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In the present paper we investigate flame spread in laminar mixing layers both experimentally and 
numerically. First, a burner has been designed and built such that stationary triple flames can be stabilised in 
a coflowing stream with well defined linear concentration gradients and well defined uniform flow velocity at 
the inlet to the combustion chamber. The burner itself as well as first experimental results obtained with it 
are presented. Second, a theoretical model is formulated for analysis of triple flames in a strained mixing 
layer generated by directing a fuel stream and an oxidizer stream towards each other. Here attention is 
focused on the stagnation region where by means of a similarity formulation the three-dimensional flow can 
be described by only two spatial coordinates. To solve the governing equations for the limiting case in which 
a thermal-diffusional model results, a numerical solution procedure based on self-adaptive mesh refinement 
is developed. For the thermal-diffusional model, the structure of the triple flame and its propagation velocity 
are obtained by solving numerically the governing similarity equations for a wide range of strain rates. 

I. INTRODUCTION 

Laminar flames in turbulent flows are sub- 
jected to strain and develop curvature as con- 
sequences of the turbulent velocity fluctua- 
tions. Effects of both influences, combined with 
effects of differential diffusion of heat and 
reactants, cause the inner structure of the 
flames to respond, thereby leading in some 
cases to extinction. These phenomena have 
important implications on the modeling of tur- 
bulent reacting flows in the laminar-flamelet 
regime. To enhance their understanding, a de- 
tailed knowledge of the laminar-flame struc- 
ture as a function of various parameters, such 
as the rate of strain, the radius of curvature, 
the type of fuel, or the equivalence ratio, as 
well as its response to variations of these pa- 
rameters is required. For instance, in turbulent 
diffusion flames on the molecular level, so- 
called "triple flames" may form when after 
local flamelet extinction due to excessive 
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straining the turbulence intensity decreases to 
values sufficiently low for reignition to take 
place. It is the purpose of the present article to 
investigate such laminar triple flames in turbu- 
lent flows. 

Triple flames can occur in a variety of ge- 
ometries. Figure 1 shows a photograph of a 
stationary triple flame stabilized in upwardly 
coflowing streams of fuel and oxidizer using 
the burner described in subsection 2.1 of the 
present paper. The fresh mixture ahead of the 
flame is nonuniform in that the fuel and oxi- 
dizer concentrations vary linearly from pure 
fuel at the left side to pure oxidizer at the 
right; the flow velocity ahead of the flame is 
uniform. 1 The flame structure is composed of 
(i) an upward bending fuel-rich premixed flame 
on the left-hand side, (ii) an upward bending 
fuel-lean premixed flame on the right-hand 
side, and (iii) a thin, long, trailing, streamwise 

1The composition at either side of the combustion cham- 
ber inlet and, hence, the concentration gradients, are 
adjustable, as is described in detail in subsection 2.1. 
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Fig. 1. Typical photograph of  a stationary triple flame in a 
coflowing stream stabilized in the burner described herein. 
Details can be found in subsections 2.1 and 2.2. 
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diffusion flame between the two premixed 
flames in which the excess fuel and oxidizer 
not consumed in the rich and lean premixed 
flame, respectively, burn. The region, where 
the two premixed flames and the diffusion 
flame merge, is referred to as "triple-point 
region" or, alternatively, as "triple point." 
Therefore, the flame itself is referred to as a 
"triple flame." It should be noted here that 
triple flames were observed earlier by Phillips 
[1], who also presented photographic evidence. 

Although a number of theoretical, experi- 
mental, and computational studies have been 
devoted to steadily burning premixed, partially 
premixed, and non-premixed laminar counter- 
flow flames, only a few studies have addressed 
the propagation of laminar flames in mixing 
layers. Lififin and Crespo [2] used asymptotic 
methods to analyze the transient mixing in a 
boundary layer of two initially separated 
coflowing streams of fuel and oxidizer, and 
demonstrated the existence of multiple burn- 
ing regimes. Also using theoretical methods, 
Dold [3-6], Buckmaster and Matalon [7], and 
Wichman [8] carried out analyses of various 
limiting combustion regimes based on some- 
what more general governing equations that 
were not subjected to the boundary-layer ap- 
proximation. A numerical analysis of a laminar 
coflow diffusion flame, established in channels 
at the trailing edge of a splitter plate separat- 
ing coflowing streams of fuel and oxidizer, was 
performed by Ramanujam and Tien [9]. With 
notable exceptions [5, 6], in the above analyses 
effects of strain were not taken into account. 

The purpose of the present article is twofold. 
First, a triple-flame burner is presented which 
has been designed and built such that station- 
ary triple flames can be stabilized in a coflow- 
ing stream with well defined linear concentra- 
tion gradients and well-defined uniform veloc- 
ity profile at the inlet to the combustion cham- 
ber. The burner itself as well as first experi- 
mental results obtained with it are presented. 

Second, a theoretical model is formulated 
for analysis of steadily propagating triple flames 
in a strained mixing layer generated by coun- 
terflowing streams of fuel and oxidizer. In par- 
ticular, for the latter geometry a general simi- 
larity formulation is derived which describes 
the complex three-dimensional process of flame 

spread by only two spatial coordinates. To solve 
the nonlinear governing similarity equations, a 
numerical solution procedure based on self- 
adaptive mesh refinement is developed. For 
the limiting case, in which a thermal-diffu- 
sional model results, the numerical procedure 
is used to calculate the structure of the flame 
and its propagation velocity2 for a wide range 
of strain rates. 

