability of the models 
to analyze spatial datasets at local scale improves previous 
results on study of drivers of deforestation in Kenya by dem-
onstrating the spatial variability of the influence of the drivers. 
Conversely, influence of factors that could not be expressed 
spatially like policy and political interference could not be 
quantified in the models.

Conclusion

These results broaden our knowledge of drivers of continued 
forest loss in Mount Kenya region. Relative influence of these 
drivers on forestland conversion varied with time, location 
and nature of conversion. The contribution also differed in 
magnitude and direction. The key drivers to forest loss were 
population density, elevation, precipitation, slope, distance to 
towns, distance to roads and distance to rivers. The results 
further show that the trend of conversions for the entire region 
differed with the trend for a specific county. Future policies 
and research on forest conversions should be time and space 
specific. Unavailability of historical data for most of the socio-
economic variables resulted in exclusion of some factors in our 
analysis. The study was based on 5-year epochs which could 
explain the unexpected results for forest fires due to regrowth. 
Future studies are recommended with less time interval and 
with inclusion of more socioeconomic factors.
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