2. EXPERIMENTAL 

2.1. Experimental Setup 

Figures 2a-2c are sectional views highlighting 
the important aspects of the burner. The triple 
flame is stabilised in the mixing layer as illus- 
trated in Figs. 2a and 2b. Figure 2b shows a 
section of the burner viewed from the front: in 
this view the two premixed-flame wings and the 
trailing diffusion-flame wing of the triple flame 
are clearly visible. It is from this view that the 
photograph shown in Fig. 1 has been taken. 
Figure 2b shows a burner section from the 
side. From this view only the sides of the front 
premixed-fame wing and of the upper part of 
the diffusion-fame wing are visible; the lower 
part of the diffusion-flame wing, the rear pre- 
mixed-flame wing and the triple-point region 
are "hidden" behind the front premixed-flame 
wing. At the inlet of the combustion chamber, 
in the plane of the triple flame, the composi- 
tion varies linearly from one side to the other 
side; the composition is constant in the direc- 
tion perpendicular to the triple flame. The 
velocity at the inlet to the combustion chamber 
is uniform. The triple flame is stabilized in the 
combustion chamber by a negative velocity 
gradient in the streamwise direction, which is 
the result of the diverging chamber walls; see 
Fig. 2b. The angle of the divergence of the 
walls is adjustable. The experimental rig is 
designed such that a wide range of inlet con- 
centration gradients can be realized for a wide 
range of uniform inlet velocities. Thus, the rig 

2We prefer to use the wording "propagation velocity" 
rather than "burning velocity" to avoid confusion in cases 
were the triple flame reverses its direction of propaga- 
tion, that is, where its propagation velocity becomes nega- 
tive. 
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allows stationary triple flame of different width 
at the leading edge of the flame to be gener- 
ated. 

The smooth linear concentration profiles up- 
stream of the triple flame are obtained from 
stepwise uniform profiles at the outlet of the 
compartments shown at the bottom of Fig. 2b; 
at the outlet of each compartment the compo- 
sition is uniform. The stepwise concentration 
profiles decay in the mixing region towards 
smooth linear profiles at the entrance to the 
combustion chamber. 

Different fuel mass fraction gradients at the 
inlet to the combustion chamber are obtained 
by varying the fuel-concentration gradient of 

the stepwise uniform profile. This is achieved 
by suitably adjusting the composition of the 
mixtures introduced into the burner through 
the different compartments. The adjustment of ' 
the composition in an individual compartment 
is accomplished by using a system of hypoder- 
mic tubes through which air and fuel, originat- 
ing from different manifolds, pass before en- 
tering the compartments. Metering of the gases 
from the different manifolds to each compart- ' 
ment is based on the Hagen-Poiseuille rela- 
tionship for laminar pipe flow. Thus the mass 
flow rates are determined from the readings of 
the gas pressure in the manifolds. 

Figure 2c shows how mixing of fuel and 
oxidizer is achieved in a mixing block such that 
the composition is uniform when the flow en- 
ters the respective compartment. Fuel and oxi- 
dizer arrive from opposite sides at the mixing 
block through a certain number of hypodermic 
tubes. In each of these tubes the flow is that of 
either pure fuel or pure oxidizer, with a flow. 
rate such that at the exit from the mixing block 
the desired composition is achieved. In each 
mixing block, impingement on each other of 
the small jets issued by the hypodermic tubes 
leads to a first mixing of fuel and oxidizer. 
Further mixing of fuel and oxidizer, which, for 
the individual compartments then results in a 
homogeneous mixture, is achieved by directing 
the gas flow through an S-shaped, circuitous 
path as shown in Fig. 2c. 

2.2. Experimental Results and Discussion 

The experimental results presented here were 
obtained using 45% (based on volume) 
methane in nitrogen. Figure 1 is a photograph 
of a typical triple flame obtained in the burner 
described above, showing the lean premixed 
flame on the right-hand side, the rich premixed 
flame on the left-hand side, and the trailing 
diffusion flame in the middle. Note that in Fig. 
1, further downstream of the leading edge of 
the triple flame, the premixed wings of the 
flame are parallel. This was observed for most 
of the triple flames, but for some flames there 
was a slight downstream convergence of the 
tails of the premixed wings. 

Figure 3a shows the variation of the triple 
flame width, W, defined as the maximum sepa- 
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Fig, 3. Experimental results: width W of the triple flame as 
a function of  the inlet fuel mass fraction gradient (a), 
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for details, see subsection 2.2. 
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Fig. 4. Schematic of a triple flame propagating steadily 
from right to left in a strained mixing layer generated by 
directing a stream of fuel (from the top with velocity vf,~l) 
and oxidizer (from the bottom with velocity Vox) towards 
each other; PF = premixed flame, DF = diffusion flame. 

ration distance of the premixed wings of the 
flame, with the fuel mass fraction gradient at 
the inlet to the combustion chamber, YFy" 

Figure 3b shows the variation of the velocity 
U with the inlet fuel mass fraction gradient 
YFy. Here U is defined as the mean flow veloc- 
ity at the location of the flame; it has been 
calculated by dividing the volumetric flow rate 
by the cross-sectional area of the burner at the 
height of the leading edge of the flame. The 
velocities thus obtained are much higher than 
the adiabatic laminar burning velocity for the 
corresponding premixed stoichiometric fuel-air 
mixture. This observation is consistent with 
observations reported by Phillips [1]. 

Figure 3c shows the nondimensional param- 
eter 

a Y F y  
e ~ 

b/W 

as a function of the nondimensional inlet mass 
fraction gradient, aYFy, of the fuel. Here, in 
addition to the quantities YFy and W defined 
above, a is the width of the combustion cham- 
ber at the inlet and b is its width at the leading 
edge of the triple flame, that is, at the height 
of the triple point. Note that e can be inter- 
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preted as the ratio of the nondimensional width 
of the flame to the nondimensional width of 
the mixing layer. It is seen that e varies only 
slightly with aYFy. 

3. MODELING AND SIMULATION 

3.1. The Governing Equations 
in Similarity Form 

As independent variables the time t and rect- 
angular cartesian space coordinates x, y, and z 
are adopted. Although herein we are fnter- 
ested only in steady phenomena and, there- 
fore, will adopt time-independent boundary 
conditions, the time-dependent terms are re- 
tained in the governing equations to allow a 
transient approach to the steady solution of 
the problem. In seeking a similarity formula- 
tion, we assume that for all quantities, except 
the pressure p and the z velocity component 
w, spatial variations occur only with respect to 
the x and y direction. Specifically, the velocity 
field v - (u, v, w) is assumed to be of the form 

u = u ( t ,  x ,  y ) ,  v = v ( t ,  x ,  y ) ,  

w = z A ( t , x , y ) ,  (1) 

where A = A(t ,  x, y) is the variable strainrate; 
the pressure p is taken as 

y2 Z 2 ) 
P = P o  + p ' ( t , x , y ) - A Z o P o  -~  +--~ , (2) 

where the subscript O identifies the constant 
values of the respective quantities prevailing at 
the oxidizer boundary. The functional depen- 
dence of temperature and mass fractions is 

T = T ( t , x , y )  and Y/ = Y/(t, x, y) ,  (3) 

respectively, i = 1 . . . . .  N, where N denotes the 
number of chemical species in the system. We 
consider low-Mach-number flow of ideal-gas 
mixtures. Effects of body forces, bulk viscosity, 
viscous dissipation, and thermal diffusion are 
neglected; ordinary diffusion is assumed to 
obey Fick's law with suitably defined diffusion 
coefficients D i to be specified below. Further- 
more, pressure-gradient diffusion and effects 

of pressure variations on temperature are ne- 
glected. Thus, in terms of the accumulative- 
convective-diffusive transport operator 

o(o4,) a(ou4,) a(or4,) 
L(~b;F) = - -  + - -  + 

3t Ox Oy 

+ p 6 A  - d---x Ox - Oy ~ dy ] 

= o - y ;  + o u  o x  + 

F - F (4) 
o~x -~y ' 

where ~b denotes 
A, T, or Y/, the 
written as 

any of the quantities p, u, v, 
governing equations can be 

L(1; 1) = 0, (5) 

@' 
L(u;  tz) -- - - -  + U, (6) 

Ox 

•p! 
L(v;  i ~) = - - -  + poAZoY + V, (7) 

Oy 

L(  A; tz) = poAZo - pA 2, 

N 
CpL(T; A/cp) = (VT)" Y'. Cpi( pD i V Y  i) 

i=1 

(8) 

N 
-- E hiwi + H,  (9) 

i=1 

L(Y/; pD i) = w i, (10) 

i = 1 . . . . .  N. In addition to the quantities al- 
ready defined, in Eqs. 6-10 /x denotes the 
dynamic viscosity of the mixture, A its thermal 
conductivity, and cp its constant-pressure spe- 
cific heat capacity; cpi, h i, and wi denote the 
constant-pressure specific heat capacity, the 
specific enthalpy, and the mass rate of produc- 
tion, respectively, of species i. The transport 
coefficients, thermodynamic properties, and 
rates of production are defined as usual; their 
functional form is specified below. The viscous 
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terms U and V appearing in the x and y 
momentum equation, respectively, are given by 

t~ o ( V -  v )  
U + - -  

3 c?x Ox ox  5(V.v) 
Op. c)v 

+ - -  - -  ( l l a )  
#y c)x' 

ix O(V . u)  c)lx ( Ov 23 ) 
- -  + - -  - ( v .  ~,) 

3 dy dy Oy 
V 

Ot x Ou 
+ - -  - -  ( l lb )  

Ox Oy' 

with the divergence of the velocity field given 
by 

Ou Ov 
V . v  = - -  + - -  + A .  (12) 

Ox c)y 

The term H appearing in Eq. 9 involves spatial 
derivatives of cp and, subsequently, will be 
neglected. In deriving Eqs. l l a  and l l b  use has 
been made of the fact that /x is independent of 
z. We note that in the special case of constant 
density and constant viscosity, we have U = V 
= 0 .  

The system of governing equations 5-10 is 
closed through the ideal-gas equaiton of state 

Po _ RO T ~ , (13) 
P i : 1  

where R ° denotes the universal gas constant 
and W/ the molecular weight (=  molar mass) 
of species i. Note that in Eq. 13 the pressure is 
taken as constant, an approximation which is 
consistent with the assumption of low-Mach- 
number flow. 

The solution of the problem defined by Eqs. 
5-10 and 13 requires appropriate boundary 
conditions to be imposed. At the fuel and 
oxidizer side, y = +~c and y = - %  respec- 
tively, the temperature and composition of ei- 
ther stream is specified. The y velocity compo- 
nent v in the fuel and oxidizer stream is v F = 
--AFy + a(x) and v o = - A o Y  + b(x), re- 
spectively; here a(x) and b(x) are unknown 
functions characterizing the flame's displace- 
ment due to the heat release; in general, a(x) 
and b(x) must be determined as part of the 

solution of the problem. Note that the inviscid 
flow outside the stagnation region imposes the 
condition poAZo = pFA2F . Sufficiently far up- 
stream ahead of the flame, and sufficiently far 
downstream behind the flame, the derivatives 
with respect to x of all dependent variables 
become negligibly small. Thus, as boundary 
conditions at x = - ~  we impose a frozen sim- 
ilarity solution, which satisfies both the govern- 
ing equations and the boundary conditions at 
y =  _+~ with O/Ox=O.  At x =  + ~  we re- 
quire zero x derivatives for all dependent vari- 
ables. 

3.2. Simplifications 

Subsequently we assume equal and constant 
specific heat capacities Cpi (=  Cp) and equal 
diffusion coefficients D i (= D) for all species, 
and constant Prandtl and Lewis numbers of 
unity. Chemistry is assumed to occur via the 
global one-step reaction 

UFF + UO0 --* ueP, (14) 

whose heat of reaction is q = p p W p h p -  

UFWFh F -- uoWoho; here the v i and h i denote 
the stoichiometric coefficient and (constant) 
specific enthalpy, respectively, of species i, i = 
F, O, or P. The rate of reaction 14 is assumed 
to be of the Arrhenius form 

WF ] ( - E / R ° T ) '  (15) 

where the symbols have their usual meaning. 
With these specifications the energy and 
species conservation Eqs. 9 and 10 reduce to 

q 
L(T;  pD) = - - - o 2  (16) 

Cp 

and 

L(YF; pD) = - VFWFO), 

L( Yo ; pD ) = - voWo ~o, 

L(Ye;  pD) = veWpw. 

(17a) 

(17b) 

(17c) 

Note that the mass fraction of an inert species 
I, which may be present in the system, is given 
by Y~= l -  V F -  V o -  Y p. 
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It will be advantageous to introduce a con- 
served scalar Z, 

y - - ~ s  + 1 
F,F t o , o  

Z = , (18) 
s + l  

where 

~oWo / Yo, o 
s (19) 

PFWF//YF, F 

is the air-fuel  equivalence ratio. The con- 
served scalar obeys the governing equation 

L ( Z ;  p D )  = O, (20) 

which must be solved subject to the upstream 
boundary condition 

I ( y )  
Z =  

I ( o o )  ' 

I ( y ) = f Y e x p ( f Y ' ~ o d Y " ) d Y ' ,  

and subject to Z ~ 1 as y ~ +0o, Z ---) 0 as 
y ---) - ~  and d Z / O x  = 0 as x ---) + ~. 

We may combine Eqs. 16 and 20 to obtain 

L ( Y  1) = - UFWFtO, (21a) 

L ( Y  2) = - voWoto, (21b) 

where 

)'1 =- T + 4'F Z + q¥,  (22a) 
q / c p  

,,oWo 
Y2 =- T + 4'o Z + q~o (22b) 

q/Cp 

are coupling functions 4'0, 4'F, ~o, and ~F are 
constants to be determined. By virtue of  Eqs. 
21a and 21b, and upon requiring that at the 
boundaries II1 and Y2 be identical to the fuel 
and the oxidizer mass fraction, repectively, we 
obtain 

VFWv 
YF = - - [ T  + Z ( T  o - T F) -- T O ] 

q/Cp 

+ Z ( Y r ,  F - Yr, o)  + YF, O, (23a) 

~,oWo 
Yo - - [ T  + Z(To - T,~) - To] 

q/Cp 

+ Z ( Y o ,  F - Yo ,o )  + Yo,o" (23b) 

Upon eliminating Z from Eqs. 23a and 23b, 
the coupling function 

YF- -  YF, o Y o -  Yo,o T - T  o 
4'1 4'2 ~--- 0 

PFWF 1)oW 0 q/Cp 

(24) 

is obtained, where 

 oo o t/ 
4'1 = q/Cp voWo 

' - - - - -  ' ' - -- - ' (25a) 
12 o W 0 lY F W F 

4'2= + j /  

(VoP- oo 
~ j V o  ~,F~VF , (258) 

Upon introducing the temperature Tf of the 
trailing diffusion-flame sheet, 

qt Tf = T o - -p , 4'a VFW P 02 v - ~ - ~ ) ,  (26) 

Eq. 24 can be written as 

Y~ - r~ ,o  Yo - Yo,o 
4'1 4'2 ,,rw,~ ,,oWo 

T - T o (  YF, O YO, O ] = 0 .  

+ f  To < oWoj 
(27) 

3.3. Nondimensionalization 

The problem is nondimensional by introducing 
the scaled variables 

= tAo,  ~ = x / ~ ,  

= y / ~ ,  (28) 

and 

= A / A  o, 5 = U /  ~ o A  o ,  

b = V / ~ o A  o , ~ '  = p ' / p o A o D o ,  

D = P / P o ,  IZF = YF/YF, F, 

~'o = Y o / Y o , o ,  = ( T -  T o ) / ( T  f - To).  

(29) 
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In terms of these variables, the governing 
equations can be written as 

L(1; 1) = 0, (30) 

L ( f ; / 2  Sc) op-- + (I Sc, (31) 
d2 

o[,' 
£(b ; /2  Sc) - -  + 1535 + 1,7 Sc, (32) 

a i  

/~(.d; 12 Sc) = 15(1 - .~2), 

f~(?e; 13/5) : - 6134t327r? o exp(- /3(1  - 

[1 - a ( 1  - T ) ] ) ,  

L(2; 

(33) 

f ) /  

(34) 

(35) 

where the operator/~ is defined analogously to 
L, and where Z --- Z. The boundary conditions 
are nondimensionalized analogously. In Eqs. 
30-35, the diffusion coefficient and dynamic 
viscosity have been nondimensionalized with 
their respective values at the oxidizer side, 

Sc = I, Z o / (  p o D o  ) (36) 

is a Schmidt number, 

e rl-ro 
/3 ROTI TI (37) 

is the Zel'dovich number, which is assumed to 
be large, 

~ - ~ o  
a (38) 

a nondimensional heat-release parameter, and 

l~F PO Yo, o B 

AoWo 
e x p ( _ E / R O T f  )//34 (39) 

a DamkiShler number. The nondimensional 
temperature and density are given by 

7 ~ = 1 - (~3YF q- 1~470, 

t5 = (1 - a ) / [ 1  - oK1 - 7~)1; 

(40) 

(41) 

the nondimensional oxidizer mass fraction is 
obtained from Eq. 18, viz. 

Yo = 1 + s ?  e - (s + 1)2. (42) 

The quantities (h3 and ~b 4 appearing in Eq. 40 
are given by 

~3 = ~IYF,o//( PFWF) ..[_ c~2Yo,o/(  voWo) , 

¢2Y0 o/(~'oWo) 

¢~4 = ~IYF, o//( VFWF ) -t- ff)2Yo,o/( PoWo) " 

3 . 4 .  T h e  T h e r m a l - D i f f u s i o n a l  M o d e l  

We now turn to the limiting case of a thermal- 
diffusional model, that is, to the case in which 
a --, 0. In this case we have 15-- 1, f = fir, 

= -)7, and A = 1. Assuming D = 1, the set 
of governing equations reduces to 

o2?r o2?r 
fie 02 Y 07 022 + 0)7 -----5- 

- 6/347r~)e -¢( ' -¢),  (43) 

02 02 022 022 
- - -  - )7 + - -  ( 4 4 )  
UF 02 0)7 022 c)y 2 ' 

"/~ = 1 - ? F -  ~ ,  ( 4 5 )  

2 = & + ] - ? o  
s + 1 ' (46) 

with the boundary conditions 

)7--, - ~ : ? ~  = 2 = 0, 

) 7 ~  +*o: ?e = 2 = 1, 

1 s + l  
2 --, -o~: 2 = - 

2 sYe, F + 1 - Yo,o 

× erfc()7/~-)  and 

02 o?~ 
(47) 

O, 
02 02 

2 ~ + oo: zero x gradients for all dependent 

variables. 

Recall that the nondimensional flame speed UF 
is an eigenvalue that must be determined as 
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part of the solution. The procedure to deter- 
mine fiF is described in subsubsection 3.5.1. 

3.5. NUMERICAL METHOD 

3.5.1. Difference Equations 

For ease of notation, in this subsection the 
tilde is dropped from the nondimensional vari- 
ables. Equations 43 and 44 are used in 41 and 
42 to eliminate Yo and T. With respect to the 
space variables x and y, the two strongly cou- 
pled equations 41 and 42 are discretized on a 
mesh M n of grid points, 

M n = { ( x ~ , y T ) ; i  = 1 . . . . .  N ~ , j =  1 . . . .  , N ~ } .  

(48) 

Here the grid lines x n = constant, i = 
1 . . . .  , N n, and Y7 = constant, j = 1 . . . . .  Ny, 
are distributed in a nonequidistant manner 
using the adaptive-gridding procedure de- 
scribed below. In Eq. 48 and below the super- 
script n identifies quantities at time level t n, 
n = 0, 1, 2 . . . .  ; if possible Without ambiguity, 
subsequently for ease of notation this super- 
script will be omitted. For the first-order 
derivatives central differences are adopted, for 
example, for the x derivative of a scalar depen- 
dent variable 4' at the grid point with the 
coordinates (xi, yj), we write 

, [h i (h i  + hi_l ) 4'i+l,j 

h i  - h i -  1 

+ h i h i - t  4'i,j 

] - hi_l(h i + hi_~ ) 4'i-l,j  , (49) 

where h i = x i - x i _ l ,  i = 2 , . . . , N  x. T h e  sec- 
ond-order derivatives at grid point (xi ,  y~), for 
example, in the x direction, are approximated 
by 

(±1 
8X2 ] i,j 

2 

h i + hi+ 1 

x[ 4,,'j 4,,J2  lJ]hi/ 
- 1 .," 

(50) 

To bring the initially guessed solution of the 
problem into the domain of convergence of 
Newton's method applied to steady-state ver- 
sion of the governing equations, terms involv- 
ing time derivatives are added to the governing 
equations. Since we are interested only in 
steady-state solutions, temporal accuracy of the 
solution is unimportant and, therefore, the time 
derivatives are approximated by simple back- 
ward-Euler finite-differences. A fully implicit 
formulation is employed in order to success- 
fully cope with the stiffness of system 41-44 
that arises through the chemical source term 
in Eq. 41. 

We now describe the procedure adopted 
herein to determine the burning-rate eigen- 
value u F for a given set of parameters /3, 6, 
and s. We first note that since the solution to 
the governing equations is translational invari- 
ant, the condition 

T = Tfi x at i =/fix, J = Jfix 

is imposed in order to "anchor" the flame in 
the computational domain. Secondly we note 
that the solution to a problem is independent 
of the value selected for the temperature Tax 
and of the location at which the temperature, 
and hence the flame, is fixed. Herein T~ = 0.5 
has been selected. The burning-rate eigenvalue 
is treated as an additional dependent variable 
that obeys the differential equations 

Ou F Ou F 
= 0.  ( 5 1 )  

Ox 8y  

Equations 51 are discretized according to 

(Ui+ l,j)//(Xi+ -- Xi,j) l,j 
au  = / f o r i < / f i x , 1  < j < N y ,  

( '~X) i , j  [(Ui j -  Ui_l j)/ /(Xi j - - X i  1 j )  

f ° r  i > ieix, l < j < Ny,  

i ' (ui ,  i+ l - u i d ) / ( Y j +  l,j - Yi , i)  

( S u ) = f o r j < j f ,  x , i = i f i x ,  

i,j / ( U i , j  - -  Ui, j -1) / (Yi , j  -- Yi,j-1) 
for j > Jfix, i =/fix, 

(52) 

where for ease of notation we have dropped 
the subscript F from u e. If Newton's method 
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is used to solve the governing equations in 
terms of the dependent variables YF, Z, and 
UF, the discretization of these variables as de- 
scribed above leads to a Jacobian matrix with a 
block-pentadiagonal structure. 

3.5.2. Newton's Method 

Subsequently the symbols U and F will be used 
to denote the N x × Ny  × N-vectors that result 
from the spatial discretization of the system of 
governing equations. (Herein we have N = 3 
partial differential equations.) For the solution 
of the time-dependent problem at each time 
step, or for the steady-state problem, Newton's 
method is applied to the system of nonlinear 
equations, F(U), which results from the dis- 
cretization of the governing equations. Note 
that both U and F depend on the particular 
time level n under consideration. Thus, the 
linear system 

j ( u k ) ( u k + l  _ U k)  = _ O ) k F ( U k ) ,  

k = 0, 1 . . . . .  ( 5 3 )  

is solved, where U k denotes the solution after 
k Newtonian iterations, and oo k and J(U k) are 
the damping parameter [10] and the Jacobian 
matrix, respectively, based on U k. The Jaco- 
bian, which is generated numerically, is reeval- 
uated only periodically [11]. 

The solution of the system of equations at 
time level n depends on the solution at level 
n - 1 taken at the grid points of mesh M n. 
Since in general the grids at levels n - 1 and n 
are not the same, the solution obtained at level 
n - 1 on grid M n- 1 must be interpolated onto 
grid M ~, which, regardless of the interpolation 
procedure, introduces an additional spatial dis- 
cretization error into the algorithm. We use 
piecewise monotonic cubic Hermite interpola- 
tion [12]. 

3.5.3. Adaptive Selection of Grid Points 

The procedures and criteria for the adaptive 
selection of grid points are of critical impor- 
tance to the efficiency of the algorithms that 
are used for the solution of combustion prob- 
lems. In particular, strategies are required that 
place the grid points where they are needed, 
that is, in regions where the dependent vari- 
ables exhibit steep gradients and/or  strong 

curvature, in order to bound the local space- 
discretization error. In generalization of proce- 
dures outlined previously for the adaptive com- 
putation of steady one-dimensional combus- 
tion problems [13], for any fixed time level n 
we equidistribute the mesh M ~ on intervals 
h'] = x ' /  - xn,_ ~, k j  . . . . .  _ y) y )_  ~ with respect to 
a non-negative weight functions Wx ", Wy " and 

n constants Cff, Cy. For instance, for the x direc- 
tion W~ " is selected such that 

£ W n dx = C;, i = 2 Nff- (54) 

Specifically, the weight function Wx" is chosen 
a s  

W ;  = m a x  W 2 k ,  (55a) 
l_<k_<2N+l 

Iouk/OXl 
I, JZ n = 

x, k g~ [max U k - min U k l '  

Wxn, N + k 

W x n 2 N +  1 = dn"  

1 < k < N x  ~ (55b) 

IO2Uk/OX21  

c~lmax(OUk/0X) - min(c)Uk/0X)l' 

1 < k  <Nil ,  (55c) 

(55d) 

In Eqs. 55b and 55c "rain" and "max" stand 
for the minimum and maximum value in the 
domain of integration of the respective quan- 
tity, and g~ and c2 are positive scaling factors; 
their numerical values are less than unity if in 
Eq. 54 C2 = 1 is employed. In Eq. 55d, d ~ is a 
positive constant that represents the maximum 
size of any interval h i. To prevent the size of 
adjacent mesh intervals from varying too 
rapidly, we require that at any time level n the 
mesh be locally bounded, viz., 

R x  I <_ h ~ / h ~ _  1 <_ R x ,  (56) 

where R x is a constant greater than one. The 
equidistribution procedure with respect to the 
y direction is performed analogously. 
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The adaptive-gridding procedure to be car- 
ried out at each time level n essentially con- 
sists of seven steps, viz., 

step 1 Select an initial grid M ° and specify 

initial profiles on M ° 

step 2 Initialize n = k = 0 and 

Mconverged = M 0 

step3 I f n  =n,~ax:Stop 

step 4 Set n = n + 1 and then 

M~, = Mconverged 

step 5 Solve (1) on MT, 

step 6 Calculate M~+1 

step 7 If M~+I K equals M~ then 

Set Mconverged = M ~  

Set k --- 0 
Go to step 4 

Else 
Interpolate the solution to (1) 

n onto M,+ 1 

Set k = k + 1 
Go to step 5 

End If 

(57) 

Equation 57 calls for some comments. Firstly, 
the "Stop" in step 3 may be replaced by any 
other suitable command. For instance, if the 
time-dependent integration is carried out with 
the aim of bringing the initial profiles into the 
domain of convergence of Newton's method 
applied to the steady version of Eqs. 41-44, 
then the "Stop" may be replaced by "Try to 
solve the steady-state problem." Secondly, in 
step 7 the meaning of "M~+ t equals M~" 
needs to be specified. In order to determine 
whether two consecutive grids are "equal," we 
employ two different criteria. One, called grid 
convergence, is that for two consecutive grids 
k - 1 and k the number of grid lines in x and 
y direction, respectively, is the same, say N~, 
and Ny",k, and that in addition 

N;n,k i=IE (Xink - - X f f k - I  ) 2 ' ,  -- < 6, 

1 N#~ 
n n 2 ~-, (Yj, k -Y) .* - I )  < e, (58) N;n, j=t 

UF / ~[8 

9 

6 ¸ 

3 ¸ 

0 ~ 13=20 

0 5 1'0 5 

8 

Fig. 5. Computed ratio of the burning-rate eigenvalue /~F 

to the DamkiShler number 6, fiF/ V~, as a function of 6, 
for /3 = 20. 

where e is small positive constant. The other, 
called alternating grid convergence, is that re- 
peatedly alternating insertion and removal of 
the same number (typically 1 or 2) of grid lines 
o c c u r s .  

3.6. N u m e r i c a l  Resu l t s  and D i s c u s s i o n  

The results presented and discussed below were 
obtained for s = 1, where s is the air-fuel 
equivalence ratio defined in Eq. 19. Thus, all 
numerical results presented are of triple flames 
which are symmetric about the Y-axis. Shown 
in Fig. 5 is the ratio of the burning-rate eigen- 
value fiF to the DamkiShler number 3, fiF/ 7'-~, 

M F  

4 ¸ 

2 ¸ 

O 

- 2  
0 . 0  

ZX 

+ 

* 1 3 = 1 5  

[ ]  13 = 20  

o 13 = 25  

A Dold et al. 

o12 o14 0.6 

Fig. 6. Computed propagation velocity fiF as a function of 
the Damk6hler number 6 for small values of 6 as pre- 
dicted by the present computations for /3  = 15, 20, and 25 
and the asymptotic prediction taken from Ref. 6. 
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as a function of 6 for /3 = 20. Note that ac- 
cording to Eq. 39, 6 is proportional to the 
reciprocal of the strainrate A o. It is seen from 
Fig. 5, that (i) for low values of 6 the ratio 
f iF/  ~ and hence the propagation velocity is 
negative and (ii) for large values of 6 the ratio 
f iF/  X/-g approaches a constant value. These 
findings are in accordance with prediction by 
asymptotic analysis [6]. Shown in Fig. 6 is the 
propagation velocity fiF as a function of 8 for 
small values of 6 as predicted by the present 
computations for /3 = 15, 20, and 25 and the 

asymptotic predictions taken from Ref. 6. It is 
seen that the agreement between the numeri- 
cal predictions and the result of the asymptotic 
analysis is good. 

Shown in Figs. 7a-7c are contour plots in 
the £-3~ plane of nondimensional coordinates 
of the nondimensional reaction rate 

f~ ~- 8/34~'r~'o e-  ~(' - £), (59) 

the normalized temperature 7 ~ and fuel mass 
fraction ITF for a triple flame with /3 = 20 and 
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Fig. 7. Contour plots in the .~-~ plane of nondimensional coordinates of (a) the nondimensional reaction rate fl, (b) the 
nondimensional temperature 7 ~, and (c) the normalized fuel mass fraction ?F, all for a triple flame with /3 = 20 and 
6= 15. 
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= 15. In Fig. 7a the triple-flame structure is 
clearly visible: the two backward bending pre- 
mixed wings joint in the triple point with the 
trailing diffusion flame. The triple-flame struc- 
ture is less easily identified from the contour 
plot of the nondimensional temperature, Fig. 
7b. It manifests itself, however, in the contour 
plot of the normalised fuel mass fraction, Fig. 
7c. In the latter figure, the inert mixing ahead 
of the flame is represented by the diffusion of 
fuel to the oxidizer side; the back bending 
contours at :~ = 4.31 clearly indicate that there 
combustion takes place in the premixed mode. 
Finally, the trailing, parallel contour lines of 
fuel mass fraction show that the fuel goes to 
depletion in the thin, trailing diffusion flame. 
For the flame of Fig. 7, shown in Fig. 8 are 
sections of the nondimensional reaction rate 
in the )7 direction at axial locations ~ = 4.28, 
4.31, 4.43, and 4.95. It is seen that for :? = 4.28 
there is just a single maximum of 1~ indicating 
the location of the triple point. For increasing 
values of :~, f~ has two maxima, each maximum 
indicating one of the premixed flame wings; 
the local minimum of f~ between the two 
maxima represents the reaction rate in the 
diffusion-flame wing. It is seen from Fig. 8 that 
the reaction rate attains its highest value in the 
triple point and decreases slightly towards the 
trailing diffusion flame. Furthermore it can be 
seen that, as is to be expected on physical 
grounds, the reaction rate decreases in the 
triple flame with increasing values ~. 

.Q 

1000  

800  

13 = 2 0  

5=15 

• ~ = 4 . 2 8  

- ' - o -  ~ = 4 . 3 1  
600  " ~ = 4 . 4 3  

" - - * - -  ~ = 4 . 9 5  

400  

A 2OO 

0. o ' 0 . 8  

Fig. 8. Sections of the nondimensional reaction rate I1 in 
the .9 direction at axial locations ~ = 4.28, 4.31, 4.43, and 
4.95 for a triple flame with /3 = 20 and 6 = 15. 

Figures 9a-9c illustrate the change in flame 
structure in terms of the nondimensional reac- 
tion rate 12 with increasing rate of strain, that 
is, with decreasing value of the DamkShler 
number. The numerical values for 6 and ~F 
are: for Fig. 9a: 6 = 1.1 and fie = 4.73, for Fig. 
9b: 6 = 0.127 and /~F = 3.64 x 10 -2, for Fig. 
9c: 6 = 0.06 and fiF = --2.174; in all three 
figures the numerical value for /3 is 15. The 
sequence of pictures shown in Figs. 9a-9c 
clearly shows that with increasing rate of strain 
the structure of the triple flame evolves to- 
wards the structure of an ordinary diffusion 
flame; it also shows that the transition in struc- 
ture occurs at strain rates for which the propa- 
gation velocity of the flame is approximately 
zero. We note that with decreasing DamkShler 
number the nondimensional width of the pre- 
mixed flame wings remains approximately con- 
stant, whereas the diffusion flame becomes 
thicker until for fiF = 0 the premixed wings 
and the tip of the diffusion flame merge. It 
should be noted that flame spread in negative 
direction is not a physical contradiction be- 
cause the fuel and oxidizer required to sustain 
the flame are continuously supplied from the 
two sides of the mixing layer. 

4. CONCLUSIONS 

In the present paper we have achieved the 
following. Firstly, a burner design has been 
presented for the stabilization of triple flames 
in coflowing streams. First experimental results 
obtained with this burner were presented that 
lead to the conclusion that the burner is well 
suited for the experimental investigation of 
triple flames. 

Secondly, a similarity formulation has been 
developed describing diffusion flame spread in 
strained, counterflowing streams. Here numeri- 
cal, self-adaptive methods have been devel- 
oped that are capable of solving the truly two- 
dimensional governing equations. Using these 
methods, for the limiting case of the thermal- 
diffusional model the structure and propaga- 
tion velocity of the triple flame have been 
computed for various values of the strainrate. 
In the computations it has been found that at 
large DamkShler numbers, that is, low rates of 
strain, the flame structure is indeed that of a 
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Fig. 9. Contour plots in the ~-~ plane of nondimensional coordinates of the nondimensional reaction rate (l for a flame 
with /3 = 15 and (a) ~ = 1.1, (b) 6 = 1.27, (c) ~ = 0.06. 

t r ip l e  f l a m e  p r o p a g a t i n g  wi th  a r e l a t ive ly  la rge ,  

pos i t i ve  ve loc i ty .  W i t h  d e c r e a s i n g  ra tes  o f  

s t ra in ,  t h e  p r o p a g a t i o n  ve loc i t y  d e c r e a s e s  a n d  

the  f l a m e  s t r u c t u r e  e v o l v e s  t o w a r d s  tha t  o f  an  

o r d i n a r y  d i f fu s ion  f l ame ,  F o r  suf f ic ien t ly  h igh  

r a t e s  o f  s t ra in  t h e  p r o p a g a t i o n  ve loc i t y  o f  t h e  

d i f fus ion  f l a m e  b e c o m e s  nega t ive .  
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